基于磁开关和带状线的长脉冲、超低阻抗脉冲发生器及其相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国防和工业应用上的需求促进脉冲功率技术向高重频、高平均功率、固态化和紧凑化方向发展。基于磁开关和带状线的长脉冲、超低阻抗脉冲发生器是符合这一发展方向的重要候选者之一。本文通过对卷绕型带状脉冲形成线和磁开关两大核心子系统进行理论分析、工程设计和实验研究,完整地提出了长脉冲、超低阻抗脉冲发生器设计方案和设计方法,研制出一台长脉冲、超低阻抗脉冲发生器。本文的研究结果为长脉冲、超低阻抗、固态化脉冲发生器的应用研究奠定了基础,对此类脉冲发生器的研制具有重要的指导意义。
     论文的研究内容主要包括以下几个方面:
     1.设计了一台固态化的卷绕型带状脉冲形成线,其具有长脉冲和超低阻抗的特点,对其进行了理论分析、制作加工和实验研究。通过保角变换的方法求解了带状脉冲形成线的特性阻抗。制定了卷绕型带状脉冲形成线制作流程,并设计制作了一台特性阻抗0.5 ?,电长度115 ns,以DMD膜为绝缘介质的固态化带状脉冲形成线。该形成线卷绕后尺寸为Φ311mm×400 mm。应用设计的多通道轨道开关对形成线性能进行了测试,在匹配负载上获得了电压17.8 kV,脉宽(FWHM)约270 ns,上升沿约20 ns的准方波脉冲,输出功率为634 MW。结合形成线特点,设计了一种中间输入结构。应用数值模拟的方法验证了该输入结构在保证输出波形质量的前提下,可有效地缩短形成线充电时间,提高形成线耐压水平。
     2.基于理论分析和数值模拟结果,制定了环形磁开关设计流程。运用该流程,设计制作了一台40 kV级环形磁开关。该磁开关以铁基非晶磁环为磁芯,在实验中将40 kV,10μs脉冲压缩为39 kV,2.36μs,并在10 Hz重频下可稳定运行。设计并制作了一台具有低饱和电感的跑道形磁开关。该磁开关为单匝平板绕组,跑道形磁芯,饱和电感仅约30 nH,保证了输出脉冲的快上升沿。以此跑道形磁开关替代轨道开关作为主开关,实现了脉冲发生器主开关的固态化。
     运用单级磁脉冲压缩实验平台,设计了一种磁芯动态磁滞回线的测量方法。该方法适合于脉冲磁化条件下,磁性材料的特性参数测量和磁滞回线的绘制。此外,该测试平台可通过改变回路中电容和电感参数,方便地改变输出脉冲的伏秒积,从而测试磁芯在不同磁化条件下的动态特性。
     3.提出了一种新型长脉冲、超低阻抗脉冲发生器技术方案。该方案具有固态化、高重复频率、高平均功率等优点。脉冲发生器由初级能源、脉冲变压器、磁脉冲压缩器、带状脉冲形成线、主开关和负载组成。
     将已研制完成的核心子系统联合,组成长脉冲、超低阻抗脉冲发生器。对脉冲发生器进行了全电路模拟和实验研究。在0.5 ?匹配负载上进行实验得到:单脉冲运行时,负载上得到电压17.8 kV,脉宽(FWHM)约270 ns的准方波脉冲;在重复频率7 Hz运行时,负载上得到电压14 kV,脉宽(FWHM)约285 ns的准方波脉冲,脉冲发生器工作稳定,输出脉冲波形一致性高。
Defense and industrial applications have stimulated intense interests in pulsed power technology towards high repetition rate, high average power, all solid-state and compact structure. The long pulse, ultra-low impedance pulse generator based on magnetic switch and strip line investigated in this dissertation is an important candidate in this field.
     In this dissertation, a long pulse, ultra-low impedance pulse generator is developed based on the theoretical analysis, engineering designs, and experimental investigations of the two key subsystems which are a rolled strip pulse forming line (PFL) and a magnetic switch. These efforts are the ground for the development of a long pulse, ultra-low impedance and all solid-state pulse generator, and provide a significant reference for the research on this kind of pulse generator. The detailed contents and innovative work are as follows.
     1. A solid state, rolled strip pulse forming line with long pulse and ultra-low impedance is designed and is investigated both theoretically and experimentally. The characteristic impedance of the strip pulse forming line is obtained by using the conformal mapping methods. The design procedure of a rolled strip pulse forming line is worked out. And a rolled strip PFL with characteristic impedance of 0.5 ?, electric length of 115 ns was designed and manufactured. We use the DMD film and copper as the dielectric and conductor of the strip PFL separately. The dimension of the rolled strip PFL isΦ311mm×400 mm. A multi-channel rail gap switch for connecting to the strip PFL is designed and manufactured with the virtues of small volume and low inductance. In the PFL experiment, a quasi-square pulse of 17.8 kV, 270 ns (FWHM) on the matched load of 0.5 ? is obtained and the output power is 634 MW. A novel strip pulse forming line with a middle input structure is proposed. Compared with the conventional input structure, the middle input structure can reduce the duration of the charging and increase the electric strength of the strip line obviously on condition that the output pulse is a quasi-square wave.
     2. Based on the results of theoretical analysis and simulation, the design procedure of a toroidal magnetic switch is worked out. A 40 kV class magnetic switch is designed and manufactured according to the procedure. The core of the magnetic switch was stacked by the Fe-based amorphous magnetic rings. In the experiment, a pulse is compressed from 40 kV, 10μs to 39 kV, 2.36μs. And the magnetic switch can operate stably at 10 Hz repetition rate. A magnetic switch with low saturated inductance is designed and manufactured. The number of turns is one and made of copper plate. This structure can reduce the saturated inductance of the magnetic switch to about 30 nH. The magnetic switch is used as the main switch by replacing the rail gap switch to realize the solid state of the main switch.
     A novel testing method for the hysteresis cycle of the magnetic core has been proposed based on the single magnetic compression experimental platform. This method is applicable to the measurement of characteristic parameters and hysteresis cycle of magnetic material under the pulsed magnetization condition. In addition, this system can change the volt-second product of the output pulse conveniently by changing the parameters of the capacitor and inductor to measure the dynamical characteristics of the magnetic core in different magnetization condition.
     3. A novel long pulse, ultra-low impedance pulse generator with the advantages of solid state, high repetition rate and high average power is proposed. It comprises primary energy system, pulse transformer, magnetic switch, rolled strip PFL, main switch and load.
     In summary, based on the two key subsystems mentioned above, the long pulse, ultra-low impedance pulse generator is developed. The pulse generator is investigated by circuit simulation and experiment. On a 0.5 ? matched load, it can generate an output pulse with voltage of 17.8 kV, duration (FWHM) of 270 ns and rise time about 20 ns in the single shot mode. In the rep-rate mode, the experimental results show that the pulse generator can operate stably at 7 Hz repetition rate, with the output pulse of 14 kV, duration (FWHM) of 285 ns.
引文
[1] Mesyats G A. Pulsed power [M]. New York: Kluwer Academic/Plenum Publishers, 2005.
    [2] Martin J C. The prehistory of pulsed power, IEE, 1995: 1-3
    [3] Martin J C. Nanosecond pulse techniques [C]. Proceedings of the IEEE, 1992, 80(6): 934-945.
    [4] Shamiloglu E, Barker R J, Gundersen M, Neuber A A. Modern Pulsed Power: Charlie Martin and Beyond [C]. Proceedings of the IEEE, 2004, 92(7): 1014-1020.
    [5]王淦昌.高功率粒子束及其应用[J].强激光与粒子束,1989(1): 1-21.
    [6]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005.
    [7]江伟华,张弛译, H. Bluhm著.脉冲功率系统的原理与应用[M].北京:清华大学出版社,2008.
    [8] Pai S T and Zhang Q. Introduction to high power pulse technology [M]. Singapore: World Scientific Publishing Co. Pre. Ltd. 1995.
    [9]李传胪.脉冲功率技术及其应用[J].国防科技大学学报增刊,1995,17:1-8.
    [10]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社,2003.
    [11] Blumlein A D. Eletrical network for forming and shaping eletrical waves [P]. US: Patent 2465840, 1948.
    [12] Alfven H. On the Motion of Cosmic Rays in Interstellar Space [J]. Phys. Rev., 1939, 55: 425-429.
    [13] Budker G I. CERN Symposium on High Energy Accelerators and Pion Physics [C]. Geneva, 1956, 1.
    [14] Martin J C. Nanosecond pulse techniques [C]. Proceedings of IEEE, 1992, 80(6):934-945.
    [15] Martin T H, et al. Summary of the Hermes flash X-ray program[R]. SC-RR-69- 421, 1969.
    [16] Martin T H, et al. PBFA II, A 100TW pulsed power driver for ICF[C]. Proceeding of 5th IEEE Int Pulsed Power Conf, 1985.
    [17] Martin T H, et al. PBFA II, The pulesd power characteriation phase [C]. Procee -ding of 6th IEEE Int Pulsed Power Conf, 1987.
    [18] Alexander J A, Corley J P, Johnson D L, et al. Performance of the hermes-III pulse forming lines[C]. Proceeding of 7th IEEE Int Pulsed Power Conf, 1989:575-578.
    [19]邱爱慈,李玉虎,王知广等.强流相对论电子束加速器—闪光二号[C].第四届全国高功率会议文集,西安,1990.
    [20]蒯斌,邱爱慈,王知广等.强光一号加速器[C].第八届高功率粒子束暨高压学术交流会论文集,西安,2001:93-96.
    [21]李劲,丁伯南,戴光森,刘小平等.“神龙一号”脉冲功率系统研制[C].首届强流加速器技术研讨会,四川江油,2005:16-19.
    [22] Mesyats G A, Korovin S D, Gunin A V, Gubanov V P. Repetitively pulsed high-current accelerators with transformer charging of forming lines[J]. Laser and Particle Beams, 2003,21:177-209.
    [23] S. N. Rukin, G. A. Mesyats, S. A. Darznek, et a1. SOS-based pulsed power: development and applications[C]. Proceeding of 12th IEEE Int Pulsed Power Conf, 1999:153-156.
    [24] S. K. Lyubutin, G. A. Mesyats, S. N. Rukin, et a1. Nanosecond microwave generator based on the relativistic 38GHz backward wave oscillator and all-solid-state pulsed power modulator[C]. Proceeding of 12th IEEE Int Pulsed Power Conf, 1999:202-205.
    [25] Kristiansen M., Dickens J. C., Shkuratov S. I., Compact pulsed power and high power microwave devices[R]. 2003, AFRL-SR-AR-TR-03-0463.
    [26] Gundersen M. A., Compact, high power, repetitive pulsed power instrumentation [R]. 2004, AFRL-SR-AR-TR-04-0084.
    [27] Wilson C. R., Erickson G. A, Smith P. W., Compact, repetitive, pulsed power generators based on transmission line transformers [C]. Proceeding of 7th IEEE Int Pulsed Power Conf, 1989, 108-112
    [28] M. Joler, C. G. Christodoulou, E. Schamiloglu, et al., Modeling of a compact, portable transmission line for pulsed power applications [C]. Proceeding of 14th IEEE Int Pulsed Power Conf, 2003(1):253-256.
    [29] Buttram M. Some future directions for repetitive pulsed power [J]. Pulsed Power Plasma Science, 2001(1):3-8
    [30] Gaudet J. A., Barker R. J., Buchenauer C. J., et al. Research issues in developing compact pulsed power for high peak power applications on mobile platforms [C]. Proceedings of the IEEE, 2004, 92(7):1144-1165.
    [31] E. Schamiloglu, R. J. Barker, M. Gundersen. Compact pulsed power require -ments for high power microwaves [C], IEE Pulsed Power Symposium, 2001, 3/1-3/4.
    [32] Fazzo M. V., Kirbie H. C., Ultracompact pulsed power [C]. Proceedings of IEEE, 2004, 92(7):1197-1204.
    [33] Deng J., Stark R. H., Schoenbach K. H., A compact, nanosecond pulse generator with water as dielectric and as switch medium [J]. Pulsed Power Plasma Science, 2001(2):1587-1590.
    [34] Goerz D., Ferriera T., Nelson D.. An ultra-compact marx-type high-voltage generator [C]. Proceeding of 13th IEEE Int Pulsed Power Conf, 2001:628-631.
    [35] Schamiloglu E. Basic research leading to compact, portable pulsed power [R]. First Annual Review of FY’01 AFOSR/DoD MURI Program, http:// www.eece. unm.edu/ cp3.
    [36] Joler M., Christodoulou C., Gaudet J., et al. Study of high energy storage Blumlein transmission lines as high power microwave drivers [C]. 14th International Conference on High Power Particle Beams, 2002, 25-28.
    [37]张军,钟辉煌,杨汉武.髙功率微波脉冲功率驱动源研究进展,髙电压技术,2004, 30(6):45-48.
    [38]王莹.高功率脉冲电源[M].北京:原子能出版社,1991
    [39]蒯斌等.强光-I长脉冲γ射线二极管[C].第八届全国高功率粒子束会议文集, 2001
    [40] Meger R. A. et al. Application of PEOS to high power accelerator for pulse compression and power multiplication [C]. Proceeding of 13th IEEE Int Pulsed Power Conf, 1983:335.
    [41] Shannon J. Maxwell labs report [R]. MLR-3073, April, 1998.
    [42] P. Sincerny, S. Ashby, K. Childers, et al. Performance of Decade Module #1 and the Status of the Decade Machine [C], Proceeding of 10th IEEE Int Pulsed Power Conf, 1995:405-416.
    [43] Mesyats G. A., et al. 1 MV, 500 Hz, all-solid-state nanosecond driver [C], Beams2000, 2000:192.
    [44]许日等.RS-20重复频率脉冲加速器[C].第六届全国高功率粒子束会议文集,1996.
    [45] Bemstien B., Smith I. Aurora, an electron accelerator [J], IEEE Trans. Nucl. Sci., 1973, 20(3):294-300.
    [46] T. H. Martin, J. P. Vandevender, G. W. Barr, et al. Particle beam fusion accelerator-I (PBFA-I) [J], IEEE Trans. Nucl. Sci., 1981, 28(7):3365-3369.
    [47] R. E. Hesterr, D. G. Bubp, J. C. Clark. The experimental test accelertor (ETA) [J], IEEE Trans. Nucl. Sci., 1979, 26(3):4180.
    [48] L. L. Reginate, D. Branum, E. Cook, et al. ATA pulse power technology development [J], IEEE Trans. Nucl. Sci., 1981, 28(7): 2758-2760.
    [49] E. Schamiloglu, K. H. Schoenbach, R. Vidmar. Basic research on pulsed power for narrowband high power microwave sources[R], Intense Microwave Pulsed IX, 4720-01, 1-9.
    [50] R. Bailly-Salins, J. L. Lemaire, S. Joly. A ceramic Blumlein transformer driver (CBTD) for a linear inductive voltage adder (LIVA) [C]. Proceeding of 14th IEEE Int Pulsed Power Conf, 2003(2):964-967.
    [51] T. S. Sudarshan, V. Madangarli, Shengyi Liu, et al. A compact Blumlein PFN with optimized performance index[C]. Proceeding of 10th IEEE Int Pulsed Power Conf, 1995(2):1400-1405.
    [52] D. A. Phelps, L Franklin, W Homeyer, et al. A compact high rep-rate short pulse strip-Blumlein modulator[C]. 19th IEEE Modulator Symposium, 1990:511~513.
    [53] J. A. Alexander, S. L. Shope, R. C. Pate, et al. Plastic laminate pulsed power development[C]. Proceedings, Society of Automotive Engineers, Paper 00PSC -113, 2000.
    [54] Paul Marsh, John Dolan. Compact multichannel 50kV 25ohm Blumlein pulser with 2.5ns rise-time and 55ns FWHM[C]. IEE Pulsed Power Symposium, 2001, 7/1-7/4.
    [55] E Schamiloglu. On the road to compact pulsed power: adventures in materials, electromagnetic modeling and thermal management [C]. Proceeding of 14th IEEE Int Pulsed Power Conf, 2003(1):3-8.
    [56] E Schamiloglu, R J Barker. Special issue on pulsed power: technology and appli -cations[J]. Proceedings of the IEEE, 2004(7):1011-1013.
    [57] S. D. Korovin, V. V. Rostov, S. D. Polevin, et al. Pulsed power driven high power microwave sources[C], Proceedings of the IEEE, 2004(7):1082-1095.
    [58] F. Davanloo, H. Park, P. Dussart, et al. Progress in the development of stacked Blumlein pulsers commutated by photoconductive switches [C]. 23th International Power Modulator Symposium, 1998:1444-1149.
    [59] F. Davanloo, R. K. Krause, J. D. Bhawalkar, et al. A novel repetitive stacked Blumlein pulse power source [C]. Proceeding of 8th IEEE Int Pulsed Power Conf, 1991:971-974.
    [60] F. Davanloo, D. L. Borovina, J. D. Bhawalkar, et al. High power repetitive waveforms generated by compact stacked Blumlein pulsers [C]. 21th International Power Modulator Symposium, 1994:201-205.
    [61] F. Davanloo, J. L. Korioth, D. L. Borovina, et al. Stacked Blumlein pulse generators [C]. 22th International Power Modulator Symposium, 1996:181-184.
    [62] F. Davanloo, C. B. Collins, F. J. Agee, High-Power, repetitive-stacked Blumlein pulsers commutated by a single switching element [J], IEEE Transactions on Plasma Science, 1998, 26(5):1463-1475.
    [63] J. D. Bhawalkar, F. Davanloo, C. B. Collins, et al. High power repetitive stacked Blumlein pulse generators producing waveforms with pulse durations exceeding 500ns [C]. Proceeding of 9th IEEE Int Pulsed Power Conf, 1993:857-860.
    [64] E. Schamiloglu, The importance of ceramics in pulsed power applications[A], FY’01AFOSR/DoD MURI on Compact Portable Pulsed Power, http://www.ee ce.unm.edu/cp3.
    [65] J. O. Rossi, J. J. Barroso, M. Ueda. Modeling of Wound Coaxial Blumlein Pulsers [J]. IEEE Transactions on Plasma Science, 2006, 34(5):1846-1852.
    [66] J. O. Rossi, M. Ueda, J. J. Barroso. A 150 kV/300 A/lμs coaxial blumlein pulser [C]. Proceeding of 14th IEEE Int Pulsed Power Conf, 2003:24-28.
    [67] J. O. Rossi, M. Ueda. Design of a 150 kV, 300 A, 100 Hz Blumlein coaxial pulser for long pulse operation [C]. Proceeding of 13th IEEE Int Pulsed Power Conf, 2001:536-539.
    [68]欧阳佳,刘永贵,刘金亮等.折叠型平板Blumlein线的理论与实验研究[J].强激光与粒子束,2007,21(6):1044-1048.
    [69]欧阳佳,刘永贵,张晓萍等.折叠型平板Blumlein线高功率微波驱动源[J].强激光与粒子束, 2008,20(9):1516-1620.
    [70] Liansheng Xia, Huang Zhang, Jinshui Shi, et al. A compact, portable pulse forming line [J], Review of Scientific Instruments, Aug. 2008, 79(8):086113.
    [71]夏连胜,陈德彪,张篁等.固态高压脉冲形成线研究[J].强激光与粒子束,2009, 21(7):1111-1114.
    [72] Melville W S. The use of saturable reactors as discharge device for pulse generators [J], Proc. Institution of Electrical Engineers, 1951.98(3):185-207.
    [73] Eugene L N. High Average Power, High Current Pulsed Accelerator Technology [C], Proceedings of the Particle Accelerator, 1995.
    [74] Schneider L, Reed K, Harjes H, et al. Status of Repetitive Pulsed Power at Sandia National Laboratories [C], Proceeding of 12th IEEE Int Pulsed Power Conf, 1999:523-527.
    [75] Harjes H, Reed K, Buttram M, et al. The Repetitive High Energy Pulsed Power Module [C], 19th International Power Modulator Symposium, 1990.
    [76] Rukin S N, Lyubutin S K, Kostirev V V, et al. Repetitive 200 kV Nanosecond All Solid State Pulser with a Semiconductor Opening Switch [C], Proceeding of 10th IEEE Int Pulsed Power Conf, 1995.
    [77] Lyubutin S K, Mesyats G A, Rukin S N, et al. Repetitive Nanosecond All Solid State Pulsers Based on SOS Diodes [C], Proceeding of 11th IEEE Int Pulsed Power Conf, 1997:992-998.
    [78] Kotov Y A, Mesyats G A, Rukin S N, et al. A Novel Nanosecond Semiconductor Opening Switch for Megavolt Repetitive Pulsed Power Technology: Experiment and Applications [C], Proceeding of 9th IEEE Int Pulsed Power Conf, 1993:298-305.
    [79] Akira Tokuchi, Norihiko Ninomiya, Weihua Jiang, et al. Repetitive Pulsed Power Generator“ETIGO-IV”[J], IEEE Trans. On Plasma Science, 2002,30(5): 1637-1641.
    [80]苏建仓,刘国治,丁臻捷等.基于SOS的脉冲功率源技术新进展[J],强激光与粒子束,2005,17(8):1195-1200.
    [81] Shi Yang, Hui-Huang Zhong, Bao-Liang Qian, et al. An all solid-state, rolled strip pulse forming line with low impedance and compact structure [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010,81(4):043303.
    [82] G. J. Rohwein, R. N. Lawson, M. C. Clark. A Compact 200 kV Pulse Transformer System [C], Proceeding of 8th IEEE Int Pulsed Power Conf, 1991:968-970.
    [83]常安碧,张德泉,张之福等.600kV高压大电流脉冲变压器的研制[J].强激光与粒子束,1998,10(3):462-466.
    [84] J. L. Liu, T. W. Zhan, J. Zhang, et al. A Tesla pulse transformer for spiral water pulse forming line charging [J]. Laser and Particle Beams, 2007, 25(2):305-312.
    [85]刘金亮,张建德,李永忠等.一种给脉冲形成线充电的带绕式高压脉冲变压器[J].强激光与粒子束,2003,15(4):394-396.
    [86]梁昌洪,谢拥军,官伯然.简明微波[M].北京:高等教育出版社,2006.
    [87] Wadell B C. Transmission line design handbook [M]. Artech House, Norwood, 1991:Chap. 3.
    [88] R. M. Barrett. Microwave Printed Circuits-An Historical Perspective [J]. IRE Transactions on Microwave Theory and Techniques, 1955, 3(2):1-9.
    [89] Howe, Harlan, Jr. Microwave Integrated Circuits-An Historical Perspective [J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32(9):991-996.
    [90]卢万铮.电磁场理论与微波技术[M].西安,空军电讯工程学院,1996.
    [91]陈振国.微波技术基础与应用[M].北京:北京邮电大学出版社,2006.
    [92]赵智大.高电压技术[M].北京:中国电力出版社,1999.
    [93]电工绝缘手册编审委员会.电工绝缘手册[M].北京:机械工业出版社,1990.
    [94]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2003:94.
    [95]张积之.固态电介质的击穿[M].杭州:杭州大学出版社,1994
    [96] Kuffe E. High voltage engineering fundamentals, Pergamon press, 1984.
    [97]唐传林,李承钧,单书发.绝缘材料工艺原理[M].北京:机械工业出版社,1993:83 -91.
    [98]梁昆淼.数学物理方法[M].北京:高等教育出版社,1998:447-456.
    [99]罗敏,赵殿林,常安碧等.MV级多通道重复频率气体开关的设计及初步实验[J].强激光与粒子束,2006,18(6):999-1002.
    [100]夏明鹤,王勐,王玉娟等.4 MV同轴-三平板型水介质自击穿开关设计[J].强激光与粒子束,2006,18(3):496-500.
    [101]王桂吉,吴刚,赵剑衡等.平面火花隙三电极开关研制及性能测试[J].强激光与粒子束,2006,18(2):349-352.
    [102]张仁豫,陈昌渔,王昌长.高电压试验技术[M].北京:清华大学出版社,2003.
    [103]曾正中,邱爱慈.一种陡脉冲高电压电阻分压器的补偿方法[M].强激光与粒子束,1993,5(3):367-373.
    [104]欧阳佳.折叠型平板Blumlein线及其应用研究[D].博士学位论文.国防科技大学研究生院,2007.
    [105]刘金亮.基于水介质螺旋Blumlein线的紧凑型长脉冲加速器研究[D].博士学位论文.清华大学研究生院,2008.
    [106]李志强.新型电感储能脉冲功率源及其驱动S波段锥形MILO的研究[D].博士学位论文.国防科技大学研究生院,2009.
    [107] K. W. Reed, L. X. Schneider, G. E. Pefia, et al. MAGNETIC MODULATOR LIFETIME TESTS USING THE SANDIA RELIABILITY TEST-BED [C]. Proceeding of 12th IEEE Int Pulsed Power Conf, 1999:528-531.
    [108] H. J. Baker, P. A. Ellsmore, et al. An Efficient Laser Pulser Using Ferrite Magnetic Switches [J]. J. Phys. E: Sci. Instrum., 1988(21):218-222.
    [109] H. Deguchi, T. Hatakeyama, et al. 100 W Copper Vapor Laser with All solid State Exciter [J]. Trans. IEE Japan, 1991(11): 307-315.
    [110] Ilan Druckmann, Israel Smilanski. OPERATION OF TWO COPPER VAPOR LASERS BY A SINGLE MAGNETIC MODULATOR [C]. Proc of 11th IEEE Int. Pulsed Power Conf. 1997:657-662.
    [111] M. Nehmadi, Z. Gramer, Y. Ifrah, et al. Magnetic pulse compression for a copper vapor laser [J]. J. Phys. D: Appl. Phys, 1989(22):29-34.
    [112] S. N. Rukin. High-Power Nanosecond Pulse Generators Based-on Semiconductor Opening Switch [J]. Instruments and Experimental Techniques, 1999, 42(4):134-139.
    [113] D. M. Barrett. Parameters which influence the performance of practical magnetic switches [J]. Proc of 10th IEEE Int. Pulsed Power Conf. 1995:1154-1159.
    [114]王瑞华.脉冲变压器设计[M].北京:科学出版社,1987.
    [115]苏建仓.基于SOS的高重复频率全固态脉冲功率源技术研究[D].博士学位论文.西安交通大学研究生院,2006.
    [116] D. M. Barrett. CORE RESET CONSIDERATIONS IN MAGNETIC PULSE COMPRESSION NETWORKS [C]. Proc of 10th IEEE Int. Pulsed Power Conf. 1995:1160-1165.
    [117]甘孔银.磁开关及在脱硫脱硝脉冲电源中的应用[D].硕士学位论文.中国工程物理研究院研究生部,1998.
    [118] C. H. Smith. Magnetic loss in metallic glasses under pulsed excitation[J]. IEEE Trans. On Nuclear Science, 1983, 30(4):2918-2920.
    [119] D. L. Birx, E. J. Lauer, L. L. Reginato, et al. Basic Principles Governing the Design of Magnetic Switch [R]. UCID-18831. Lawrence Livermore National Laboratory, 1980.
    [120]戴育航,钱照明.磁脉冲压缩技术及其在脉冲电源领域中的应用[J],电力电子技术,1999.2: 54-57.
    [121]李守卫.开关电源用磁芯的特性及应用[J].电子材料与电子技术,2004:13-22.
    [122]李士忠.高功率带绕式脉冲变压器的研究[D].硕士学位论文.国防科技大学研究生院,2005.
    [123]张瑜.基于闭合磁环脉冲变压器的紧凑型高压纳秒脉冲发生器[D].硕士学位论文.国防科技大学研究生院,2009.
    [124]丁臻捷,苏建仓,丁永忠等.环形磁芯快脉冲动态参数测量方法[J].强激光与粒子束,2004(10):1345-1348.
    [125] M H Rashid主编,陈建业,杨德刚,于歆杰等译.电力电子技术手册[M].北京:机械工业出版社,2004.
    [126]王兆安,黄俊.电力电子技术[M],北京:机械工业出版社,2000:100-108.
    [127]张德泉,常安碧,张之福,等.高电压大电流脉冲变压器的研制[J].中物院应用电子学研究所:1995.
    [128] P. M. Ranon, R. L. Schlicher, J. P. Loughlin, et al. Modular Desigh of A 100 GW,10kJ,Charged Dielectric Line Driven Pulsed Transformer[C], 18th Power Modulator Symposium,1988:62-70.
    [129]李名加,阮江军,康强等.脉冲变压器锥形绕组电压分布数值分析[J].高电压技术,2004,30(6):51-53.
    [130]杨汉武.爆炸磁压缩发生器及其脉冲功率调制研究[D].博士学位论文.国防科技大学研究生院, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700