超声/高超声速非均匀来流下曲面压缩系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对典型的超燃冲压发动机工作环境,采用理论分析、数值模拟和风洞试验相结合的方法,研究了一种新型的弯曲压缩系统及其所形成的弯曲激波。
     首先,讨论了二维平面压缩、等熵压缩和锥波压缩的设计方法,提出了形成弯曲激波的二维弯曲压缩系统的设计思想。
     其次,在无粘条件下分析了弯曲压缩系统的初始斜板长度、压缩面总长度、形成弯曲压缩系统的小折线偏转角度以及递增偏转角度等不同因素对弯曲压缩系统性能的影响。选取NASA经典的进气道试验作为参照依据进行算例考核,考查了本文研究中所采用的数值模拟方法及软件对进气道特性的预测能力,分析和比较了数值模拟和试验结果,根据不同湍流模型对进气道性能预测结果,确定了本文研究中所适用的湍流模型。
     再次,分别设计了壁面压力按等压力梯度变化和壁面马赫数按等马赫数梯度变化的弯曲压缩系统,应用斜激波理论和等熵压缩波理论,给出了可以快速、便捷地获得其弯曲激波形状参数、压缩面上性能参数、激波后性能参数以及出口性能参数的近似计算方法,和预估弯曲压缩系统型面及其形成的弯曲激波的估算公式。
     然后,选取一个设计点马赫数5.3、壁面压力按等压力梯度变化的弯曲压缩系统,经附面层修正后的型面加工成模型,在南航Ma 3.85/5.3小型高超风洞完成了均匀和非均匀来流试验。试验结果表明:在均匀来流条件下,设计点马赫数5.3,弯曲压缩系统壁面压力按等压力梯度分布;非设计点马赫数3.85,壁面压力也基本呈等压力梯度分布;在非均匀来流条件下,马赫数3.85比马赫数5.3时壁面压力更接近等压力梯度分布。同时,验证了所提出的二维等压力梯度弯曲压缩系统的设计方法。
     最后,比较了等压力梯度曲面压缩非常规二维进气道同二楔压缩和三楔压缩的常规二维进气道性能。等压力梯度曲面压缩二维进气道与三楔压缩二维进气道压比相当时,其压缩面长度比三楔压缩的常规二维进气道缩短20.5%,大大地减轻了进气道的重量。在非设计点非均匀来流条件下,等压力梯度设计曲面压缩二维进气道较之楔压缩二维进气道,有较高的流量系数和总压恢复,吞入36%唇口高度来流附面层后,等压力梯度设计曲面压缩二维进气道流量系数比二楔压缩二维进气道高0.6%,总压恢复高6.8%。三楔压缩二维进气道在吞入较厚附面层后会导致不起动。同时,比较了均匀来流和非均匀来流条件下顶板平面压缩+侧板平面压缩、顶板平面压缩+侧板曲面压缩、顶板曲面压缩+侧板平面压缩和顶板曲面压缩+侧板曲面压缩四种侧压式进气道性能。在均匀来流条件下,侧板采用等压力梯度设计曲面压缩系统的侧压式进气道性能较好;在非均匀来流条件下,顶板+侧板均采用等压力梯度设计曲面压缩系统的侧压式进气道具有较高的流量系数和总压恢复,出口流场畸变较小。
     通过本文研究,给出了一种比目前已经使用的或者在研的压缩系统的长度要短、压缩面的压力梯度可控、对非均匀超声速来流有更好承受能力的弯曲压缩系统,为今后超燃冲压发动机进气道设计建立新的发展基础。
A detailed study is performed in current dissertation on the newly curved compression system and its curved shock wave at the typical scramjet working environment by theoretical analysis, wind tunnel testing and numerical simulation methods.
     First, design methods of the two-dimensional plane compression, isentropic compression and cone wave compression are discussed. Then, the design method of a two-dimensional curved compression system that can form curved shock is given.
     Secondly, analysis the effect of the initial ramp length, total compression surface length, deflection angle of a small curved line forming compression system and increased yaw angle on the performance of different curved compression systems in the inviscid condition. The evaluation of software to predict characteristics of the inlet is assessing by selected the classic NASA inlet experiment example. Analysis and comparison of the numerical simulation and experimental results, different turbulence models forecast the performance of inlet obtained. The selected turbulence model is given.
     Then, constant pressure gradient wall and constant Mach number gradient wall are designed, quick and convenient approximate calculation method access to curved shock wave shape, performance parameters on the compression surface, performance parameters after the shock and export performance parameters is given by applications of oblique shock wave theory and the theory of isentropic compression. The estimation formulas of estimating the shape of curved compression surface and its shock wave are given.
     Next, a constant pressure gradient compression system modified by boundary layer with design point Mach number 5.3 is selected, tested in NUAA Mach number 3.85/5.3 wind tunnel in uniform and non-uniform inflow.The results showed that: at the design point Mach number 5.3, the wall pressure distribution of bending compression system is constant pressure gradient; so does at the off-design Mach number 3.85. In the non-uniform flow conditions, wall pressure distribution is closer to the constant pressure gradient at Mach number 3.85 than at Mach number 5.3. All results prove that the design method is feasible.
     Detailed study on the performance of a two-dimensional constant pressure gradient non-conventional compression inlet and two-dimensional wedge compression inlets are performed. At design point, the pressure ratio of a two-dimensional non-conventional compression inlet is higher , its length of the compression surface can be reduced about 20.5 percent, greatly reducing the inlet weight. In Mach number 4 uniform inflow, a two-dimensional non-conventional compression inlet gets a higher mass capture ratio and total pressure recovery. Swallowed inflow boundary layer about 36 percent height of inlet height, mass capture ratio and total pressure recovery of the two-dimensional non-conventional compression inlet is increased 0.6 percent and 4.8 percent, respectively than two wedges compression inlet, but three wedges compression inlet is unstarted.
     In uniform and non-uniform inflow, the performance of three-dimensional sidewall compression inlets with plane sidewall + plane topwall, curved sidewall + plane topwall, plane sidewall + curved topwall,and curved sidewall +curved topwall,respetively are presented. In uniform inflow conditions, three-dimensional sidewall compression inlet with plane sidewall + curved topwall is of good performance. In non-uniform inflow, three-dimensional sidewall compression inlet with curved sidewall + curved topwall is of higher mass capture ratio and total pressure recovery .
     The study of a curved compression system with a shorter length, compression surface pressure gradient controlled, better ability to withstand non-uniform supersonic inflow is presented. The research results will be founded a new base for development of future scramjet research.
引文
[1]何至林高峰金楠楠,超燃冲压发动机进气道研究概述,飞航导弹,2010,第4期,82-87
    [2]贺武生,超燃冲压发动机研究综述,火箭推进,2005,31(1):29-32
    [3] Curran,E.T. Scramjet Engines: The First Forty Years.Journal of Propulsion and power, 2001, 17(6): 1138-1148
    [4] Andrews,E.H. Scramjet Development and Testing in the United States.AIAA 2001-1972, 2001
    [5] Curran,E.T. Scramjet Engines: The First Forty Years.Journal of Propulsion and power, 2001, 17(6): 1138-1148
    [6]Moses,P.L.,Rausch,V.L., et al.“NASA hypersonic flight demonstrators—overview, status, and future plans”, Acta Astronautica, 2004, p619-630
    [7] Mercier R A,Ronald T M F. Hypersonic Technology (HyTech) Program Overview. AIAA 98一1566.
    [8] Boudreau,Albert. Status of the U.S. Air Force HyTech Program.AIAA2003一6947.
    [9] Norris R B. Free jet Test of the AFRL HySET Scramjet Engine Model at Mach 6.5 and 4.5.AIAA 2001一3196.
    [10] Rausch D R,McClinton C R. Hyper一X Program Overview [C].Proceedings of 14th International Symposium on Air Breathing Engines. ISABE Paper 99一7213.
    [11] McClinton C R,Rausch D R. Hyper一X Program Status. AIAA 2001一1910.
    [12] Voland R T,Rock KE,Huebner L D,et al. Hyper一X Engine Design and Ground Test Program .AIAA 98一1532.
    [13] Morelli, Eugene A; Derry, Stephen D; Smith, Mark S, Aerodynamic Parameter Estimation for the X-43A (Hyper-X) from Flight Data,AIAA 2005-5921
    [14] Waltrup P J,White M E,Zarlingo F,et al. History of U.S. Navy ramjet,scramjet and mixed-cycle propulsion development.AIAA 96-3152
    [15]辛元元,天空游侠美国X-51A高超音速飞行器,太空探索, 2010年4期:46-50
    [16]占云,超燃冲压发动机的第一个40年,飞航导弹,2002年第9期,32-54
    [17] Laurent SERRE et al.“PROMETHEE: The French Military Hypersonic Propulsion Program Status in 2002”, AIAA 2003-6950
    [18] Novelli W,Faphar K. A Joing ONERA一DLR Research Project for High一speed Airbreathing Propulsion.Proceedings of 14th International Symposium on Airbreathing Engines,ISABE Paper 99一7091.
    [19] Hirschel, E. H. Arlinger, B. Lind, I. A. Norstrud, H. German-Scandinavian cooperation in the field of aerothermodynamics of the German Hypersonics Technology Programme, AIAA 95-6073
    [20] Paull A,Alesi H,Anderson S. The HyShot Flight Program and how it was developed. AIAA PaPer 2002一4939.
    [21] Gardner A D,Hannemann K. Steelant J.et al. Ground Testing of the Hyshot Supersonic Combustion Flight Experiment in HEG and Comparison with Flight Data. AIAA Paper 2004-3345
    [22] Kanda T,Hiraiwa T,Mitani T,et al. Mach6 Testing of a Scramjet Engine Model. Journal of Propulsion and Power,1997,13(4):543一551.
    [23] Yang, Jingzhou. Marler, R. Timothy. Kim, HyungJoo. Arora, Jasbir. Abdel-Malek. Multi-objective optimization for upper body posture prediction, AIAA 2004-4506
    [24]刘伟雄,白菡尘,谭宇,乐嘉陵,脉冲风洞超燃发动机推力性能评估方法,2005冲压发动机技术交流会,188-190,2005,吉林。
    [25]陈峰,沈清,曲德军,程淑芬,关发明,直联式超声速燃烧室试验,2005冲压发动机技术交流会,133-136,2005,吉林。
    [26]杨顺华,乐嘉陵,乙烯超燃冲压发动机数值模拟,2005冲压发动机技术交流会,137-142,2005,吉林。
    [27]余安远,乐嘉陵,一种高超声速轴对称导弹用进气道的前体—喉道的设计与数值模拟,2005冲压发动机技术交流会,230-237,2005,吉林。
    [28]赵慧勇,乐嘉陵,超燃冲压发动机三维进气道的数值模拟,2005冲压发动机技术交流会,283-289,2005,吉林。
    [29]刘兴洲,高超声速吸气式飞行器技术的研究进展. 2005年高超声速技术研讨会论文集.北京,2005年3月.
    [30]彭暑彬,赵书军,崔佃飞,刑君波,高超声速飞行器前体计算,2005冲压发动机技术交流会,118-123,2005,吉林。
    [31]由德侠,戚磊,李宏东.三维侧压式进气道计算及试验研究. 2003年高超研讨会论文集.北京,2003.
    [32]李大进,邢君波,李欣.高超声速三维侧压式进气道数值计算及试验研究. 2005年高超声速进气道技术交流(研讨)会论文集.南京,2005.
    [33]张新宇,陈立红,范学军等.超燃冲压发动机基础研究进展与设想. 2005年高超声速技术研讨会论文集. 2005年3月.
    [34]顾洪斌,陈立红,张新宇.超燃冲压模型发动机自由射流实验及实验技术研究. 2003年高超声速技术研讨会.北京,2003.
    [35]王元光,徐旭,蔡国飙.超燃冲压发动机缩比燃烧室流场数值模拟.航空动力学报,2006 21(1):56--60
    [36]丁猛,梁剑寒,刘卫东,王振国.碳氢燃料超燃冲压发动机进气道与燃烧室匹配性能试验研究.航空学报,2005,26(1):27-31.
    [37]范晓樯,李桦,易仕和,潘沙.侧压式进气道与飞行器机体气动一体化设计及实验.推进技术,2004,25(6):499-502.
    [38]李桦,范晓樯.高超声速进气道数值与实验研究. 2005年高超声速进气道技术交流(研讨)会论文集.南京,2005.
    [39]王翼,范晓樯,梁剑寒,王振国.三维侧压高超声速进气道不启动流场试验与数值模拟研究宇航学报2008年29卷6期:1927-1931,2000
    [40]范轶,常军涛,鲍文.壁面温度对高超声速进气道不起动/再起动特性的影响.固体火箭技术,2009年32(3): 266-270
    [41]王向转,詹浩,朱军.二维高超声速进气道优化设计方法研究.飞行力学,2009,27(4):25-27,31
    [42]张堃元,萧旭东,徐辉.高超侧压式进气道参数分析及试验研究.推进技术,1995,16(6):20-25.
    [43]张堃元,萧旭东,徐辉.非均匀流等溢流角设计高超侧压式进气道.推进技术,1998,19(1):20-24.
    [44]张堃元,马燕荣,徐辉.非均匀流等压比变后掠角高超侧压式进气道研究.推进技术,1999,20(3):40-44.
    [45]金志光.超燃冲压发动机高超侧压式进气道设计方法研究[D].南京航空航天大学博士论文, 2006年3月.
    [46] Van Wie, D.M.,“Scramjet Inlets”, Chapter 7, Scramjet Propulsion, edited byE.T. Curran and S.N.B. Murthy, Progress in Astronautics and Aeronautics, Vol. 189, AIAA, Reston, VA, 2000, pp.447-511.
    [47] Lihong CHEN, Hongbin GU, Fong CHEN and Xinyu CHANG.Comparison of External and Sidewall Compression Scramjet Inlet Models. AIAA 2003-7043.
    [48] Scott A Berry, Aaron H Auslender and Authur D Dilley. Hypersonic boundary-layer trip development for Hyper-X. AIAA 2000-4012.
    [49]梁德旺.二元高超声速进气道设计体系及优化. 2005年高超声速进气道技术交流(研讨)会,南京,2005.
    [50]郭荣伟.超声速进气道气动设计与实践中的若干感悟. 2005年高超声速进气道技术交流(研讨)会论文集.南京,2005.
    [51]徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究.推进技术,2001,22(6):468-472.
    [52]陈兵.空间推进算法及超燃冲压发动机部件优化设计研究[D].北京航空航天大学博士论文.2005年11月.
    [53]罗世彬,罗文彩,丁猛等.超燃冲压发动机二维进气道多级多目标优化设计方法.国防科技大学学报,2004,26(3):1-6.
    [54]黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究.航空动力学报,2004,19(4):459-465.
    [55] Trexler Carl A. Performance of an inlet for an integrated scramjet concept. J.aircraft, 1974, 11(9):588-591.
    [56] John J. Korte, D. J. Singh, Ajay Kumar, Aaron H.Auslender, Numerical Study of the Performance of Swept, Curved Compression Surface Scramjet Inlets. AIAA-93-1837
    [57] Singh, D.J., Trexler, Carl A., and Hudgens, Julie A.: Three-Dimensional Simulation of a Translating Struct Inlet. AIAA-92-0270, Jan, 1992.
    [58] S.Holland and J.Perkins. Internal Shock Interactions in Propulsion/Airframe Integrated Three-Dimensional Sidewall Compression Scramjet Inlets. AIAA-92-3099
    [59] S.Holland and J.Perkins. A Computational Parametric Study of Three-Dimensional Sidewall Compression Scramjet Inlets at Mach 10. AIAA 90-2131
    [60] Holland, Scott D.: Mach 10 Computational Study of a Three-Dimensional Scramjet Inlet Flowfield. NASA Tm-4602, 1995.
    [61] Holland, Scott D., and Perkins, John N.: Contraction Ratio Effects in a Generic Three-Dimensional Sidewall Compression Scramjet Inlet: A Computational and Experimental Investigation. AIAA-91-1708.
    [62] Holland, Scott D., Reynolds Number and Cowl Position Effects for a Generic Sidewall Compression Scramjet Inlet at Mach 10: a Computational and Experimental Investigation. AIAA-92-4026.
    [63] Holland, Scott D., A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field. Ph.D.Dissertation, North Carolins State University, March 1991.
    [64] Y.P.Goonko, A.F.Latypov, A.M.Kharitonov, M.I.Yaroslavtsev, and P.Rostand: Structure of Flow over a Hypersonic Inlet with Side Compression Wedges. AIAA Journal, Vol.41, No.3, March 2003.
    [65] Shigeru Sato, Muneo Izumikawa, Sadatake Tomioka, and Tohru Mitani.: Scramjet Engine Test at the Mach 6 Flight Condition. AIAA-97-3021.
    [66] Takeshi Kanda,Kouichiro Tani,Kan Kobayashi,et al: Mach 8 Testing of a Scramjet Engine with Ramp Compression. Journal of Propulsion and Power, Vol.18, No.2, 2002.
    [67] Tetsuo Hiraiwa, Takeshi Kanda, Tohru Mitani and Yoshinari Enomoto.: Experiments on a Scramjet Engine with Ramp-Compression Inlet at Mach 8 Condition. AIAA-2002-4129.
    [68]肖雅彬岳连捷龚鹏等.三面压缩式高超声速进气道流动结构研究.实验流体力学,2008, 22(2):64-67
    [69]金志光,张堃元.一种提高后掠侧压式进气道流量系数的有效措施.航空动力学报, 2006,21(5):897-902.
    [70]黄生洪,徐胜利,刘晓勇等.支板布局对三维侧压式进气道特性的影响.推进技术,2006,27(1):52-57.
    [71]李桦,范晓樯.高超声速进气道数值与实验研究. 2005年高超声速进气道技术交流(研讨)会论文集.南京,2005.
    [72] T. Coratekin, J. van Keukf, J. Ballmann, Preliminary investigations in 2D and 3D ramjet inlet design, AIAA-99-2667.
    [73] Datta Gaitonde and J.S. Shang, skin-friction predictions in a crossing-shock turbulent nteraction, Journal of fluid mechanics, Vol.13, No. 3, May-June 1997.
    [74] N. Narayanswami and D. knight, S.M. Bogdonoff, C.C. Horstman, Interaction between crossing oblique shocks and a turbulent boundary layer, AIAA journal, Vol.30, No.8, August 1992.
    [75]贺元元,倪鸿礼,郑中华,风洞非均匀流场中的一体化高超声速飞行器缩比模型气动性能研究,实验流体力学2010,24(4):44-47
    [76] Falempin F,Goldfeld M.Design and Experimental Evaluation of a Mach2一Mach 8 Inlet.AIAA 2001-1890.
    [77]金志光,张堃元,高超侧压式进气道高焓脉冲风洞实验,推进技术,2005,26(4):319-323
    [78] Tam C-J,Hagenmaier M A.Unsteady Analysis of Scramjet Inlet Flowiields Using Numerical Simulations.AIAA 99—0613
    [79] Steffen C J,DeBonis J R.Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers.AIAA 2000-0889
    [80] Smart M K,White A J.Computational Investigation of the Performance and Back Pressure Limits of a Hypersonic Inlet.AIAA 2002-0508
    [81] Akyurtlu A,Akyurtlu J,Gonor AL,Khaikine V A,Cutler A D,Blankson I M. Numerical and Experimental Tests of a Supersonic Inlet with Pylon Set and Fuel Injection through Pylons.AIAA 2006-1032
    [82] Johnson C.B.,Lawing P.L., "Mach 6 Flowfield Survey at the Engine Inlet of Research Airplane", J.Aircraft, April, 1977 Vol.14.
    [83] Auneau I.,Garnero P.,Duveau P., "Design and Optimization Methods for Scramjet Inlets" ,AIAA Paper, April 1995, No.95-6017.
    [84] Zhang K.Y., Xiao X.D., Xu H., "The Paremeteric Analysis and Experimental Investigation of a Sidewall Compression Inlet at Mach 5.3 in Non-Uniform Incoming Flow", AIAA paper, July 1995, No.95-2889.
    [85]Lewis M.J.,Hastings D.E.,"The Influence of Flow Non-Uniformites inAir-Breathing Hypersonic Propulsion Systems", AIAA paper, June 1987, No.87-2079.
    [86] Dillon J.L.,Marcun Jr.,D.C.,Johnston P.J.,and Hunt J.L., "Aerodynamic and Inlet Flow Characteristics of Several Hypersonic Airbreathing Missile Concepts", J.Aircraft, April 1981, Vol.18.
    [87] Lawing P.L.,Johnson C.B., "Inlet Boundary-Layer Shapes on Four Aircraft Forebodies at Mach 6",J. Aircraft, January, 1978 Vol.15.
    [88]MaratA.Goldfeld and Alexey V.Starov and Viacheslav V.Vinogradov,”Experimental Study of Scramjet Module”,Journal of propulsion and power ,2001,Vol.17,No.6
    [89] Thompson R A, Hamilton H H, II , Berry S A, Horvath T J and Nowak R J. Hypersonic Boundary Layer Transition for the X-33 Phase II Vehicle. AIAA 98-0867, 1998.
    [90] Berry S A, Bouslog S A, Brauckmann G J and Caram J M. Boundary Layer Transition Due to Isolated Roughness: Shuttle Results from the LaRC 20- Inch Mach 6 Tunnel. AIAA 97-0273,
    [91] Berry S A, Horvath T J, Hollis B R, Thompson R A and Hamilton H, II. X-33 Hypersonic Boundary Layer Transition. AIAA 99-3560, 1999.
    [92] Lai H.T.,Kim S.C.,Nagamatsu H.T., "Calculation of Scramjet Inlet with Thick Boundary Layer Ingestion", AIAA paper, June 1993, No.93-1836.
    [93] Vinogradov V.,Stepanov V.,Alexadrovich E., "Numerical and Experimental Investigation ofAir frame-Integrated Inlet for High Velocities", AIAA paper, July 1989, No.89-2679.
    [94] Lewis M.J.,Hastings D.E., "The Influence of Flow Non-Uniformites in Air-Breathing Hypersonic Propulsion Systems", AIAA paper, June 1987, No.87-2079.
    [95] Inger G.R., "New Similarity Solutions for Hypersonic Boundary Layers with Application to Inlet Flows", AIAA paper, June 1994, No.94-2351.
    [96]赵鹤书,潘杰元,钱翼稷,飞机发动机原理,国防工业出版社
    [97] Saied Emami,Carl A.Txeler,Aaron H.Auslender and John P.Wwidner,Experimental Investigation of Inlet-Combustor Isolators for a Dual-Mode Scramjet at a MachNumber of 4, NASA Technical Paper 3502
    [98]刘国球,“一体火箭发动机原理”,北京,宇航出版社,1993.
    [99] Cebeci T, Bradshaw P. Physical and Computational Aspects of Convective Heat Transfer. Spinger-Verlag, NewYork,1994.
    [100]金志光,张堃元,典型二元高超声速进气道与侧压式进气道的性能比较,航空动力学报,2008,23(9):1553-1560
    [101] Trexler, Carl A. Inlet Performance of the Integrated Langley Scramjet Module (Mach 2.3 to 7.6). AIAA/SAE 11th Propulsion Conference, Sep.29-Oct.1, 1975, Anaheim, CA, AIAA-75-1212.
    [102]金志光,张堃元,带前体压缩的前掠侧压式进气道实验及数值研究,推进技术, 2005, 26(6):508-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700