近红外光谱分析技术在转基因水稻识别和高油棉籽筛选中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因生物良种培育是生物技术在农业领域的重大突破与应用,对于保证我国粮食安全,积极应用高新技术促进农业生产发展是一项重要尝试。但是,由于转基因生物存在潜在的生物安全风险,需要加强和认真研究转基因生物的安全风险与管理措施,为此研发出快速方便和环境友好的转基因安全检测技术,对于推广应用和强化转基因生物的安全管理具有重要意义。水稻是我国的主要粮食作物,已有成功的转基因技术培育的水稻优良品种。本研究选用了来源于法国、美国、荷兰的TP309、中作321和日本晴三个品种六种转基因类型的47个转基因水稻材料,分别于2009年、2010年在中国农业大学上庄试验站种植,在水稻抽穗期检测叶片,并检测成熟的种子,获得了近红外漫反射光谱(叶片光谱530份,单粒种子样本光谱1500份,多种子样本光谱80份),对光谱数据进行了因子化法和定性偏最小二乘法的多品种、多转基因类型的转基因鉴定和基于(目标)主成分及Fisher准则的有监督模式的二重降维投影相似性分析。另外,论文还选用来源于不同棉花产区(包括陆地棉和海岛棉)棉花材料的棉籽145个,建立了棉籽含油量近红外定量测定模型,对棉籽含油量进行了相似性分析和定量分析相结合的高油棉籽筛选研究。
     主要研究结果如下:
     (1)采用DPLS方法建立了中作321、TP309和日本晴的水稻叶片、多种子样本、单粒种子样本近红外光谱品质预测模型,模型的平均识别正确率为86.51%、97.1%和91.55%,结果表明基于DPLS的近红外光谱分析技术可实现水稻品质的叶片鉴别、多种子样本鉴别和单粒种子鉴别。
     (2)采用DPLS方法建立了中作321、TP309和日本晴的水稻叶片和种子近红外光谱转基因识别模型。在单粒种子转基因识别中,中作321和日本晴转基因识别模型的识别正确率均达到100%,TP309的转基因识别模型识别正确率为93.4%,由此可见近红外光谱可实现水稻单粒种子样本的转基因识别。
     (3)对相同转基因事件的同种水稻单粒种子光谱进行相似性分析,研究发现转δ-OAT基因、P5CS基因的中作321与亲本对照差异明显,根据已有研究报道推测转δ-OAT基因、转P5CS基因的样本与亲本对照比较脯氨酸含量显著增加,部分农艺性状有变化。正是由于这种差异使得通过近红外技术识别转基因具有一定的可行性。对相同转基因不同插入位点的同种水稻种子进行转基因鉴别,发现插入不同位点TPS1基因的中作321基因表达性状差异不明显。
     (4)运用近红外漫反射技术研究快速预测水稻种子蛋白质和千粒重的方法,运用近红外漫反射技术研究快速、准确预测棉籽含油量的方法。所建棉籽含油量预测模型:分析谱区为8848.2cm-1~5442.4cm-1,光谱预处理方法为一阶导数+散射校正。模型采用内部交叉验证,建模集相关系数(r)为0.96,校正标准差(RMSECV)为1.13。对所建棉籽含油量预测模型进行外部验证,棉籽含油量预测模型检验集相关系数r高达0.98,预测相对误差小于5%。
     (5)运用近红外漫反射技术实现高油棉籽的无损筛选具有一定的可行性。通过PPF PCA方法建立了高油棉籽筛选的投影模型,实现有监督模式的二重降维,达到直观反映不同含油量的样品相似关系高低的目的,为高油棉籽的无损筛选提供了参考。
GMO is a major breakthrough in the field of agriculture and Biotechnology. Positive application of high and new technology such as GMO seed cultivation to promote the development of agricultural production is an important attempt for our country to ensure food security. But because of GMO biological potential security risks, it is necessary to carefully study security risks and strengthen management. Therefore, this study developed rapid, convenient and environment friendly inspection technology for GMO. It is of great significance to the application and to strengthen safety management of GMO. Rice is the main food crops in China. breeding excellent rice variety by transgenic technology has been successful. Rice varieties selected in this study came from France, USA, and Holland. There were four transgenic types and47strains of TP309, Zhongzuo321and Nipponbare. They were planted in Shangzhuang experimental station of China Agricultural University in2009and2010. Detection of heading stage leaves and mature seeds by NIR, getting their near infrared diffuse reflectance spectra as the object to study (530leaves spectra,750single seed sample spectra and80multiple seed sample spectra). Using factorization method, DPLS and similarity analysis which were based on double principal component and supervised pattern Fisher criterion projection identificated varieties and transgenic. In addition,145cotton varieties from different cotton production areas (including upland cotton and Sea Island cotton), were chosed to establish the oil content N1R model. And by combinating determination and similarity analysis, the high oil cotton seed screening methods were developed.
     The major results were as follows:
     (1) Using DPLS built rice leaf, multiple seed sample and sigle seed sample NIR rice species prediction model for Zhongzuo321, TP309and Nipponbare.The correct rate of recognition model was86.51%,97.1%and91.55%. That means near infrared technology is able to be used identify the species of rice leaf, single seed and multiple seeds.
     (2) Using DPLS built rice leaf, mutiple seeds sample and sigle seed sample NIR transgenic identification model for Zhongzuo321, TP309and Nipponbare.The correct rate of sigle seed transgenic identification model for Zhongzuo321and Nipponbare were all100%, for TP309was93.4%. That means near infrared technology is able to be used identify the transgenic rice of single seed.
     (3) Using PPF projection studyed the same transgenic events of the same species. The study found the differences between Zhongzuo321(non transgenic) and P5CS genes, and the differences between Zhongzuo321(non transgenic) and δ-OAT genes. Some researches had reported that the samples with P5CS and δ-OAT gene were significantly high content of proline and were changed of some agronomic traits. It was because of this difference that made identifing transgenic by near infrared technology to be certain feasibility. The same transgenic insertion of TPS1gene in different sites couldn't been identified by near infrared technique. That meant no significant differences in gene expression traits of TPS1gene in different sites.
     (4) Application of near infrared diffuse reflectance technique could quickly predict the protein content and thousand kernel weight of rice seed. The rapid and accurate models were established to predict cottonseed oil content by near infrared diffuse reflectance technique. Cottonseed oil content prediction model:The spectral region was8848.2cm-1~5442.4cm-1. The spectral pretreatment method was first-order derivative+MSC. The cross validation was used in building model. Its correlation coefficient (R) was0.96and its calibration standard deviation (RMSECV) was1.13. The coefficient of predictive cottonseed oil content and true oil content was up to0.98and the relative prediction error was less than5%.
     (5) It was of feasibility to screening high oil cottonseed nondestructively by near infrared diffuse reflectance technique. Projection model for screening high oil cottonseed was set up by PPF_PCA method, achieving double supervised pattern dimensionality reduction to reflect the similar of different oil content samples. It provided reference for high oil cottonseed screening.
引文
Aderval S. Luna, Arnaldo P. da Silva, Jessica S.A. Pinho, et al. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy. Spectrochimica Acta,2013, Part A 100:115-119
    Alishahia, H. Farahmanda., N. Prietob, et al. Identification of transgenic foods using NIR spectroscopy: A review. Spectrochimica Acta,2010, Part A 75:1-7
    B Gardner C A, Edward E. Inbredmaize line PH6JM, U S patent number 6,809,240[P].Pioneer Hi-Bred International, Inc.,2004
    Benoit Igne, Glen R.Rippke, Charles R.et al. Measurement of Whole Soybean Fatty Acids by Near Infrared Spectroscopy. Journal of the American Oil Chemists,2008,85 (12):1105-1113
    Burton M., Rigby D., Young T., et al. Consumer Attitudes to Genetically Modified Organisms in Food in the UK. European Review of Agricultural Economics,2001, (28):479-498
    C.R Hurburgh, G.R. Rippke, C. Heithoff, et al. Detection of genetically modified grains by near-infrared spectroscopy in:Proceedings PITTCON 2000-Science for the 21st Century,12-17 March, New Orleans, USA,2000, p.1431
    Carlos Miralbe's. Discrimination of European wheat varieties using near infrared reflectance spectroscopy.Food Chemistry,2008,106:386-389
    Chen L,Guo J,Wang Q, et al. Development of the visual loop-mediated isothermal amplification assays for seven genetically modified maize events and their application in practical samples analysis. Journal of Agricultural and Food Chemistry,2011,59(11):5914-5918
    Chen X., Wang X., Jin N. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplifyication. International Journal of Molecularsciences,2012,13(11): 14421-14433
    CLIVE J.Global status of commercialized biotech/GM Crops:2012[R/OL].[2013-02-01], http:// www.isaaa.org/resources/publications/briefs/44/executives summary/default.asp
    Cozzolino D., Smyth, H. E., Gishen, M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. Journal of Agricultural and Food Chemistry,2003,51:7703-7708
    Cozzolinoa, D., Murraya, L., Chreeb, A., et al. Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy. Lebensmittel Wissenschaft und Technologie,2005,38:821-828
    Curtis R.Kynda, McCluskey J. Jill, et al. Consumer acceptance of genetically modified food products in the developing world. China. AgBioForum,2004,7(12):70-75
    D. Cozzolino, A. Fassio, E. Fern'andez, et al. Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy. Animal Feed Science and Technology,2006,129:329-336
    Daun J K, Clear K M, Williams P. Journal of American Oil Chemists Society,1994,71:1063
    Delwiche, S. R. G. Weaver. Bread quality of wheat flour by near-infrared spectrophotometry:feasibility of modeling. Food Science,1994,59(2):410-415
    Delwiche, S. R. Single wheat kernel analysis by near-infrared transmittance:Protein content.Cereal Chemistry,1995,72:11-16
    Delwiche, S. R., R. A. Graybosch, et al. Predicting protein composition, biochemical properties, and dough-handling properties of hard red winter wheat flour by near-infrared reflectance. Cereal Chemistry,1998,75(4):412-416
    F.E. Ahmed, Detection of genetically modified organisms in foods, Trends in Biotechnology,2002, 20:215-223
    Glen Fox, Alan Cruickshank. Near infrared reflectance as a rapid and inexpensive surrogate measure forfatty acid composition and oil content of peanuts(Arachis hypogaea L.). Journal of Near Inrared Spectroscopy,2005,13(5):287-291
    Grimsrud M. K., McCluskey J., Loureiro M. L., et al. Consumer Attitudes toward Genetically Modified Food in Norway.2002 Annual Meeting of American Agricultural Economics Association[C]. California:LongBeach,2002
    Haiyan Cen, Yong He.Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology,2007,18:72-83
    Hallman, W. K., Hebden, W. C., Aquino, H.L., et al. Public Perceptions of Ge-netically Modified Foods:A National Study of American Knowledge and Opinion. (Publication number RR-1003-004). New Brunswick, New Jersey; Food Policy Institute,2003,Cook College, Rutgers-The State University of New Jersey
    Holmstrom K O. Engineering plant adaptation to water stress. Acta universitatis Agriculture sueciae Agraia,1998,84:49
    Hong jian Lin, Yi bin Ying. Theory and application of near infrared spectroscopy in assessment of fruit quality:a review. Food Quality.2009,3:130-141
    Hymowitz T., J. W. Dudley, et al. Estimations of Protein and oil concentration in corn, soybean, and oat seed by near infrared light refleetance. Crop Science,1974,14:713-715
    1. Murray, L.S. Aucott, l.H. Pike, Use of discriminant analysis on visible and near infrared reflectance spectra to detect adulteration of fish meal with meat and bone meal, Journal of Near Infrared Spectroscopy.2001,9:297-311
    I.Gonza'lez-Mart'in, N.A'lvarez-Garc'ia, J. L. Hern'andez-Andaluz. Instantaneous determination of crude proteins, fat and fibre in animal feeds using near infrared reflectance spectroscopy technology and a remote reflectance fibre-optic probe. Animal Feed Science and Technology,2006, 128:165-171
    ICC Standard Method No.202:General Recommendation for Standardization Near Infrared Analysis (Draft 2001)
    J.G Wu, C.H. Shi. Calibration model optimization for rice cooking characteristics by near infrared reflectance spectroscopy (NIRS). Food Chemistry.2007,103:1054-1061
    James, C. Global Status of Commecrialized Transgenie Crops:1999. ISAAA Brief No.17. ISAAA: Ithaca, NY
    Jin Hwan Lee, Myoung-Gun Choung. Nondestructive determination of herbicide-resistant genetically modified soybean seeds using near-infrared reflectance spectroscopy. Food Chemistry,2011, 126:368-373
    Kirsten Johann, Marnus Gouse, Lindie Jenkins. BT Cotton in South Africa:Adoption and the Impact on Farm Incomes amongst Small-scale and Large-scale Farmers. Presented at the 6th International ICABR Conference in Ravello,2002,Italy.
    L. Munck, B. Mollera, S. Jacobsen, et al. Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1/3,1/4)-b-glucan in barley. Journal of cereal science,2004,40:213-222
    L. Munck, J. Pram Nielsen, B. M ler, et al. Exploring the phenotypic expression of a regulatory proteome-altering gene by spectroscopy and chemometrics, Analytica Chimica Acta, 2001,446:171-186
    Laporte, M. F., & Paquin, P. Near-infrared analysis of fat, protein and casein in cow's milk. Journal of Agricultural and Food Chemistry,47,2600-2605
    Law, D. P., R. Tkachuk.Determination of moisture content in wheat by near-infrared diffuse reflectance spectrophotometry. Cereal Chemistry,1997,54(4):874-881
    Law, D. P., R. Tkachuk. Near infrared diffuse reflectance spectra of wheat and wheat components. Cereal Chemistry,1997,54(2):256-265
    Le Fresne S, Popova M, Le Vacon F, et al. Application of denaturing high-performance liquid chromatography (DHPLC) for the identification of fish:a new way to determine the composition of processed food containing multiple species.Journal of Agricultural and Food Chemistry, 2011,59(23):12302-12308
    Lehmann S, Funk D, Szabados L, et a.l Proline metabolism and transport in plant development. Am ino Acids,2010,39 (4):949-962
    Li Quan, Curtis R.Kynda, McCluskey J.Jill, et al. Consumer Attitudes Toward Genetically Modified Foods in Beijing, China. AgBioForum,2002,5(4):145-152
    Lijuan Xie, Yibin Ying, Tiejin Ying. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics. Journal of Food Engineering,2009,94:34-39
    Lijuan Xie, Yibin Ying, Tiejin Ying.Quantification of Chlorophyll Content and Classification of Nontransgenic and Transgenie Tomato Leaves Using Visible/Near-Infrared Diffuse Reflectance Spectroscopy. Agricultural and food chemistry,2007,55:4645-4650
    Lun M, Luo Y, Tao R. Sensitive and rapid detection of genetic modified soybean (Roundup Ready) by loop-mediatedies othermal amplification. Bioscience, Biotechnology and Biochemistry, 2009,73(11):2365-2369
    M.R. Campbell, J. Sykes, D.V. Glover. Classification of single and double-mutant corn endosperm genotypes by near-infrared transmittance spectroscopy, Cereal Chemistry,2000,77:774-778
    McCluskey J.Jill, Ouchi Hiromi, Grimsrud M.Kristine, et al. Consumer response to genetically modified food products in Japan.2001 (in press)
    Mounier J, Le Blay G, Vasseur V, et al. Application of denaturinghigh-performance liquid chromatography (DHPLC) foryeasts identification in red smear cheese surfaces. Letters in Applied Microbiology,2010,51 (1):18-23
    Nang Hseng Hom, Heiko C. Becker, Christian MO Hers. Non-destructive analysis of rapeseed quality by NIRS of small seed samples and single seeds. Euphytica,2007,153:27-34
    Nelson C H. Risk perception behavior and consumer response to genetically modified organisims. American Behavioral Scientist,2001,44(8):1371-1388
    Norris, K. H., J. R. Hart. Direct spectrophotometric determination of moisture cotent of grain and seeds. Principles and Meehods of Measuring Moisture in Liquids and Solids. New york, Reinhold,1965,4: 19-25
    Oreste V. Brenna, Nicola Berardo. Application of Near-Infrared Reflectance Spectroscopy (NIRS) to the Evaluation of Carotenoids Content in Maize. Agricultural and food chemistry,2004,52:5577-5582
    Orman, B. A., Schumann. R. A. Comparison of near-infrared spectroscopy Calibration methods for the prediction of protein, oil, and starch in maize grain. Journal Agriculture Food Chemistry,1991,39: 883-886
    Pachico, Douglas, Marianne Wolf. Attitudes toward genetically modified food in Colombia, presented at the 6th International ICABR Conference in Ravello,2002, Italy
    Pazdernik, P. D., A. S. Killam, et al. Anakysis of amino and fatty acid composition in soybean seed, using near-infrared reflectance spectroscopy. Journal of Agron,1997,89:679-685
    Pedro, A. M. K., Ferreira,M. M. C. Nondestructive Determination of Solids and Carotenoids in Tomato Products by Near-Infrared Spectroscopy and Multivariate Calibration. Analysis Chemistry,2005, 77(8):2505-2511
    Perez-Vicha B., L. Velascob, et al. Determination of Seed Oil Content and Fatty Acid Composition in Sunflower Through the Analysis of Intact Seeds, Husked Seeds, Meal and Oil by Near-Infrared Reflectance Spectroscopy. Journal of the American Oil Chemists' Society,1998,75(5):547-555
    Ray W, Jin S, Jayaprakash T. How to obtain optimal gene expression in transgenic plants. Beijing:The Seventh Gene Conference,1999:4
    Rernhardt T D, REbbelen G. In:GCIRC (Ed.), Proc 8th Int Rapeseed Congr, Saskatoon, Canada,1991, 1380
    Rinne, R. W., S. Gibson, et al. Soybean protein and oil percentages determined by infrared analysis. Washington DC, Agr. Res. Pub,1975
    Rodriguez-Otero J. L., Hermida M., Cepeda, A. Determination of fat, protein, and total solids in cheese by nearinfrared reflectance spectroscopy. Journal of AOAC International,1995,78,802-806
    S. Pujol, A.M. Perez-Vendrell, D. Torrallardona. Evaluation of prediction of barley digestible nutrient content with near-infrared reflectance spectroscopy (NIRS). Livestock Science,2007,109:189-192
    Saleh, M. I., J. F. Meullenet, et al. Development and Validation of Prediction Models for Rice Surface Lipid Content and Color Parameters Using Near-Infrared Spectroscopy:A Basis for Predicting Rice Degree of Milling. Cereal Chemistry,2008,85(6):787-791
    Schulz H., Engelhardt U. H., Wegent A., et al. Application of near-infrared reflectance spectroscopy to the simultaneous predition of alkaloids and phenolic substances in green tea leaves Journal of Agricultural and Food Chemistry,1999,47(12):5064-5067
    Shaohui Wu, Weisen Feng, Yunhong Gu, et al. The Study of Using Near-infrared Diffuse Reflectance Spectroscopy Rapid Identify Wheat Drought Resistance-Ⅱ. Agricultural Science & Technology, 2013,14(10):1507-1512
    Simon A. Haughey, Stewart F. Graham, Emmanuelle Cancouet. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chemistry,2013,136:1557-1561
    Slaughter D.C. Nondestructive determination of internal quality in peaches and nectarines. Transactions of the ASAE,1995,38(2):617-623
    Suwannasri P, Thongnoppakhun W, Pramyothin P, et al. Combination of multiplex PCR and DHPLC-based strategy for CYP2D6 genotyping scheme in Thais.Clinical Biochemistry, 2011,44(13):1144-1152
    Szabados L, Savoure A. Proline:a multifunction al am inoacid. Trends in Plant Science,2009,15(2): 89-97
    T.Golebiowski, A.S.Leong, J.F.Panozzo. Near infrared reflectance spectroscopy of oil in intact canola seed (Brassica napus,L.). Ⅱ. Association between principal components and oil content. Journal of Near Inrared Spectroscopy,2005,13(5):255-264
    T.Golebiowski. Near infrared reflectance spectroscopy of oil in intact canola seed (Brassica napus, L.). Attributes of the intact seed spectrum.Journal of Near Inrared Spectroscopy,2004,12(5):52-58
    Temma T., Hanamatsu K., Shinoki F. Development of a portable near infrared sugar measuring instrument. Journal of Near Infrared Spectroscopy,2002,10:77-83
    Tetsuo SATO. New Estimation Method for Fatty Acid Composition in Oil Using Near Infrared Spectroscopy.Bioscience, Biotechnology and Biochemistry,2002,66(12):2543-2548
    Velasco L, Becker H C. Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy.Euphytica,1998,101:221-230
    Velasco L, Fernandez-Martinez J M, Haro A D. Screening Ethiopian mustard for erucic acid by near infrared reflectance spectroscopy.Crop Science,1996,36:1068-1071
    Weisen FENG, Shaohui WU, Yunhong GU, et al. Rapid Identification for Drought Resistance of Wheat Using Near-infrared Diffuse Reflectance Spectroscopy. Agricultural Science & Technology,2012, 13(12):2615-2619
    Williams, P. C. Application of near infrared reflectance spectroscopy to analysis of cereal grains and oilseeds. Cereal Chemistry,1975,52:561-576
    Wu D., He Y., Feng S. Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment.Analytica Chimica Acta,2008,610:232-242
    Y. Rui, Y. Luo, K. Haung, et al. Discrimination of transgenic corns using NIR diffuse reflectance spectroscopy and back propagation (BP), Spectroscopy and Spectral Analysis,2005,25:1581-1592
    Yang SL, Lan SS, Gong M. Hydrogen peroxide induced proline and metabolic pathway of its accumulation in maize seed lings. Plant Physiology,2009,166(15):1694-1699
    Zhu J IL I-lasegawa F M, Bressan R A.Molecular aspects of osmotic Stressing plants. Crit Rev Plant Science,1997,16:253-277
    Zimmerman R., M. Qaim. Projecting the Benefits of Golden Rice in the Philippines. Presented at the 6th International ICABR Conference in Ravello,2002, Italy
    Zou H Q, Zhao B J, Yan J, et al. Denaturing high-performance liquid chromatography coupled with multiplex PCR for rapid detection of large duplications or deletions in patients with Duchenne muscular dystrophy and spinal muscular atrophy.2012,29(6):686-689
    Zude M. Comparison of indices and multivariate models to non-destructively predict the fruit chlorophyll by means of visible spectrometry in apples. Analytica Chimica Acta,2003,481: 119-126
    Zude M., Herold B., Roger J.M., et al. Non-destructive tests on the prediction of apple fruit properties at the tree and in shelf life. Journal of Food Engineering,2006,77:254-260
    陈锋,何中虎,崔党群,等.利用近红外透射光谱技术测定小麦品质性状的研究.麦类作物学报,2003,23(3):1-4
    陈洁君,张维,宛煜嵩,等.全球转基因作物发展现状及趋势.农业生物技术学报,2011,19(2):369-374
    程星,王燕雯,包爱科,等.超表达AVP1基因提高转基因百脉根的耐盐性和抗旱性.植物生理学通讯,2010,40(8):808-816
    崔志立,谢锦春,王南,等.近红外单籽粒玉米油分无损测定仪器研制.光谱学与光谱分析,2005,25(11):1807-1809
    丁小霞,李培武,李光明.傅里叶变换近红外光谱技术测定完整油菜籽中芥酸和硫甙含量.中国油料作物学报,2004,26(3):76-79
    高文淑,张录达,王万军.应用付里叶变换近红外反射光谱法测定几种谷物籽粒中蛋白质含量.北京农业大学学报,1990,16(增刊):72-79
    古海彦,严衍禄.在国产近红外光谱仪实验样机上用偏最小二乘法定量分析大麦成分.分析化学,1998,5:607-611
    蒋明敏,徐晟,夏冰,等.干旱胁迫下外源氯化钙、水杨酸和一氧化碳对石蒜抗旱性的影响.植物生理学报,2012,48(9):909-916
    景茂,严衍禄,刘广田.付里叶变换近红外漫反射光谱法测定小麦单籽粒中蛋白质含量.光谱学与光谱分析,1991,(3):20-22
    李大群,王文真,张玉良,等.近红外漫反射光谱法测定大豆和小麦中的蛋白质含量.分析仪器,1989,4:45-50
    李君霞,闵顺耕,张洪亮,等.水稻糙米粗蛋白近红外光谱定量分析模型的优化研究.光谱学与光谱 分析,2006,26(5):833-837
    李钧,王宁惠,余青兰,等.傅立叶变换近红外光谱技术分析完整油菜籽含油量数学模型的建立.青海大学学报(自然科学版),2006,24(6):28-30
    李宁,闵顺耕,覃方丽,等.近红外光谱法非破坏性测定黄豆籽粒中蛋白质、脂肪含量.光谱学与光谱分析,2004,24(1):45-49
    李庆春,王文真,张玉良,等.近红外漫反射光谱分析法在作物品质育种中的应用.作物学报,1992,18(3):235-240
    梁剑,刘斌美,陶亮之,等.基于水稻种子近红外特征光谱的品种鉴别方法研究.光散射学报,2013,25(4):423-428
    刘旭,陈华才,刘太昂,等.PCA-SVR联用算法在近红外光谱分析烟草成分中的应用.光谱学与光谱分析,2007,12(27):2460-2463
    彭玉魁,李菊英,祁振秀.近红外光谱分析技术在小麦营养成分鉴定上的应用.麦类作物,1997,17(2):33-34
    彭玉魁,李菊英.NIRS法同时测定小麦种子水分、粗蛋白、赖氨酸和粗淀粉含量研究.西北农业学报,1996,5(3):31-34
    齐永青,肖凯,李雁鸣.作物在渗透胁迫下脯氨酸积累的研究进展.河北农业大学学报,2003,26(5):24-27
    施佳慧,陈自力,邵咏妮,等.可见/近红外光谱分析技术快速鉴别航天育种番茄.光谱学与光谱分析,2011,31(2):387-389
    宋倩.转基因水稻抗旱相关性状鉴定.中国农业大学,硕士学位论文,2009年
    陶帅,马翔,李军会,等.基于烟叶近红外光谱主成分数据的投影方法研究及其在复烤配方中的应用.光谱学与光谱分析,2009,29(11):2970-2974
    王康君,熊溢伟,葛立立,等.籽粒蛋白质含量不同的转基因水稻株系产量形成特点.作物学报,2013,39(7):1266-1275
    王晓娇.农杆菌介导AVPl基因转化甜菜的研究.内蒙古农业大学,硕士学位论文,2011年
    吴建国,石春海,张海珍.构建整粒油菜籽脂肪酸成分近红外反射光谱分析模型的研究.光谱学与光谱分析,2006,26(2):259-262
    吴亮其,范战民,郭蕾,等.通过50AT基因获得抗盐抗旱水稻.科学通讯,2003,48(19):2050-2056
    吴秀琴,等.应用51A型NIRS测定小麦种子中的赖氨酸含量.农业分析测试,1985,(2):40-42
    徐永群,汤俊明.近红外光谱法定量分析亚麻油中的主要组分.河南科学,2002,20(3):245-248
    严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005,31-39,113-217
    严衍禄,陈斌,朱大洲.近红外光谱分析的原理、技术与应用.北京:中国轻工业出版社出版,2013年,23-25
    杨联松,白一松,张培江,等.谷粒形状与稻米品质相关性研究.杂交水稻,2001,(4):48-54
    杨小红,郭玉秋,傅旸,等.利用近红外光谱法分析玉米籽粒脂肪酸含量的研究.光谱学与光谱分析,2009,(1):106-109
    臧鹏,李军会,于燕波,等.六味地黄丸近红外光谱定性分析方法的建立.中华中医药杂 志,2011,26(12):2951-2954
    曾华宗,罗利军.植物抗旱、耐盐基因概述.植物遗传资源学报,2003,4(3):270-273
    张录达,沈晓南,赵龙莲,等.近红外光谱主成分-所有可能回归法定量分析烤烟、小麦样品中的组分含量.分析化学,2000,6:723-725
    张愿,张录达,白琪林,等.近红外光谱法快速无损识别普通、高油、超高油玉米籽粒.光谱学与光谱分析,2009,29(3):686-689
    郑咏梅,王芳荣,张军,等.近红外光谱定量分析小麦粉蛋白质含量.吉林大学学报(信息科学版),2002,(3):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700