腹水来源的外来体用于卵巢癌免疫治疗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外来体(exosomes)是一种膜性脂类囊泡,直径30nm~90nm,可由多种细胞分泌,如B淋巴细胞、肥大细胞、不成熟DC、血小板、CTL、纤维原细胞、上皮细胞和肿瘤细胞。这些小囊泡来源于具有细胞膜的晚期多囊性的内涵体或溶酶体,这些细胞以胞吞的方式摄取外来抗原在细胞内形成多囊体(MVBs),MVBs是一种复杂的胞内细胞器,由胞吞作用产生。细胞膜先内陷形成吞饮泡,吞饮泡的界膜再向内出芽,形成许多小泡,这种胞吞腔室即为MVB。胞吞的主要功能是对内化的大分子和膜蛋白进行分类,一部分经过MVB被转运到溶酶体降解。另一部分移向质膜,MVB的泡膜与质膜融合后释放小泡到胞外空间,这种小泡便是外来体。目前,从囊泡的形态、生化特点(蛋白、磷脂)和纯化过程来定义外来体。
     最近发现,肿瘤细胞也可释放外来体,同时在肿瘤患者的腹水中也能分离出外来体,推测其来源于肿瘤细胞。肿瘤细胞释放的外来体能够包含和转移抗原给树突状细胞,提呈给T淋巴细胞,引起CTL效应。研究发现,外来体含有的成分如下:①抗原呈递相关分子:MHC-Ⅰ和Ⅱ类分子、HSC73、HSP70等;②免疫粘附及信号转导相关分子:ICAM-Ⅰ、CD58、CD9、CD86/B7.2、Mac-l、MFG-E8等:③其它功能蛋白:AnnexinⅡ、TfR、CD55、CD59、Gi2等。因此,外来体可能具有细胞毒性效应、免疫调节、诱导凋亡和免疫耐受诱导等作用。将其用于肿瘤免疫治疗的优点是:非细胞成分、体积小易清除、稳定性高、可按照GMP标准制备、可冷冻储藏等。
     目前国内外关于卵巢癌患者的腹水中分离出外来体作为特异性抗原用于免疫治疗的研究较为少见,而运用脐血来源树突状细胞(DC)作为抗原
Exosomes are membrane lipid vesicles in density at 1.13~1.21g/ml. These vesicles are released by numerous cells such as B lymphocytes, mastocytes, immature DCs, platelets, cytotoxic T lymphocytes, fibroblasts, epithelial cells, and tumor cells. Exosomes originate from late endosomes with membrane, i.e. multivesiclear bodies(MVB) and form by inward budding from the limiting membrand of MVBs into the endosomal lumen. Exosomes accumulate inside MVBs and can be released in the extracellular milieu following fusion of the external membrane of MVBs with plasma membrane. Exosomes can be defined according to morphological, biochemical and purification process criteria.
    Tumor cell can also secrete exosomes. Exosomes, in addition, can be separated from ascites of the patients with malignant tumors. Some researchers presumed and proved that they are secreted by tumor cells. Tumour-derived exosomes can be utilised as a source of tumour antigen for cross-priming to T-cells for CTL effect and are thus of interest for use in anti-tumour immunotherapy. The composition of exosomes are as follows: ① molecules associated with antigen presentation: MHC class I molecule, MHC class II molecule, HSC70 and HSP70. ② molecules associated with immune adhesion and signal transduction: ICAM-1, CD58, CD9, CD86/B7.2, Mac-1, MFG-E8 and so on. ③ other functional proteins: Annexin II ,TfR, CD55, CD59, Gi2 and so on. Exosomes, therefore, may be in possession of CTL effect, immune regulation, inducing apoptosis immune enduring and so on. The advantage of exosomes in cancer therapy are non-cell character, being freezed for storage, high stability, being seperated according to GMP criterion, little size and easy to be eliminated.
    At present, it is rare that exosomes derived from ascites of patients with
    Department o/Gynecology and Obstetrics, Xijing Hospital, FMMU
引文
[1] Partridge EE, Barnes MN. Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin. 1999;49(5):297-320. Review
    [2] Daly M, Obrams GI. Epidemiology and risk assessment for ovarian cancer. Semin Oncol, 1998;25(3):255-264.Review
    [3] 连利娟主编。林巧稚妇科肿瘤学。北京:人民卫生出版社,2000,462
    [4] Yang L, Parkin DM, Whelan S, et al. Statistics on cancer in China: cancer registration in 2002. Eur J Cancer Prev. 2005; 14(4): 329-335
    [5] Berd D, Maguire HC Jr, Mastrangelo MJ. Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res. 1986;46(5):2572-2577
    [6] Huang Jiaolin. The study of the autologous tumor solidity vaccine. Chinese Tumor Magazine, 1994,16(5):337-340
    [7] Evans CH. Novel biological approaches to the intra-articular treatment of osteoarthritis. BioDrugs. 2005; 19(6): 355-362. Review.
    [8] Banchereau J and Steinman RM. Dendritic cells and the control of immunity. Nature, 1998;392(6673):245-252. Review.
    [9] Whiteside TL. Immunobiology of head and neck cancer. Cancer Metastasis Rev. 2005; 24(1): 95-105. Review.
    [10]. Baxevanis CN, Sotiropoulou PA, Sotiriadou NN, et al. Immunobiology of HER-2/neu oncoprotein and its potential application in cancer immunotherapy. Cancer Immunol Immunother. 2004; 53(3): 166-175. Review.
    [11] Hicklin DJ, Marincola FM, Ferrone S. HLA class Ⅰ antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999; 5(4): 178-186. Review.
    [12] Huang M, Sharma S, Mao JT, et al. Non-small cell lung cancer-derived soluble mediators an prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production. J Immunol, 1996,157(12):5512-5520
    [13] Chaput N, Taieb J, Schartz N, et al. The potential of exosomes in immunotherapy of cancer. Blood Cells Mol Dis. 2005;35(2): 111-115. Review.[14] Tian Jun,Xu Zhonghua, Zheng Baohong, et al. The antigen ofcoleled tumor cellular membrane in vesica cancer. Chinese Urlogy Surgical Magazine, 1998,19(10):598-600
    [15] Yuan Y, Kim WH, Han HS, et al. Establishment and characterization of human ovarian carcinoma cell lines. Gynecol Oncol, 1997, 66(3):378-387
    [16] Su Z, Dannull J, Yang BK, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol. 2005; 174(6):3798-807
    [17] Knutson KL, Disis ML. Clonal diversity of the T-cell population responding to a dominant HLA-A2 epitope of HER-2/neu after active immunization in an ovarian caner patient. Hum Immunol, 2002, 63(7): 547-557
    [18] Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest. 2001;107(4):477-484.
    [19] Disis ML, Gooley TA, Rinn K, et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol. 2002, 20(11): 2624-2632
    [20] Holmberg LA, Oparin DV, Gooley T, et al. The role of cancer vaccines following autologous stem cell rescue in breast and ovarian cancer patients: experience with the STn-KLH vaccine (Theratope). Clin Breast Cancer, 2003; S144-S151
    [21] Holmberg LA, Oparin DV, Gooley T, et al. Clinical outcome of breast and ovarian cancer patients treated with high-dose chemotherapy, autologous stem cell rescue and THERATOPE STn-KLH cancer vaccine.Bone Marrow Transplant. 2000;25(12): 1233-1241
    [22] Sabbatini PJ, Kudryashov V, Ragupathi G, et al. Immunization of ovarian cancer patients with a synthetic Lewis (y)-protein conjugate vaccine: a phase I trial. Int J Cancer,2000,87(1):79-85
    [23] Van Zanten-Przybysz Ⅰ, Molthoff C, Gebbinck JK, et al. Cellular and humoral responses after multiple injections of unconjugated chimeric monoclonal antibody MOvl8 in ovarian cancer patients: a pilot study. J Cancer Res Clin Oncol. 2002; 128(9):484-492
    [24] Frankenberger B, Regn S, Geiger C, et al. Cell-based vaccines for renal cell carcinoma: genetically-engineered tumor cells and monocyte-derived dendritic cells. World J Urol. 2005;23(3): 166-174. Review
    [25] Dillman RO, Nayak SK, Brown JV, et al. The feasibility of using short-termcultures of ovarian cancer cells for use as autologous tumor cell vaccines as adjuvant treatment of advanced ovarian cancer. Cancer Biother Radiopharm. 1999; 14(6): 443-449
    [26] Hodge JW, Tsang KY, Poole DJ, et al. General keynote: vaccine strategies for the therapy of ovarian cancer. Gynecol Oncol. 2003, 88(1 Pt 2):S97-S104
    [27] Klein G, Klein E. Surveillance against tumors--is it mainly immunological? Immunol Lett. 2005; 100(1):29-33. Review.
    [28] Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurvei-llance to tumor escape. Nat Immunol. 2002;3(11):991-998
    [29] Gabrilovich D, Pisarev V. Tumor escape from immune response: mechanisms and targets of activity. Curr Drug Targets, 2003; 4(7): 525-536
    [30] 徐立新,冯捷,唐军民,等。人卵巢上皮癌组织中树突状细胞表型抗原的免疫组织化学研究。解剖学杂志,2001,24(1):51-54
    [31] Schalienger K, Chu CS, Woo EY, et al. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class Ⅰ-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin Cancer Res. 2003;9(4): 1517-1527
    [32] Santin AD, Hermonat PL, Ravaggi A, et al. In Vitro induction of tumor-specific human lymphocyte antigen class Ⅰ-restricted CD8 cytotoxic T lymphocytes by ovarian tumor antigen-pulsed autologous dendritic cells from patients with advanced ovarian cancer. Am J Obstet Gynecol. 2000;183(3): 601-609.
    [33] Satin AD, Bellone S, Ravaggi A, et al. Induction of ovarian tumor-specific CD8+ cytotoxic T lymphocytes by acid-eluted peptide-pulsed autologous dendritic cells. Obstet Gynecol. 2000;96(3):422-430.
    [34] Zhao X, Wei YQ, Peng ZL. Induction of T cell responses against autologous ovarian tumors with whole tumor cell lysate-pulsed dendritic cells. Immunol Invest. 2001;30(1):33-45
    [35] Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4(3):328-332
    [36] Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood. 2000;96(9):3102-3108
    [37] Hemando JJ, Park TW, Kubler K, et al. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase Ⅰ trial. Cancer Immunol Immunother.??2002;51 (1): 45-52.
    [38] Wagner U, Schlebusch H, Kohler S, et al. Immunological responses to the tumor-associated antigen CA125 in patients with advanced ovarian cancer induced by the murine monoclonal anti-idiotype vaccine ACA125. Hybridoma. 1997;16(1):33-40
    [39] Reinartz S, Boemer H, Koehler S, et al. Evaluation of immunological responses in patients with ovarian cancer treated with the anti-idiotype vaccine ACA125 by determination of intracellular cytokines--a preliminary report. Hybridoma. 1999; 18(1):41-45
    [40] Wagner U, Kohler S, Reinartz S, et al. Immunological consolidation of ovarian carcinoma recurrences with monoclonal anti-idiotype antibody ACA125: immune responses and survival in palliative treatment. Clin Cancer Res. 2001; 7(5):1154-1162
    [41] Mobus VJ, Baum RP, Bolle M, et al. Immune responses to murine monoclonal antibody-B43.13 correlate with prolonged survival of women with recurrent ovarian cancer. Am J Obstet Gynecol. 2003; 189(1):28-36
    [42] 崔恒,昌晓红,冯捷,等。卵巢癌抗独特型单链抗体的人源化—抗独特型微抗体的构建与表达。中国生物化学与分子生物学报,2002,18:490-494
    [43] del Carmen MG, Rizvi I, Chang Y, et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo.J Natl Cancer Inst. 2005,97(20): 1516-1524
    [44] Taylor DD, Gercel-Taylor C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defect. Br J Cancer, 2005, 92(2):305-311
    [45] Bard MP, Hegmans JP, Hemmes A, et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol, 2004, 31(1): 114-121
    [46] Schuler G, Romani N, Steinman RM. A comparison of murine epidermal Langerhans cells with spleen dendritic cells. J Invest Dermatol.1985;85(1 Suppl): 99s-106s
    [47] Steinman RM, Inaba K. Stimulation of the primary mixed leukocyte reaction. Crit Rev Immunol, 1985;5(4):331-348. Review.
    [48] Inaba K, Schuler G, Witmer MD, et al. Immunologic properties of purified epidermal Langerhans cells. Distinct requirements for stimulation of unprimed and sensitized T lymphocytes. J Exp Med, 1986; 164(2):605-613
    [49] Lipscomb MF and Masten BJ. Dendritic cells: immune regulators in health??and disease. Physiol Rev. 2002, 82(1): 97-130. Review.
    [50] Engleman EG. Dendritic cell-based cancer immunotherapy. Semin Oncol. 2003; 30(3 Suppl 8):23-9. Review.
    [51] Caux C, Massacri C, Vanbervliet B, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte macrophage colony stimulating factor plus tumor necrosis factor: II. Functional analysis. J Blood, 1997,90(4): 1458-1470
    [52] Chuler G, Steinman RM. Murine epidermal Langerhans cells mature into petent immunostimulatory dendritic cells in vitro. J Exp Med, 1985; 161(3):526-546
    [53] Szabolcs P, Avigan D, Gezelter S, et al. Dendritic cells and macrophage can mature independently from a human bone marrow-derived, post-colony-forming unit intermediate. Blood, 1996; 87(11):4520-4530
    [54] Bernhard H, Disis ML, Heimfeld S, et al. Gerneration of immunohistory dendritic cells human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood. Cancer Res, 1995; 55(5): 1099-1104
    [55] Song SY, Kim HS. Strategies to improve dendritic cell-based immunotherapy against cancer. Yonsei Med J. 2004;45(Suppl):48-52. Review.
    [56] O' Connell PJ, Li W, wang Z, et al. Immature and mature CD8alpha+ dendritic cells prolong the survival of vascularized heart allografts. J Immunol.2002; 168(1): 143-154
    [57] Martin P, Del Hoyo GM, Anjuere F, et al. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors. Blood. 2000;96(7): 2511-2519
    [58] Daro E, Pulendran B, Brasel K, et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Fit3 ligand. J Immunol. 2000; 165(1):49-58
    [59] Qin Z, Blankenstein T. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 2000; 12(6):677-686
    [60] Dembic Z, Schenck K, Bogen B. Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4+ T cells. Natl Acad Sci USA, 2000,97(6):2697-2702
    [61] Bender A, Sapp M, Schuler G, et al. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods, 1996, 196(2): 121-135
    [62] Caux C, Dezutter-Dambuyant C, Schmitt D, et al. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature, 1992;360 (6401): 258-261
    [63] Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/ macrophage colony-stimulating factor. J Exp Med, 1992; 176(6): 1693-1702
    [64] Sallusto F and Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med, 1994:179(4): 1109-1118
    [65] Grouard G, Rissoan MC, Filgueira L, et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin(IL)-3 and CD40-ligand. J Exp Med, 1997, 185(6): 1101-1111
    [66] Borkowski TA, Letterio JJ, Farr AG, et al. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cell. J Exp Med, 1996; 184(6): 2417-2422
    [67] Strobl H, Bello-Fernandez C, Riedl E, et al. fit3 ligand in cooperation with transforming growth factor-betal potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood. 1997;90(4): 1425-1434
    [68] Zhang Y, Zhang YY, Ogata M, et al. Transforming growth factor-betal polarizes murine hematopoietic progenitor cells to generate Langerhans cell-like dendritic ceils through a monocyte/macrophage differentiation pathway. Blood. 1999;93(4): 1208-1220
    [69] Steinbrink K, Graulich E, Kubsch S, et al. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigenspecific suppressor activity. Blood. 2002;99(7):2468-2476
    [70] Maraskovsky E, Brasel K, Teepe M, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Fit3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med. 1996; 184(5): 1953-1962
    [71] Winfried FP, Otto Majdic, Knapp W. Dendritic cell generation from highly purified CD14+ monocytes. In: Pobinson SP, Stagg AJ. Methods in MolecularMedicine. Vol 64. Totowa: Human Press Inc, 2001: 283-296
    [72] Bontkes HJ, De Gruijl TD, Schuurhuis GJ, et al. Expansion of dendritic cell precursors from human CD34(+) progenitor cells isolated from healthy donor blood; growth factor combination determines proliferation rate and functional outcome. J Leukoc Biol. 2002;72(2):321-329
    [73] Buchler T, Hajek R, Bourkova L, et al Generation of antigen-loaded dendritic cells in a serum-free medium using different cytokine combinations. Vaccine. 2003; 21 (9-10):877-882
    [74] Inaba K, Romani N, Steinman RM. An antigen-independent contact mechanism as an early step in T cell-proliferative responses to dendritic cells. J Exp Med. 1989; 170(2):527-542
    [75] McAfee JG, MacVittie TJ. The impact of recent advances in immunology and cancer therapy on nuclear medicine. Semin Nucl Med,2001,31 (4): 342~349.
    [76] Thery C, Regnault A, Garin J. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 1999;147(3):599-610
    [77] Jager E, Jager D. Knuth A. CTL-defined cancer vaccines: perspectives for active immunotherapeutic interventions in minimal residual disease. Cancer Metastasis Rev. 1999; 18(1): 143-150. Review.
    [78] Hart DN, Hill GR. Dendritic cell immunotherapy for cancer: application to low-grade lymphoma and multiple myeloma. Immunol Cell Biol. 1999;77(5): 451-459. Review.
    [79] Timmerman JM, Levy R. Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. J Immunol. 2000;164(9):4797-4803
    [80] Wang J, Saffold S, Cao X, et al. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol. 1998;161(I0):5516-5524
    [81] Berard F, Blanco P, Davoust J, et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med. 2000; 192(11): 1535-1544
    [82] Lappin MB, Weiss JM, Delattre V, et al. Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology. 1999; 98(2): 181-188
    [83] Chen SR, Akbar SM, Tanimoto K, et al. Absence of CD83-positive matureand activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis. Cancer Lett. 2000;148(1):49-57
    [84] Liu YJ, Kanzler H, Soumelis V, et al. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol. 2001, 2(7):585-589. Review
    [85] Inoshima N, Nakanishi Y, Minami T, et al. The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clin Cancer Res. 2002;8(11):3480-3486
    [86] Morse MA, Coleman RE, Akabani G, et al. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 1999;59(1):56-58
    [87] Triozzi PL, Khurram R, Aldrich WA, et al. Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer. 2000;89(12): 2646-2654
    [88] 汪灏,郝群,余佩武。树突状细胞疫苗在肿瘤临床治疗中的应用。中国肿瘤临床,2003;30(12):901-904
    [89] Thumer B, Haendle I, Roder C, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage Ⅳ melanoma. J Exp Med. 1999; 190(11): 1669-1678
    [90] Fong L, Brockstedt D, Benike C, et al. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol. 2001; 166(6):4254-4259
    [91] Banchereau J, Palucka A.K, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61 (17):6451-8
    [92] Schuler-Thumer B, Schultz E.S, Berger T.G, et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med. 2002; 195(10):1279-1288
    [93] Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4(3):328-332
    [94] Jonuleit H, Giesecke-Tuettenberg A, Tuting T, et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer. 2001;93(2): 243-251
    [95] Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3??ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A. 2001;98(15):8809-8814
    [96] Fong L, Brockstedt D, Benike C, et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol. 2001; 167(12):7150 -7156
    [97] Ludewig B, Oehen S, Barchiesi F, et al. Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells. J Immunol. 1999;163(4):1839-1844
    [98] Dhodapkar MV, Krasovsky J, Steinman RM, et al. Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J Clin Invest. 2000; 105(6):R9-R14
    [99] Thuner B, Haendle I, Roder C,et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med. 1999;190(11):1669-1678
    [100] Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood. 2000; 96(9):3102-3108
    [101] Ludewig B, Odermatt B, Landmann S, et al. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med. 1998;188(8): 1493-1501
    [102] Hermans I.F, Ritchie D.S, Yang J, et al. CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J Immunol. 2000; 164(6):3095-3101
    [103] Schrama D, Pedersen LO, Keikavoussi P, et al. Aggregation of antigen-specific T cells at the inoculation site of mature dendritic cells. J Invest Dermatol. 2002; 119(6): 1443-1448
    [104] Bachleitner-Hofmann T, Stift A, Friedl J, et al. Stimulation of autologous antitumor T-cell responses against medullary thyroid carcinoma using tumor lysate-pulsed dendritic cells. J Clin Endocrinol Metab. 2002;87(3): 1098-1104
    [105] Schnurr M, Galambos P, Scholz C, et al. Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res. 2001;61(17): 6445-6450
    [106] Miyazaki J, Tsuzuki Y, Matsuzaki K, et al. Combination therapy with tumor-lysate pulsed dendritic cells and antiangiogenic drug TNP-470 for mousepancreatic cancer. Int J Cancer. 2005;117(3):499-505
    [107] Chen Z, Moyana T, Saxena A, et al. Efficient antitumor immunity derived
     from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor
     cells. Int J Cancer, 2001, 93(4): 539-548
    [108] Pietra G, Mortarini R, Parmiani G, et al. Phases of apoptosis of melanoma
     cells, but not of normal melanocytes, differently affect maturation of myeloid
     dendritic cells. Cancer Res. 2001;61(22):8218-8226
    [109] Labarriere N, Bretaudeau L, Gervois N, et al. Apoptotic body-loaded
     dendritic cells efficiently cross-prime cytotoxic T lymphocytes specific for
     NA17-A antigen but not for Melan-A/MART-1 antigen. Int J Cancer.
     2002; 101(3):280-286
    [110] Fonteneau JF, Larsson M, Bhardwaj N, et al. Interactions between dead
     cells and dendritic cells in the induction of antiviral CTL responses. Curr Opin
     Immunol. 2002; 14(4):471-7. Review
    [111] Kotera Y, Shimizu K, Mule JJ. Comparative analysis of necrotic and
     apoptotic tumor cells as a source of antigen(s) in dendritic cell-based
     immunization. Cancer Res, 2001;61(22): 8105-8109
    [112] Lambert LA, Bibson GR, Maloney M et al. Equipotent generation of
     protective antitumor immunity by various methods of dendritic cell loading with
     whole cell tumor antigens. J Immunother. 2001;24(3):232-236
    [113] Iwashita Y, Tahara K, Goto S, et al. A phase I study of autologous dendritic
     cell-based immunotherapy for patients with unresectable primary liver cancer.
     Cancer Immunol Immunother, 2003, 52(3): 155-161
    [114] Marten A, Renoth S, Heinicke T, et al. Allogeneic dendritic cells fused with
     tumor cells: preclinical with metastatic renal cell carcinoma. Hum Gene Ther,
     2003, 14(5):483-494
    [115] Lin CL, Lo WF, Lee TH, et al. Immunization with Epstein-Barr Virus (EBV)
     peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may
     lead to tumor regression in patients with EBV-positive masopharyngeal
     carcinoma. Cancer Res, 2002, 62(23): 6952-6958
    [116] Boczkowski D, Nair S, Synder D, et al. Dendritic cells pulsed with RNA
     are potent antigen-presenting cells in vitro and in vivo. J Exp Med, 1996, 184(2):
     465-472
    [117] Mair SK, Morse M, Boczkowski D, et al. Induction of tumor-specific
     cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected
     dendritic cells. Ann Surg, 2002, 235(4): 540-549
    [118] Gursel M, Verthelyi D, Klinman DM. CpG oligodeoxynucleotides induce human monocytes to mature into functional dendritic cells. Eur J Immunol, 2002, 32(9): 2617-2622
    [119] Yang S, Vervaert CE, Burch J Jr, et al. Murine dendritic cells transfected with human GP100 elicit both antigen-specific CD8(+) and CD4(+) T-cell responses and are more effective than DNA vaccines at generating anti-tumor immunity. Int J Cancer, 1999, 83(4): 532-540
    [120] Van Tendeloo VF, Snoeck HW, Lardon F, et al. Nonviral transfection of distinct types of human dendritic cells: high efficiency gene transfer by eletroporation into hematopoietic progenitor-but not monocyte-derived dendritic cells. Gene Ther, 1998, 5(5):700-707
    [121] Reeves ME, Royal RE, Lam JS, et al. Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res, I996, 56(24): 5672-5677
    [122] Wan Y, Emtage P, Foley R, et al. Murine dendritic cells transduced with an adenovirus vector expressing a defined tumor antigen can overcome antiadenovirus neutralizing immunity and induce effictive tumor regression. Int J Oncol, 1999, 14(4): 771-776
    [123] Zhong L, Granelli-Pipermo A, Choi Y, et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol, 1999, 29(3): 964-972
    [124] Tillman BW, de Gruijl TD, Luykx-de Bakker SA, et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol, 1999, 162(11): 6378-6383
    [125] Tatsumi T, Gambotto A, Robbins PD, et a. Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Res, 2002, 62(20): 5853-5858
    [126] Bronte V, Carroli MW, Goletz TJ, et al. Antigen expression by dendritic cells correlated with the therapeutic effeciveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci, USA, 1997, 94(7): 3183-3188
    [127] Hersey P, Menzies SW, Halliday GM, et al. Phase Ⅰ/Ⅱ study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol Immunother, 2004, 53(2): 125-134
    [128] Hernando JJ, Park TW, Kuhn WC, et al. Dendritic cell-based vaccines inbreast and gynaecologic cancer. Anticancer Res, 2003, 23(5b): 4293-4303
    [129] Pardoll DM. Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2002, 2(4): 227-238. Review.
    [130] Timmerman JM, Czerwinski DK,Davis TA, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma:clinical and immune responses in 35 patients. Blood, 2002, 99(5):1517-1526
    [131] Mackensen A,Herbst B, Chen JL,et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Int J Cancer, 2000,86(3):385-392
    [132] Morisaki T, Matsumoto K, Onishi H, et al. Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives. Hum Cell. 2003; 16(4):175-182. Review
    [133] Schuler-Thurner B, Dieckmann D, Keikavoussi P, et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol. 2000; 165(6):3492-3496
    [134] Van Tendeloo VF, Ponsaerts P, Lardon F, et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001 ;98(1):49-56
    [135] Birmingham K, Misconduct trouble brewing in Gottingen. Nat Med. 2001; 7(8):875
    [136] (?) L, Zelle-Rieser C, Gander H, et al. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res. 2002; 8(11):3369-76
    [137] Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormonerefractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol. 2000; 18(23): 3894 - 903
    [138] Burch PA, Breen JK, Buckner JC, et al. Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin Cancer Res. 2000;6(6):2175-2182
    [139] Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest. 2002;109(3):409-147
    [140] Kumamoto T, Morita A, Takashima A. Recent advances in dendritic cell vaccines for cancer treatment. J Dermatol. 2001;28(11):658-662. Review
    [141] Schwaab T, Weiss JE, Schned AR, et al. Dendritic cell infiltration in colon cancer. J Immunother, 2001; 24(2): 130-137
    [142] Yang AS, Lattime EC. Tumor-induced interleukin 10 suppresses the ability of spleenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res, 2003; 63(9): 2150-2157
    [143] Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol. 2000; 18:245-273. Review
    [144] Santin AD, Bellone S, Palmieri M, et al. Restoration of tumor specific human leukocyte antigen class I-restricted cytocoxicity by dendritic cell stimulation of tumor infiltrating lymphocytes in patients with advanced ovarian cancer. Int J Gynecol Cancer, 2004, 14(1): 64-75
    [145] Heijnen HF, Schiel AE, Fijnheer R, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11): 3791-3799
    [146] Raposo G, Tenza D, Mecheri S, et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell. 1997;8(12):2631-2645
    [147] Escola JM, Kleijmeer MJ, Stoorvogel W, et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. 1998;273(32): 20121-20127
    [148] Blanchard N, Lankar D, Faure F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol. 2002; 168(7):3235-3241
    [149] Zitvogel L, Regnault A, Lozier A,et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998, 4(5):594-600
    [150] Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med, 2001; 7(3):297-303
    [151] Andre F, Schartz NE, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002,360(9329):295-305
    [152] Stahl PD, Barbieri MA. Multivesicular bodies and multivesicularendosomes: the "ins and outs" of endosomal traffic. Sci Stke. 2002. 2002 (141): PE32. Review.
    [153] Denzer K, Kleijmeer MJ, Heijnen HF, et al. Exosome:from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci, 2000, 113(Pt19): 3365-3374. Review.
    [154] Delcayre A, Le Pecq JB. Exosomes as novel therapeutic nanodevices. Curr Opin Mol Ther. 2006;8(1):31-38
    [155] Thery C, Zitvogel L, Amigorena S. Exosomes: composition,biogenesis and function. Nat Rev Immunol, 2002, 2(8): 569-579
    [156] Katzrnann DJ, Odorizzi G, Emr SD. Receptor downregulation and multivesicular -body sorting. Nat Rev Mol Cell Biol.2002; 3(12): 893-905
    [157] Gould SJ, Booth AM, Hildreth JE. The Trojan exosome hypothesis. Proc Natl Acad Sci USA, 2003; 100(19): 10592-10597
    [158] Savina A, Furlan M, Vidal M, et al. Exosome release in regulated by a calcium-dependent mechanism in K562 cells. J biol Chem, 2003, 278(22): 20083-20090
    [159] Chaput N, Taieb J, Schartz NE, et al. Exosome-based immunotherapy. Cancer Immunol Immunother, 2004, 53(3): 234-239. Review.
    [160] Skokos D, Le Panse S, Villa I, et al. Mast cell-dependent B and T lymphocyte activation ismediated by the secretion of immunologically active exosomes. J Immunol, 2001, 166(2):868-876
    [161] Hwang I, Shen X, Sprent J. Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Nat Acad Sci USA.2003.100(11): 6670-6675
    [162] Lamparski HG, Metha-Damani A, Yao JY, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 2002;27 (2):211-226
    [163] Andre F, Chaput N, Schartz NE, et al. Exosomes as potent cell-free peptidebased vaccine. Ⅰ. Dendritic cell-derived exosomes transfer functional MHC class Ⅰ/peptide complexes to dendritic cells. J Immunol. 2004; 172(4):2126-2136
    [164] Chaput N, Schartz NE, Andre F, et al. Exosomes as potent cell-free peptide-based vaccine. Ⅱ. Exosomes in CpG adjuvants efficiently prime naive Tcl lymphocytes leading to tumor rejection. J Immunol. 2004; 172(4):2137-2146
    [165] 罗治彬,徐采朴,王东,等.致敏树突细胞及其亚细胞成分对荷胃癌小鼠的免疫治疗作用研究.世界华人消化杂志,2004,12:9~12.[166] Bard ME Hegmans JP, Hemmes A, et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 2004;31(1):114-121
    [167] Chaput N, Schartz NE, Andre F, et al. Exosomes for immunotherapy of cancer. Adv Exp Med Biol. 2003;532:215-221. Review.
    [168] Ludewig B, Ochsenbein AF, Odermatt B, et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med. 2000;191 (5):795-804
    [169] 蔡文琴,王伯云主编。实用免疫细胞化学。四川:四川科学技术出版社。1988,174-177
    [170] 萨姆布鲁克,EF弗里奇,T曼尼阿蒂斯,金冬雁,犁孟枫等译。分子克隆实验指南,第二版。北京:科学出版社,1999,888-897
    [171] Deshane J, Cabrera G, Grim JE, et al. Targeted eradication of ovarian cancer mediated by intracellular expression of Anti-erbB-2 single-chain antibody. Gynecol Oncol. 1995,59(1):8-14
    [172] 李牧,尤胜国,廖晓龙,等。小鼠T淋巴细胞白血病细胞系(L615)B7瘤苗抗肿瘤免疫的实验研究。中华血液学杂志,1998,19:230-233
    [173] 曹孟德,肖保国。γ-射线照射对人树突状细胞表型及功能的影响。中国实验血液学杂志,2003,11:282-286
    [174] Jantscheff P, Spagnoli G, Zajac P, et al. Cell fusion: an approach to generating constitutively proliferating human tumor antigen- presenting cells. Cancer Immunol Immunother, 2002;51 (7): 367-375
    [175] Johnstone RM,Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. 1987; J Biol. Chem.262(19):9412-9420
    [176] Altieri SL, Khan AN, Tomasi TB. Exosomes from plasmacytoma cells as a tumor vaccine. J Immunother. 2004; 27(4): 282-288
    [177] Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicules derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005, 113(5):752-760
    [178] Andre F, Schartz NE, Chaput N, et al. Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine. 2002; 20(Supple 4): A28-A31
    [179] Farsad K. Exosome: novel organelles implicated in immunomodulation and apoptosis. Yale J biol Med, 2002,75(2):95-101
    [180] 陆珍凤,张泰和,周晓军。正常人外周血粒细胞内铁蛋白的免疫电镜定位.电子显微学报,1992,11(1):157-158
    [181] Sierralta WD. Immunoelectron microscopy in embryos. Methods, 2001, 24(1): 61-69
    [182] Vidal M, Mangeat P, Hoekstra D. Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J Cell Sci. 1997;110(Pt 16): 1867-1877
    [183] Johnstone RM, Mathew A, Mason AB, et al. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol. 1991; 147(1):27-36
    [184] Wang XP, Wang QX, Li HY, et al. Heat shock protein 70 chaperoned alpha-fetoprotein in human hepatocellular carcinoma cell line BEL-7402. World J Gastroenterol. 2005;11 (35):5561-5564
    [185] Stangl K, Gunther C, Frank T, et al. Inhibition of the ubiquitin-proteasome pathway induces differential heat-shock protein response in cardiomyocytes and renders early cardiac protection. Biochem Biophys Res Commun. 2002; 291(3): 542-549
    [186] Lu AL, Xu CS. Effects of heat shock on change of HSC70/HSP68, acid and alkaline phosphatases before and after rat partial hepatectomy. World J Gastroenterol. 2000;6(5):730-733
    [187] Somersan S, Larsson M, Fonteneau JF, et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol. 2001; 167(9): 4844-4852
    [188] Kuppner MC, Gastpar R, Gelwer S, et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol. 2001;31(5): 1602-1609
    [189] Blachere NE, Li Z, Chandawarkar RY, et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxie T lymphocyte response and tumor immunity. J Exp Med. 1997;186(8): 1315-1322
    [190] Singh-Jasuja H, Toes RE, Spee P, et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med. 2000;191(11):1965-1974
    [191] Rotem-Yehudar R, Winograd S, Sela S, et al. Doconregulation of peptide transporter genes in cell lines transformed with the highly oncogenic adenovirus12. J Exp Med. 1994;180(2):477-488
    [192] Bevan MJ. Antigen presentation to cytotoxic T lymphocytes in vivo. J Exp Med. 1995; 182(3):639-641. Review
    [193] Rock KL. A new foreign policy: MHC class I molecules moniter the outside world. Immunol Today, 1996, 17(3): 131-137
    [194] Seung S, Urban JL, Scheiber H. A tumor escape variant that has lost one major histocompatibility complex class I restriction element induces specific CD8+ T cells to an antigen that no longer serves as a target. J Exp Med. 1993; 178(3): 933-940
    [195] Kono K, Halapi E, Hising C, et al. Mechanisms of escape from CD8+ T cell clones specific for the her-2/neu proto-oncogene expressed in ovarian carcinomas: related and unrelated to decreased MHC class I expression. Int J Cancer. 1997; 70(1): 112-119
    [196] Cioca DP, Deak E, Cioca F, et al. Monoclonal antigodies targeted against melanoma and ovarian tumors enhance dendritic cell-mediated cross-presentation of tumor-associated antigens and efficiently cross-prime CD8+ T cell. J Immunother. 2006; 29(1): 41-52
    [197] Schreurs MW, Eggert AA, de Boer AJ, et al. Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res. 2000; 60(24):6995-7001
    [198] Terando A, Roessler B, Mule JJ. Chemokine gene modification of human dendritic cell-based tumor vaccines using a recombinant adenoviral vector. Cancer Gene Ther. 2004;11(3):165-173
    [199] Slingluff CL Jr, Petroni GR, Yamshichikov GV, et al. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colonystimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol. 2003; 21(21):4016-4026
    [200] Rubistein P, Dobrila L, Rosenfield RE, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA. 1995;92(22):10119-10122
    [201] Gansuvd B, Hagihara M, Higuchi A, et al. Umbilical cord blood dendritic cells are a rich source of soluble HLA-DR: synergistic effect of exosomes and dendritic cells on autologous or allogeneic T-Cell proliferation. Hum Immunol. 2003; 64(4): 427-439
    [202] Montoya MC, Sancho D, Vicente-Manzanares M, et al. Cell adhesion and polarity during immune interactions. Immunol Rev. 2002; 186: 68-82. Review
    [203] Mellman I. Antigen processing and presentation by dendritic cells: cell biological mechanisms. Adv Exp Med Biol. 2005; 560: 63-67. Review
    [204] Cayeux S, Richter G, Bocker C, et al. Direct and indirect T cell priming by dendritic cell vaccines. Eur J Immunol. 1999 (1); 29: 225-234
    [205] Liu E, Tu W, Law HK, et al. Decteased yield, Phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. Br J Haematol, 2001, 113 (1) : 240-246
    [206] Zheng Z, Takahashi M, Narita M, et al. Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte-macrophage colonystimulating factor, interleukin-4, and tumor necrosis factor-alpha. J Hematother Stem Cell Res, 2000, 9 (4) : 453-464
    [207] Aosai F, Rodriguez, Pena MS, Fang H, et al. Toxoplasma gondii-derived heat shock protein 70 stimulates maturation of murine bone marrow-derived dendritic cells via Toll-like receptor 4. Cell Stress Chaperones. 2006; 11 (1) : 13-22
    [208] 金伯昆。细胞和分子免疫学:细胞因子。北京:科学技术出版社,2001:168-174
    [209] Kast RE, Altschuler EL. Anti-apoptosis function of TNF-alpha in chronic lymphocytic leukemia: lessons from Crohn's disease and the therapeutic potential of bupropion to lower TNF-alpha. Arch Immunol Ther Exp (Warsz). 2005; 53 (2) : 143-147. Review
    [210] Paquette RL, Hsu NC, Kiertscher SM, et al. Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukoc Biol. 1998; 64 (3) : 358-367
    [211] Paquette RL, Hsu N, Said J, et al. Interferon-alpha induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo. Leukemia. 2002; 16 (8) : 1484-1489
    [212] Reid CD. The dendritic cell lineage in haemopoiesis. Br J Haematol. 1997; 96 (2) : 217-223
    [213] Fanger NA, Maliszewski CR, Schooley K, et al. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand(TRAIL). J Exp 1999; 190 (8) : 1155-1164
    [214] Storb R. Allogeneic hematopoietic stem cell transplantation—yesterday,??today, and tomorrow. Exp Hematol. 2003; 31 (1) : 1-10. Review
    [215] Arcese W, Rocha V, Labopin M, et al. Unrelated cord blood transplants in adults with hematologic malignancies. Haematologica. 2006; 91 (2) : 223-30
    [216] 沈柏均,隋星卫。人类脐血基础和临床:脐血的造血活性。天津:科学技术出版社,1994:23-30
    [217] 裴雪涛,吴祖泽,Coutinbo LH,等,不同来源CD34+CD38+和CD34+CD38-细胞群造血性能的不均一性研究。中华血液学杂志,1996,17(1):16-19
    [218] Rocha V, Gamier F, Ionescu I, et al. Hematopoietic stem-cell transplantation using umbilical-cord blood cells. Rev Invest Clin. 2005; 57 (2) : 314-23
    [219] Sato K, Nagayama H, Takahashi T-A, et al. Generation of dendritic cells from fresh and frozen cord blood CD34+ cells. Cryobiology, 1998; 37 (4) : 362-371
    [220] Feuerstein B, Berger TG, Maczek C, et al. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods, 2000; 245 (1-2) : 15-29
    [221] Shortman K, Caux C. Dendritic cell development: multiple pathways to nature's adjuvants. Stem Cells 1997; 15 (6) : 409-419
    [222] Quah B, O'Neill HC. The application of dendritic cell-derived exosomes in tumor immunotherapy. Cancer Biother Radiopharm, 2000, 15 (2) : 185-194
    [223] Schartz NE, Chaput N, Andre F, et al. From the antigen-presenting cell to the antigen-presenting vesicle: the exosomes. Cur Opin Mol Ther, 2002, 4 (4) : 372-381
    [224] Fujii S, Fujimoto K, Shimizu K, et al. Presentation of tumor antigens by phagocytic dendritic clusters generated from human CD34+ hematopoietic progenitor cells induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients. Cancer Res.1999; 59 (9) : 2150-2158
    [225] Guermonprez P, Saveanu L, Kleijmeer M, et al. ER-Phagosome fusion defines and MHC class I cross-presentation compartment in dendritic cells. Nature. 2003; 425 (6956) : 397-402
    [226] Kleijmeer MJ, Escola JM, UytdeHaag FG, et al. Antigen loading of MHC class I molecules in the endocytic tract. Traffic. 2001; 2 (2) : 124-137
    [227] Hsu DH, Paz P, Villaflor G, et al. Exosomes as a tumor vaccine: enhancing potency through direct loading of antigenic peptides. J Immunother. 2003; 26 (5) : 440-450[228] Thery C, Duban L, Segura E, et al. Indirect activation of naive CD4+cells by dendritic cell-derived exosomes. Nat Immunol. 2002; 3 (12) : 1156-1162
    [229] Kovacsovics-Bankowski M and Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science. 1995; 267 (5195) : 243-246
    [230] Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000, 6 (4) : 435-442
    [231] Rafiee M, Kanwar JR, Berg RW, et al. Induction of systemic antitumor immunity by gene transfer of mammalian heat shock protein 70 into tumors in situ. Cancer Gene Ther, 2001, 8 (12) : 974-981
    [232] Robert J, Gantress J, Rau L, et al. Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins. J Immunol. 2002; 168 (4) : 1697-1703
    [233] 司徒镇强,吴军正。细胞培养。西安:世界图书出版社:63-75
    [234] Alison RH, Morgan KT, Haseman JK, et al. Morphology and classification of ovarian neoplasms in Fischer rats and (C57BC/6XC3H)F1 mice. J Natl Cancer Inst, 1987, 78: 1229-1243
    [235] Rodriguez-Burford C, Barnes MN, Berry W, et al. Immunohistochemical expression of molecular markers in an avian model: a potential model for preclinical evaluation of agents for ovarian cancer chemoprevention. Gynecol Oncol. 2001; 81 (3) : 373-379
    [236] 孙敬方主编。动物实验方法学。北京:人民卫生出版社,2001:396-398
    [237] Davy M, Mossige J, Johannessen JV. Heterologous growth of human ovarian cancer. A new in vivo testing system. Acta Obstet Gynecol Scand. 1977; 56 (1) : 55-59
    [238] Fu X, Hoffman RM. Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res. 1993; 13 (2) : 283-286
    [239] Walker W, Gallagher G. The development of a novel immunotherapy model of human ovarian cancer in human PBL-severe combined immunodeficient (SCID) mice. Clin Exp Immunol. 1995; 101 (3) : 494-501
    [240] 朱华,叶大风,陈怀增,等。免疫重建荷人卵巢癌严重联合免疫缺陷鼠腹腔移植模型的建立。中华医学杂志,2002,82:630-633
    [241] 崔恒,李艺,童春容,等。免疫重建人卵巢癌-严重联合免疫缺陷小鼠??模型的建立。北京医科大学学报,2000,32:488-491
    [242] Hesselton RM, Koup RA, Cromwell MA, et al. Human peripheral blood xenografts in the SCID mouse: characterization of immunologic reconstitution. J Infect Dis. 1993; 168 (3) : 630-640
    [243] Li Y, Cui H, Chang XH, et al. Establishment and comparison of two intraperitoneally transplanted human ovarian carcinoma models with immune reconstitution in severe combined immunodeficient mice. Ai Zheng. 2004; 23 (2) : 160-164
    [244] Sandhu J, Shpitz B, Gallinger S, et al. Human primary immune response in SCID mice engrafted with human peripheral blood lymphocytes. J Immunol. 1994; 152 (8) : 3806-3813
    [245] Hendren SK, Prabakaran I, Buerk DG, et al. Interferon-β gene therapy improves survival in an immunocompetent mouse model of carcinomatosis. Surgery. 2004; 135 (4) : 427-436
    [246] 刘红耀,宁松毅、庞东梓等。一种简便、高效的大鼠树突状细胞的分离方法。山西医科大学学报,2005,36 (6):656-659
    [247] Rose MD, Tocco PhD, Granger PhD, et al. Development and characterization of a clinically useful animal model of epithelial ovarian cancer in the Fischer 344 rat. American Journal of Obstetrics and gynecology, 1996, 175 (3) : 593-599
    [248] Major AL, Rose GS, Chapman CF, et al. In vivo fluorescence detection of ovarian cancer in the NuTu-19 epithelial ovarian cancer animal model using 5-Aminolevulinic acid(ALA). Gynecologic Oncology. 1997; 66 (1) : 122-132
    [249] Hamilton TC, Young RC, Louie KG, et al. Characterization of a xenograft model of human ovarian carcinoma which produces ascites and intraabdominal carcinomatosis in mice. Cancer Res. 1984; 44 (11) : 5286-5290
    [250] Sawada M, Ozaki M, Hongo J, et al. Antitumor effects of high-dose cisplatin in hypertonic saline against human ovarian tumors heterotransplanted in nude mice. Nippon Sanka Fujinka Gakkai Zasshi. 1987; 39(7) : 1103-1107
    [251] Yoshida Y, Kamitani N, sasaki H, et al. Establishment of a liver metastatic model of human ovarian cancer. Anticancer Res. 1998; 181 (1A) : 327-331
    [252] Talmor M, Mirza A, Turley S, et al. Generation or large numbers of immature and mature dendritic cells from rat bone marrow cultures. Eur J Immunol. 1998; 28 (3) : 811-7
    [253] Gonzalez Burgos I, Perez Vega MI, Beas Zarate C. Neonatal exposure to??monosodium glutamate induces cell death and dendritic hypotrophy in rat prefrontocortical pyramidal neurons. Neurosci Lett. 2001; 297 (2) : 69-72
    [254] Grauer O, Wohlleben G, seubert S, et al. Analysis of maturation states of rat marrow-derived dendritic cells using an improved culture technique. Histochem Cell Biol. 2002; 117 (4) : 351-362
    [255] Pierre P, Turley SJ Gattli E, et al. Developmental regulation of MHC class Ⅱ transport in mouse dendritic cells. Nature. 1997; 388 (6644) : 787-792
    [256] Chen-Woan M, Delaney CP, Foumier V, et al. A new protocol for the propagation of dendritic cells from rat bone marrow using recombinant GM-CSF, and their quantification using the mAb OX-62. J Immunol Methods. 1995; 178 (2) : 157-171
    [257] Yasutomo K, Lucas B, Germain RN. TCR signaling for initiation and completion of thymocyte positive selection has distinct requirements for ligand quality and presenting cell type. J Immunol. 2000; 165 (6) : 3015-3022
    [258] Jiang W, Swiggard WJ, Heufler C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells in involved in antigen processing. Nature. 1995, 375 (6627) : 151-155
    [258] Ramarathinam L, Sarma S, Maric M, et al. Multiple lineages of tumors express a common tumor antigen, P1A, but they are not cross-protected. J Immunol. 1995; 155 (11) : 5323-5329
    [259] 龚非力。医学免疫学。北京,科学出版社,2000,83
    [260] Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001; 61 (12) : 4766-4772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700