三维浅海环境下全海深声速剖面快速反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声速剖面反演是采用分布积分探头技术快速获取逐点测量所不能得到的大面积海域等效声速剖面的一种有效方法。基于声传播时间的声速剖面反演由于具有计算速度较快、受海底声学参数影响小以及射线声学适用于三维复杂声场的计算等优点而被广泛应用。这种反演模型的关键点在于特征声线搜索和声传播时间测定的精确性。在三维浅海环境下,不平整海底的反射使得声线发生水平方向上的偏转,从而导致声线在三维空间传播,这在以往的基于声传播时间的声速剖面反演模型中都没有考虑,给反演结果带来了不必要的误差。为提高声速剖面反演的精度,本文首先对三维空间特征声线搜索和传播时间计算进行了深入研究,然后采用最快特征声线传播时间作为代价函数反演了南海某海域声速剖面。另外,声速剖面反演是多维优化问题,正演模型的计算速度是限制反演速度的主要瓶颈。本文采用微扰近似方法将实际声传播时间表示为背景声速下的声传播时间与扰动项之和,从而使得声速剖面反演由原来的非线性优化问题转化为经验正交函数系数所满足的线性方程组求解形式,使得反演速度得到了提高。本文的主要创新点如下:
     1、提出了三维空间特征声线搜索和声传播时间计算模型
     研究了不平整海底反射时声线的传播规律,提出了不平整海底浅海环境下的射线传播模型,开发了声场计算软件,在三维空间求解最快特征声线轨迹和传播时间。与理论解和其它模型的对比表明,当传播距离为100km时,该软件计算的声传播时间精度能达到10~(-6)s。
     2、通过不同的方法分别提高声速剖面反演的精度和速度
     通过考虑声线在不平整海底反射所引起的水平偏转来减小声传播时间的计算误差进而有效地提高声速剖面反演的精度;采用微扰法快速反演声速剖面,在降低部分反演精度的条件下,将反演时间由10小时缩短为数十秒,实现了海洋环境信息的实时监测。
     3、基于最快特征声线传播时间的声速剖面反演算法性能研究
     仿真计算了经验正交函数阶数与反演精度之间的关系。仿真结果证明,在声速变化不是很复杂的情况下,3阶经验正交函数足以用来反演声速剖面,继续增加阶数反演精度会略有提高,但是意义不大。
     通过理论推导和仿真研究了基于声传播时间的声速剖面反演对海底深度、声源水平位置以及基阵倾斜等参数失配的敏感性问题。结果表明,参数失配给反演所带来的额外误差与声传播时间近似成反比,当这些参数失配相对较小时,对声速剖面反演的精度影响不大。
     除此之外,本文还研究了以下主要内容:
     1、声速剖面外延
     针对用经验正交函数表示声速剖面受限于样本声速的测量深度的问题,本文并未采取传统的海洋数据同化的方法,而是采用多项式对温度进行拟合,盐度取平均,然后根据声速经验公式求声速的方法对残缺样本声速数据进行合理地外延。
     2、未知声源参数和声速剖面联合反演
     针对声源水平位置和爆炸时刻不完整的情况,通过增加声传播时间方程个数的方法对声速剖面和未知的声源参数进行联合反演以获取整个实验海域的时间平均和空间综合意义上的声速剖面。
Sound speed profile (SSP) inversion is an effective method of obtaining the equivalentSSP rapidly in a large area by distributed acoustic detectors, which can hardly be realized bymanual mearsurment. Because of many advantages, such as fast calculation speed, being notinfluenced greatly by the acoustic parameters of seabed, and being suitable for the calculationof sound field in three-dimensional (3D) environments, SSP inversion based on ray traveltime was applied widely in recent years. The key procedure for this model is the accuratedetermination of eigenray and precise measurement of corresponding transmission time.Horizontal deflection often occurs when acoustic ray reflects from irregular seabed in shallowwater, and leads to3D ray tracing. This phenomenon was not usually considered in givenmodels, thus additonal error will be introduced. In this paper a new method for eigenrayseeking in3D environment had been presented firstly, and the shortest travel time ofeigenrays are used to construct a cost function to invert SSP for some area of South China Sea.In addition, SSP inversion is a problem of multi-dimensional optimization and the calculationspeed of transmission time is the main obstacle to restrict the inversion efficience. To improvethe algorithm speed of inversion, ray travel time is expressed as the sum given by referencedSSP and perturbation terms, and inversion procedure is transfered from non-linearoptimization to the solution of system of linear equations of empirical orthogonal functions(EOFs) by perturbation approximation. The primary innovations are as follows:
     1. The model for eigenray seeking in3D environments and travel time calculation hasbeen developed.
     The rule of horizontal deflection when a ray reflects from irregular seabed has beenrevealed; the model of ray tracing in shallow water with irregular seabed has been built andsound field calculation software for eigenray seeking in3D environments and travel timecalculation has been developed. Accuracy of the results is compared with other models andtheoretical values. It indicates that the precision of sound travel time given by this modelreaches to the quantity of10-6seconds when the horizontal travel range is up to100km.
     2. The precision and speed of SSP inversion have been improved dramatically bydifferent methods.
     The error of sound travel time calculation had been reduced, and the precision of SSPinversion has been improved effectively by considering the horizontal deflection induced byray reflection from irregular seabed. The calculation time has been reduced from10hours to several tens of seconds and satisfies real-time monitoring of SSP with only a few precisionloss by perturtbation approximation.
     3. The algorithmic performance of SSP inversion based on the shortest travel time of theeigenray had been researched deeply.
     Relationship between the precision of inversion and the number of EOFs used fornumerical simulation had been studied. It shows that the first3orders of EOFs are enough touse for inversion of SSP, the precision of inversion will not be improved obviously whennumber of used EOFs increases.
     The problems of parameter mismatching including the depth of seabed, the horizontallocation of source and the inclination of array have been researched by theoretical calculationand numerical simulation. The results indicate that the additional errors introduced bymismatched parameters are inversely proportional to transmission time and the influence onSSP inversion can be neglected when the mismatched parameters are relatively small.
     Moreover, the following contents are also included in the thesis:
     1. When calculate the values of SSP and EOFs, in order to overcome the difficulty thatno sufficient measuring data about sound speed in larger depth, instead of the method ofconventional ocean data assimilation, the sound speed profiles exceeding the measurementdepth have been extended by empirical formula, using reasonable estimated values oftemperature and salinity.
     2. Joint inversion of unknown parameters of source and SSP has been developed.
     As to the problem of incomplete parameters of source location, explosive moment, theyare inverted at the same time with SSP, using more equations of sound transmission time fordifferent recievers.
引文
[1]杨士莪.水声传播原理.哈尔滨工程大学出版社,2007:1.
    [2]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社,2006:1.
    [3]杨坤德.水声信号的匹配场处理技术研究.西北工业大学博士学位论文,2003.
    [4] F.Dyson, W.H.Munk, and B.Zetler.Interpretation of multipath scintillations Eleuthera toBermuda in terms of internal waves and tides. J. Acoust. Soc. Am,1976,59(5):1121-1133.
    [5] J.L.Spiesberger, R.C.Spindel, and K.Metzger. Stability and identification of oceanacoustic multipaths. J Acoust Soc Am,1980,67(6):2011-2017.
    [6] W.H.Munk, C.Wunsch. Ocean acoustic tomography: Rays and modes. Rev GeophysSpace Phys,1983,21(4):777-793.
    [7] X.H.ZHU, Q.S.Wu, C.Z. Zhang. An Inverse Model for Coastal Acoustic Tomographyand its Application to Chinese Coastal Sea.2010Sixth International Conference onNatural Computation,2010:3792-3795.
    [8]张忠兵,马远良,倪晋平等.基于声线到达时差的声速剖面反演.西北工业大学学报,2002,20(1):36-39.
    [9]唐俊峰,杨士莪.由传播时间反演海水中的声速剖面.哈尔滨工程大学学报,2006,27(5):733-737.
    [10] R.Philippe, I.Ion, and N.Barbara, et al. Travel-time tomography in shallow water:Experimental demonstration at an ultrasonic scale. J. Acoustic. Soc. Am,2011,130(3):1232-1241.
    [11] F.H.Li, R.H.Zhang. Inversion for Sound Speed Profile by Using a Bottom MountedHorizontal Line Array in Shallow Water. CHIN. PHYS. LETT,2010,27(8):84303-1-84303-4.
    [12]何利,李整林,彭朝晖等.南海北部海水声速剖面声学反演.中国科学:物理学力学天文学,2011,41(1):49-57.
    [13] E.C.Shang. Ocean acoustic tomography based on adiabatic mode theory. J Acoust SocAm,1989,85(4):1531-1537.
    [14] A.G.Voronovich, E.C.Shang. Numerical simulations with horizontal-refraction modaltomography. Part1·Adiabatic propagation. J. Acoust. Soc. Am,1997,101(5):2636-2643.
    [15] Y.X.Yu, Z.L.Li, L.He.Matched-field inversion of sound speed profile in shallow waterusing parallel genetic algorithm.Chin J Oceanol Limnnol,2010,28(5):1080-1085
    [16] F.B.Jensen, W.A.Kurperman, and M.B. porter, et al. Computational Ocean Acoustics.AIP press,1994:2,149.
    [17]孙枕戈,马远良,屠庆平等.基于声线理论的水声被动定位原理.声学学报,1996,21(5):824:831.
    [18] C. Fevillade, W.A. Kinney and D.R.DelBalxo. Shallow-water matched-field localizationoff Panama City, Florida. J Acoust Soc Am,1990,88(1):423-433.
    [19] C.E.Paul. Underwater acoustic modeling, priciples, techniques and applications.Elsevier science publisher LTD,1991.
    [20]廖光洪,朱小华,林巨等.海洋声层析应用与观测研究综述.地球物理学进展,2008,23(6):1782-1790.
    [21] W.H.Munk, P.F.Worceser, C. Wunsch. Ocean Acoustic Tomography.Cambridge:Cambridge University Press,1995·
    [22] R.C.SPindel. Sound transmission in the ocean.Ann.Rev.Fluid Meeb.17,217-237.
    [23] PaulC.Etter著.蔡志明等译.水声建模与仿真.电子工业出版社,2005.
    [24] M.Lasky. Review of undersea acoustics to1950. J. Acoust. Soc. Am,1977,61(1):283-297.
    [25]马大猷,沈壕.声学手册.科学出版社,1983.
    [26] MODE Group. Mid-ocean dynamics experiment. Deep-Sea Research,1978,25:859-910.
    [27] W.H.Munk, C.Wunsch. Ocean acoustic tomography A: scheme for large scalemonitoring. Deep-Sea Res,1979,26:123-161.
    [28] B.Cornuelle, W.H.Munk, P.F.Worceser. Ocean Acoustic tomography from Ships. JGeophys Res,1989,94(C5):6232-6250.
    [29] W.M.L.Morawitz, P.J.Sutton, P.F.Worceser, et al. Three-dimensional observations of adeep convective chimney in the Greenland Sea during winter1988/1989. J PhysOceanogr,1996,26:2316-2343.
    [30] U.Send, F.Schott, F.Gaillard. Observation of a deep convection regime with acoustictomography. J Geophys Res.1995,100:6927-6941
    [31] The ATOC Consortium. Ocean climate change: comparison of acoustic tomography,satellite altimetry, and modeling. Science,1998,281:1327-1332.
    [32] G.Duckworth, K.LePage, T.Farrel. Low-frequency long-range propagation andreverberation in the Central Arctic: Analysis of experimental results. J. Acoust. Soc. Am,2001,110:747-760
    [33] A.N.Gavrilov, P.N.Mikhalevsky. Recent results of the ACOUS (Arctic ClimateObservations using Underwater Sound) Program. Acta Acust Acust,2002,88:783-791.
    [34] A.G.Voronovich, E.C.Shang. A note on horizontal-refraction-modal tomography. J.Acoust. Soc. Am,1995,98(5):2708-2716·
    [35] E.C.Shang, A.G.Voronovich, Y.Y.WANG, et al· New schemes of ocean acoustictomography. J. Comp. Acoust,2000,8(3):4594-71.
    [36] A.Tolstoy, O.Diaehok, and L.N.Frazer. Acoustic tomography via matehed fieldproeessing. J. Acoust. Soc. Am,1991,89(3):1119-1127.
    [37] V.V. Goncharov, A.G.Voronovich. An experiment on matched-field acoustic tomographywith continuous wave signals in the Norway Sea. J. Acoust. Soc. Am,1993,93(4):1873-1881.
    [38] E.K.Skarsoulis, G.A.Athanassoulis. Ocean acoustic tomography based on peak arrivals.J. Acoust. Soc. Am,1996,100(2):797-813.
    [39]张忠兵.浅海声速剖面反演研究.西北工业大学博士学位论文,2002.
    [40]唐俊峰.海水中的声速剖面反演研究.哈尔滨工程大学博士学位论文,2006.
    [41]吕连港.东海PN断面黑潮区域的声层析研究.中国科学院研究生院博士论文,2002.
    [42]张忠兵,马远良,杨坤德等.浅海声速剖面的匹配波束反演方法.声学学报,2005,30(2):103:107.
    [43] Z.B Zhang, Y.L Ma, K.D Yang. Inversion for sound speed profile in shallow water usingmatched-beam processing. Chinese Journal of Acoustics,2004,23(3):259-267.
    [44]王少强,吴立新,王慧文等.2001南中国海实验温度场与声传播起伏及内潮(波)特征反演.自然科学进展,2004,14(6):635-640.
    [45] A.Tolstoy. Matched Field Proeessing for under water Acoustic. World SeientificPublishing Co. Pte. Ltd. SingaPore,1993.
    [46] C. S. C1ay, S. Li.Use of arrays for acoustic transmission in a noisy ocean.Review ofGeophysics.1966,4(4):475-507.
    [47] M.J.Hinich, E.J.Sullivan.Maximum likelihood signal processing for a vertical array.J.Acoust.Soc.Am.1973,54(2):499-503.
    [48] M.J.Hinich. Maximum likelihood estimation of a radiating source in a waveguide.J.Acoust.Soc.Am.1976,66(2):480-483.
    [49] M.J.Hinich. Array design for measuring source depth in a horizontal waveguide.J.Appl.Math,1977,32(4):800-805.
    [50] H.P.Bueker. Use of calculated sound fields and matched field detection to locate soundsources in shallow water. J.Acoust.Soc.Am,1976,59(2):368-373.
    [51] G.C.Cater. Variance bounds for passively locating an acoustic source with a symmetricline array. J.Acoust.Soc.Am,1977,62(4):922-926.
    [52] E.C.Shang, C.S.Clay, Y. Y. Wang. Passive harmonic source ranging in waveguides byusing mode filter. J. Acoust. Soc. Am,1985,78(1):172-175.
    [53] E.C.Shang. Source depth estimation in waveguidss. J. Acoust. Soc. Am,1985,77(4):1413-1418.
    [54] E.C.Shang, C.S.Clay, Y.Y.Wang. Passive hannonic ranging in waveguides bylocalization in shallow water wave guide using the prong method. J. Acoust. Soc. Am,1988,83(l):103-108.
    [55] I-Tai Lu. Simultaneous characterization of source,array and environment using a raytravel-time inversion approach. J. Comp. Acoust,1997,5(2):193-218.
    [56] I-Tai Lu.Robustness of a ray travel-time inversion approach. J.Acoust. Soc. Am.1999,106(5):2442-2453.
    [57]杨坤德,马远良,张忠兵等.不确定环境下的稳健自适应匹配场处理研究.声学学报,2006,31:255-262.
    [58]杨坤德,马远良.基于扇区特征向量约束的稳健自适应匹配场.声学学报,2006,31:399-409.
    [59] B.Baggeroer, W.A.Kuperman, P.N.Mikhalevsky. An overview of matched field methodsin ocean acoustics. IEEE J. Oceanic Eng.1993,18(4):401-424.
    [60] T. W. Anderson. An introduction to multivariate Statistical analysis.2nd Ed. New York:John Wiley,1984.
    [61]王静.水声信号处理中匹配场处理技术研究的现状和展望.水声技术,2000,19(1):34-38.
    [62]何利,李风华,李整林等.基于海底水平阵的低频脉冲声信号海水声速剖面反演.声学技术.2011,30(3):109-111.
    [63] W.Zhang, Y.W.Huang, L.Li, et al. Inversion of Sound Speed Profile Based on WaveformStructure Matching.2011Symposium on Piezoelectricity, Acoustic waves, and DeviceApplication.2011,94-97.
    [64] S.M.Jesusb, C.Soares. An experimental demonstration of blind ocean acoustictomography. J.Acoust.Soc.Am.2006,119(3):1420-1431.
    [65] J.P.Hermand, P.Gerstoft. Inversion of broad-band multitone acoustic data from theYELLOW SHARK summer experiments.IEEE J.Oeeanic Eng.1996,21(4):324-346.
    [66]何利,李整林,张仁和等.东中国海声速剖面的经验正交函数表示与匹配场反演.自然科学进展,2006,16(3):351:355.
    [67]何利,李整林,彭朝晖.南海北部海水声速剖面声学反演.声学技术,2010,29(6):44-45.
    [68] T.C.Yang, T. Yates.Matehed beam Processing: Applications to a horizontal linearray inshallow water. J. Acoust. Soc. Am,1998,104(2):1216-1300.
    [69] T.C.Yang, K. Yoo, T. Yates. Matched-beam Processing: Range tracking with verticalarrays mismatched environments. J. Acoust. Soc. Am,1998,104(4):2174-2155.
    [70] K. Yoo, T.C.Yang. Improved vertical array performance in shallow water with adirectional noisefield. J. Acoust. Soc. Am,1998,104(6):3326-3338.
    [71]袁延艺,宋俊.声速剖面测量误差对浅海低频声传播数值预报的影响.声学技术,2009,28(5):81-82.
    [72]张镇迈,彭朝晖.深海表面层声速剖面变化对声传播的影响.应用声学,2006,25(6):359-363.
    [73]曲晓慧,喻荣兵,邱玮玮.浅海声速剖面对吊放声纳探测距离的影响.测试技术学报,2011,26(5):471-476.
    [74]何祚镛,赵玉芳.声学理论基础.国防工业出版社,1981:54-55.
    [75]张仁和.水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势.应用声学,2006,25(6):325-327.
    [76]李风华.水声物理现状与发展趋势.中国声学进展,2008:99-113.
    [77]王宁,刘进忠,吴德星.简正波耦合机理与(广义)射线简正波转换.中国海洋大学学报,2004,34(5):821-825.
    [78] R.J.Nagem, D.Lee. Coupled3D wave equation with irregular fluid/elastic interface:theoretical development. Journal of Computational Acoustics,2002,10(4):421-444P
    [79] J.M.Collis, W.L.Siegmann. Parabolic equation solution of seismo-acoustics problemsinvolving variations in bathymetry and sediment thickness. J. Acoust. Soc. Am.2008,123(1):51-55P
    [80]张海刚.浅海甚低频声传播建模与规律研究.哈尔滨工程大学博士学位论文,2010.
    [81]张维,杨士莪,黄益旺等.基于爆炸声传播时间的声速剖面反演.振动与冲击,2012:31(23):6-11.
    [82] YANG Shi-e. Theory of Underwater sound propagation. Harbin: Harbin EngineeringUniversity Press,2009:74.
    [83]张维,杨士莪,朴胜春.倾斜海底反射时声线水平偏转问题研究.2011年全国第一届水下安保技术学术交流会论文集,美国科研出版社,2011:114-117
    [84]张维,杨士莪,汤云峰,黄益旺.不平整海底环境下的浅海本征声线求解方法.哈尔滨工程大学学报,2011,32(12):1544-1548.
    [85] C.H. Harrison. Three dimensional ray paths in basins, troughs, and near seamounts byuse of invariants. J Acoustic Soc Am,1977,62(6):1382-1388.
    [86] Y.Q.Huang, J.Z.Zhang. A sound ray tracing algorithm in three-dimensionalheterogeneous media based on wave front traveltimes interpolation. CHINEAEJOURAL OF ACOUSTICS,2008,27(3):261-271.
    [87]姜薇,李太宝.三维声线追踪的正三棱锥前向伸展算法.声学学报,2005,30(5):408-408.
    [88]王恕铨.求解三维本征声线的一种新方法.声学学报,1992,17(2):155-157.
    [89] W.Zhang, S. E. Yang, Y. W. Huang, L. Li. Inversion of sound speed profile in shallowwater with irregular seabed.3rd International Conference on Ocean Acoustics,2012
    [90]张之猛,刘伯胜.遗传模拟退火算法用于浅海声速反演的仿真研究.哈尔滨工程大学学报,2006,27(4):505-508.
    [91] J.H.Holland. Adpation in Natural and Artificial systems. Cmabridge, MA: MIT Press,1976
    [92] L.Davis. Handbook of genetic algorithms. NewYork: Van Nostrand Reinhold,1991.
    [93] T.Li, D.W.Cui. Genetic Algorithm Selection and Parameter Setting Based on RuleInduction. Computer Engineering,2010,36(3):215-220.
    [94] K.A.De Jong. An Analysis of the Bechavior of a Class of Genetic Adaptive Systems. Ph.D Dissertation, University of Michigan,1975:76-9381.
    [95] J.Kennedy, R.C.Eberhart. Particle Swarm Optimization. IEEE International Conferenceon Neural Networks,1995:1942-1948.
    [96] R.C.Eberhart, Y.Shi. Particle Swarm Optimization: Developments, Applications andResources. Congress on Evolutionary Computation,2001:81-86.
    [97] J.Sun, B.Feng, W.B.Xu. Particle swarm optimization with particles having quantumbehavior. Proceedings of2004Congresson Evolutionary Computation,2004:325-331.
    [98] M.L.Xi, J.Sun, W.B.Xu. An improved quantum-behaved particle swarm optimizationalgorithm with weighted mean best position.Applied Mathmatics and Computation,2008,205(5):751-759.
    [99] P.Gerstoft, D.F.Gingras. Parameter estimation using multifrequency range-deoendentacoustic data in shallow water. J. Acoust. Soc. Am.1996,99(5):2839-2850.
    [100] A.Tolstoy. Linearization of the matched-field processing approach to acoustictomography. J. Acoust. Soc. Am.1992,91(2):781-787.
    [101] L.R.LeBlanc, F.H.Middleton. An underwater acoustic sound velocity dada model. J.Acoust. Soc. Am.1980,67(6):2055-2062.
    [102]沈远海,马远良,屠庆平等.浅水声速剖面用经验正交函数(EOF)表示的可行性研究.应用声学,1999,18(2):21-25.
    [103]黄益旺.浅海远距离匹配场声源定位研究.哈尔滨工程大学博士学位论文,2005.
    [104]李建龙,徐文,金丽玲等.浅海环境下数据同化声层析方法研究.声学学报,2012,37(1):10-17.
    [105] T.Yamamoto, A.Kaneko. Accurate imaging of the current and temperature structures incoastal by acoustic data assimilation. J. Acoust. Soc. Am.2006,119(5):3398-3398.
    [106]张旭,张永刚,张胜军等.基于GDEM模式的声速剖面重构.声学技术,2009,28(2):6-9.
    [107] T.M.Davis, K.A.Countryrnan, M.J.Carron. Tailored acoustic products utilizing theNAVOCEANO GDEM (a generalizeddigital environmental model).36thNavalSymposium on Underwater Acoustics. Naval Ocean Systems Center,San Dlego, Calif1986.
    [108]张维,黄益旺,王延意.利用残缺样本声速重构声速剖面.声学技术,2012,31(4):371-374.
    [109]郭萌,郭文生.深海剖面测量系统设计.计算机与数字工程,2012,40(8):60-61.
    [110]初磊,楼晓平,李世令,等.鱼雷声自导作用距离影响因素仿真分析.弹箭与制导学报,2010,30(1):68-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700