纳米ZnO复合物的制备及其光催化降解NPE-10研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用氨浸法制备了纳米ZnO,并在此基础上通过掺杂贵金属Ag和过渡金属离子Fe3+,复合半导体SnO2等手段对其进行了改性,分别制得纳米Ag/ZnO、Fe3+/ZnO和SnO2/ZnO复合光催化剂。利用X射线衍射、N2吸附、X射线光电子能谱和紫外-可见漫反射光谱等方法对所得催化剂的晶型结构、比表面积、表面组成和光吸收性能等进行了分析表征。以壬基酚聚氧乙烯醚(NPE-10)为模型污染物,分别在紫外光和可见光照射下考察了ZnO及其复合物的光催化活性。
     采用氨浸法在300℃下煅烧2h得到晶型完美的纳米级ZnO,且随着煅烧温度的升高,ZnO晶体粒径逐渐增大,而比表面积则逐渐减小。
     贵金属Ag掺杂在纳米ZnO中,以Ag0和Ag+两种形式存在,导致纳米Ag/ZnO晶体粒径随Ag负载量的增加而增大,比表面积减小。与纯ZnO相比,0.5%Ag/ZnO样品中Ag3d5/2结合能减小,而Zn2p和O1s结合能增大,Ag/ZnO表面的羟基氧和吸附氧含量增加;吸收光谱发生红移,在可见光区出现表面Ag离子的共振吸收峰。
     过渡金属离子Fe3+掺杂到纳米ZnO中,以Fe3+、Fe2+和Fe0三种形式存在,Fe元素取代Zn进入ZnO晶格或存在于ZnO晶隙中,致使晶体粒径随Fe3+负载量的增加而减小,比表面积增大。相比纯ZnO而言,0.5%Fe3+/ZnO样品中Fe2p结合能减小,而Zn2p和O1s结合能增大,Fe3+/ZnO表面的羟基氧和吸附氧含量增加。铁元素的存在使ZnO的价带和导带之间产生中间能级,降低了电子激发所需能量,从而使铁掺杂ZnO在可见光区出现吸收。
     半导体SnO2复合改性纳米ZnO中,Sn以Sn4+形态存在于SnO2晶体和固溶体中,抑制了ZnO的生长,使得晶体粒径随SnO2加入量增加而减小,比表面积增大。负载量为20%的SnO2/ZnO样品较纯ZnO的Zn2p和O1s结合能增大,表面的羟基氧和吸附氧大量增加,加入SnO2可以改变ZnO的能带隙,增强其对可见光的吸收。
     对NPE-10的光催化降解性能研究表明:在紫外光和可见光照射3h后,0.5%Ag/ZnO能使降解率提高26%和40%、0.5%Fe3+/ZnO能使降解率提高18%和33%、20%SnO2/ZnO能使降解率提高20%和45%。
Nano-ZnO and Ag/ZnO, Fe3+/ZnO and SnO2/ZnO were prepared by ammonia immersion method. The crystal structure, specific surface area, surface composition and spectral characteristic were analyzed by X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy and diffuse reflectance ultraviolet-visible spectroscopy, respectively. The photocatalytic activity of catalysts for nonylphenol ethoxylates-10 (NPE-10) degradation was studied under the irradiation with ultraviolet light and visible light.
     The crystal structure of nano-ZnO which was calcined at 300℃for 2h was perfect, and the particle size of ZnO increased and specific surface area decreased with the increasing of calcination temperature.
     In Ag-modified nano-ZnO, Ag element exists in two forms: Ag0 and Ag+. The particle size of Ag/ZnO increased and its specific surface area decreased with the increase of Ag loading. Compared with the nano-ZnO, the binding energy of Ag3d5/2 in 0.5%Ag/ZnO reduced, but the binding energy of Zn2p and O1s increased; and the contents of adsorbed oxygen and hydroxy oxygen on the surface increased remarkably. The 0.5%Ag/ZnO exhibited red shift in the absorption spectrum, and the resonance absorbing peak of Ag ion appeared in the visible region.
     In the Fe3+-modified nano-ZnO, Fe element exists in three forms: Fe3+, Fe2+ and Fe0. The particle size of Fe3+/ZnO decreased and its specific surface area increased with the increase of Fe3+ loading because Fe entered the crystal lattice of ZnO superseding Zn. Compared with the nano-ZnO, the binding energy of Fe2p in 0.5% Fe3+/ZnO was reduced, but the binding energy of Zn2p and O1s increased; and the contents of adsorbed oxygen and hydroxy oxygen on the surface increased. The adding of Fe element provided a intermediate energy level between the valance band and the conduction band of ZnO, which can reduced the essential energy of the electron excitation. Thus, it resulted that Fe/ZnO exhibited absorption in the visible region.
     In the SnO2-modified nano-ZnO composites, Sn element exists in SnO2 crystal with one form: Sn4+. The particle size of SnO2/ZnO decreased and its specific surface area increased with the increase of SnO2 loading because SnO2 had restrained the growing of the ZnO crystal. Compared with the nano-ZnO, the binding energy of Zn2p and O1s in 20% SnO2/ZnO increased, and the content of adsorbed oxygen on the surface increased. The band gap energy of ZnO had been changed and the adsorption of visible light of ZnO was enhanced because of the SnO2 adding.
     The optimum photocatalytic activity was obtained from 0.5%Ag/ZnO, 0.5%Fe3+/ZnO and 20%SnO2/ZnO, respectively. The extra 26% (40%), 18% (33%) and 20% (45%) degradation rate of NPE-10 could be found under 3h irradiation of ultraviolet (visible light), respectively.
引文
[1] Fujishima A, Honda K. Electroelectrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [2] Blake D M. Bibliography of work on the photacatalytic revomal of hazardous compounds from water and air [M]. National renewal energy laboratory, 1994.
    [1] Ollis D F, Ekabi H Al. Photocatalytic purification and treatment of water and air [M]. Elsevier, Amsterdam, 1993.
    [2] Gratzel M. Heterogeneous photochemical electron transfer [M]. CRC press, Boca Raton, F L, 1989.
    [3] Serpone N, Pelizzetti E. Photacatalysis: fundamentals and fpplications [M]. John & Sons, New York, 1989.
    [4] Fox M. Photainduced electron transfer [M]. Elsevier, Amsterdam, 1988.
    [5] Schiavello M. Photocatalysis and environment: trends and applications [M]. Kluwer Academic Publishers, Dordrecht, 1988.
    [6] Pellizzett E, Serpone N. Homogeneous and heterogeneous photacatalysis [M]. Riedel Publishing Company, Dordrecht, 1986.
    [7] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev, 1995, 95 (1): 69-96.
    [8] Linsebigler A L, Lu G Q, Yates J T, et al. Photocatalysis on TiO2 surface: principle, mechanisms, and selected results [J]. Chem. Rev, 1995, 95: 735-760.
    [9] Hagfeldt A, Gratzel M. Llight-induced redox reactions in nanocrystalline systems [J]. Chem. Rev, 1995, 95 (1): 49-68.
    [10] Kamat P V, Dimitrijevic N M. Colloidal semi-conductors as photo-catalysts for solar energy conversion [J]. Solar Energy, 1990, 44(2): 83-98.
    [11] 赵光贤. 纳米氧化锌及其在橡胶中的应用[J]. 中国橡胶, 2002, 18(8): 18-21
    [12] 罗敏. 纳米技术在纺织中的应用[J]. 化工新型材料, 2001, 29(7): 29-30
    [13] 王成云, 李英, 龚丽雯. 纳米技术在化妆品中的应用[J]. 香料香精化妆品, 2001, 37(6):31-34
    [14] Birkfeld L D, Azad M, Akbor S A. Carbon monoxide and hydrogem detection by anatase modification of Titanium Dioxide [J]. J.Amer.Ceram.Soc, 1992, 75(1):2964-2969
    [15] 刘登良, 边蕴静. 纳米技术在涂料中的应用前景[J]. 中国涂料, 2001, 75(3): 9-11
    [16] 钟胜, 戴永年. 真空蒸发冷凝制备超细锌粉的研究[J]. 昆明理工大学学报, 1998, 23(3): 47-52
    [17] 赵新宇, 郑柏存, 李春忠等. 喷雾热解合成 ZnO 超微粒子工艺及机理的研究[J]. 无机材料学报, 1996, 11(4): 614-616
    [18] Zhong Q P, Matijevic E. Preparation of uniform zinc oxide colloids by controlled double-jet precepitation [J]. J Mater Chem, 1996, 6(3): 443-447.
    [19] 李强, 高廉, 栾伟玲等. 纳米 ZnO 制备工艺中 ζ 电位与分散性的关系[J]. 无机材料学报, 1999, 14(5): 813-815.
    [20] 徐跃萍, 郭景坤. 共沉淀中反应物浓度, 反应过程 pH 值对纳米粉末性能的影响[J]. 硅酸盐学报, 1993, 21(3): 280-284
    [21] 张立德著. 纳米材料[M]. 化学工业出版社, 北京, 2000
    [22] 覃兴华, 卢迪芬. 反胶团微乳液法制备超细微颗粒的研究进展[J]. 化工新型材料. 1998(2): 27-28
    [23] 赵文宽, 方佑龄, 张开诚等.高热稳定性锐钛矿型 TiO2 纳米粉体的制备[J].无机材料学报,1998, 13(4): 608-612.
    [24] 丁士文, 张绍岩, 刘树娟等. 水热合成纳米 ZnO 及其光催化性能研究[J].河北大学学报,2002, 22(3): 246-249.
    [25] 李志平, 刘雅洲, 赵辉等. 贵金属合金焊粉制造[J]. 贵金属, 2000, 21(1): 57-60
    [26] 卢寿慈著. 粉体加工技术[M]. 中国轻工业出版社, 北京, 1999
    [27] Hoffman A J, Carrraway E R, Hoffmann MR. Photocatalytic production of H2O2 and organic peroxides on qantum-sized semiconductor colloids [J]. Environ Sic Technol, 1994, 28(5): 776-785
    [28] Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase:Relationships between surface morphology and chemical behavior [J]. Applied Catalysis A, 2000, 200(2):275-283.
    [29] Serpone N, Texier I, Emeline A V, et al. Postirradation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/Water interface in the presence of prominent holscavengers [J]. J Photochem Photobiol A, 2000, 136(3): 145-152.
    [30] Torres J, March S C. Kinetics of the photoassisted catalytic oxidation of Pb (Ⅱ ) in TiO2 suspensions [J]. Chem.Engineer Sci, 1992, 47: 3857-3862
    [31] Takeda K, Fujiwara K. Characteristics on the determination of dissolved organic nitrogencompounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation [J]. Wat.Res, 1996, 30(2): 323-330
    [32] Aguado M A, Anderson M A, Hill C G. Degradation of formic acid over semiconducting membranes supported on glass effects of structure and electronic doping [J]. Solar Energy Mater.and Solar Cells, 1993, 28(4): 345-361
    [33] Wang Ch M, Heller A, Gerischer H. Palldadium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds [J]. J.Am.Chem.Soc, 1992, 114: 5230-2534
    [34] Hadjiivanov K, Vassileva E, Kantcheva M, et al. Ir spectroscopy study of silver ions adsorbed on titania (anatase) [J]. Mater.Chem.Phys, 1991, 28(4): 367-377
    [35] Kondo M M, Jardim W F. Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst [J]. Wat.Res, 1991, 25: 823-827
    [36] Alberci R M, Jardim W F. Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO2 in a slurry reactor [J]. Wat.Res, 1994, 28:1845-1849
    [37] Ileperuma O A, Tennakoon K, Dissanayake W D D P. Photocatalytic behavior of metal doped titanium dioxide. Studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems [J]. Appl.Catal, 1990, 62: L1-L5
    [38] Choi W Y, Termin A, Hoffmann M R. The Role of Metal Ion Dopants inQuantum-Sized TiO2: Correlation between Photoreactivity and Charge CarrierRecombination Dynamics [J]. J Phys. Chem, 1994, 98(51): 13669-13679
    [39] Gratzel M, Russell F H. Electron paramagnetic resonance studies of doped TiO2 colloids [J]. J Phys Chem, 1990, 94(6): 2566-2572
    [40] Linsebigler A, Rusu C. Absence of platinum enhancement of a photoreaction on TiO2-CO photooxidation on Pt/TiO2 (110) [J]. J Am.Chem Soc, 1996, 118: 5284-5289.
    [41] 鲁厚芳, 阎康平, 涂铭旌等. 影响染料敏化二氧化钛纳米晶太阳能电池的因素[J]. 现代化工, 2004 , 24(1): 16-19.
    [42] 邱炜, 陈爱平, 刘威等. 氧化钛光催化剂的光敏化研究进展[J]. 现代化工, 2004 , 24 (增刊 1): 43-46.
    [43] Vogel R, P Hoyer, H Weller. Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J].J Phys Chem, 1994, 98(12): 3183-3188
    [44] 一一獭升等著, 赵修建等译. 超微粒子导论[M]. 武汉工业大学出版社, 武汉, 1991, p.50.
    [45] 梁娟等主编. 催化剂新材料[M]. 化学工业出版社,北京,1990, p.52.
    [46] Pinnavaia T J. Intercalated clay catalysts [J]. Science, 1983,220: 365-371
    [47] Ena O, Bard A J. Photoredox Reactions at Semiconductor Particles Incorporated into Clays CdSand ZnS + CdS Mixtures in Colloidal Montmorillonite Suspensions [J]. J. Phys. Chem, 1986, 90: 301-306.
    [48] Yamanaka S, Nishihara T, Hattori M. A process comprising of intercalating titania between montmoril- lonite layers [J]. Mater. Chem. Phys, 1987, 17: 87-101.
    [49] Yoneyama H, Haga S. Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay [J]. J. Phys. Chem, 1989, 93: 4833-4837
    [50] Tennakone K, Bandana J. Photocatalytic activity of dye-sensitazed tin (IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites [J]. Appl.Catal. A: Gen, 2001, 208: 335-341.
    [51] Bedja I, Kamat P V. Capped semiconductor colloids: synthesis and photoelectronchemical behavior of TiO2-capped SnO2 nanocrystallites and its role in photocatalytic degradation of a textile azo dye [J]. J. Phys. Chem, 1995, 99: 9182-9188.
    [52] Song K Y, Park M K, Kwon Y T, et al. Preparation of transparent particulate MoO3/TiO2, and WO3/TiO2 films and their photocatalytic properties [J]. Chem. Mater. 2001, 13: 2349-2355
    [53] Pal B, Sharon M, Nogami G. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties [J]. Mater. Chem. Phys, 1999, 59: 254-261.
    [54] Yu J C, Lin J, Kwok R W M. Ti1-xZrxO2 solid solutions for the photocatalytic degradation of acetone in air [J]. J. Phys. Chem. B, 1998, 102(26): 5094-5098.
    [55] Matthews R W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide [J]. J Catal,1988,111: 264-272
    [56] 张茂林, 安太成, 胡晓洪等. 泡沫镍负载纳米 ZnO-SnO2 光催化降解三氯乙烯[J]. 环境科学学报, 2005, 25(2): 259-263
    [57] Wang R H, Xin J H Z, Y Y, et al. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites [J]. Applied surface science, 2004, 277: 312-317
    [58] 张敬畅, 李青, 曹维良. 超临界流体干燥法制备纳米 TiO2-ZnO 复合催化剂及其对苯酚降解的光催化性能[J]. 催化学报, 2003, 24(11): 831-834
    [59] 丁士文, 张绍岩, 刘淑娟等. 直接沉淀法制备纳米 ZnO 及其光催化性能[J]. 无机化学学报,2002, 18(10): 1015-1018
    [60] Wang C, Zhao J C, Wang X M, et al. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts [J]. Applied Catalysis B: Environmental, 2002, 39: 269-279
    [61] 岳林海, 周永秋. Ag/ZnO 光催化降解甲基对硫磷研究[J]. 环境污染与防治, 1998, 20(3): 5-8
    [62] 高俊敏, 郑泽根, 王琰. TiO2/ZnO 光催化降解四环素的研究[J]. 重庆环境科学, 2003, 25(1): 17-19
    [63] Moeller J, Reeh U. Degradation of Nonylphenol Ethoxylates (NPE) in Sewage Sludge andSource Separated Municipal Solid Waste Under Bench—Scale Composting Conditions [J]. Bull Environ Contam Toxical,2003,70(1):248-254
    [64] 程沧沧, 邓南圣, 吴峰等. 光电催化降解 10-壬基酚聚氧乙烯醚[J]. 中国环境科学, 2005, 25(3): 380-384
    [1] Abel M, Giger W, Koch M. Biotransformation of nonylphenol polyethoxylate surfactants by estuarine mixed bacterial cultures [J]. Wat. Res, 1994, 28(1): 1131-1142
    [2] Mcleese D W, Zitko V, Metcalfe C D, et al. Lethality of aminocarb and the components of aminocarb formulation to juvenlle atlantic salmon , marine invertebrates and a freshwater clam [J]. Chemosphere, 1980, 9 (2): 79-82.
    [3] Dorn P B, Salanitro J P, Evens S H. Assessing the aquatic hazard of some branched and linear nonionic surfactants by biodegadation and toxicity [J]. Environmental Toxicology and Chemistry, 1993, 12 (10): 1751-1762.
    [4] Hoffman M R, Martin S T, Choi W. Environmental applications of semiconductor photocatalysis [J]. Chem Rev, 1995, 95(1): 69-96
    [5] Jung K Y, Park S B. Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene [J]. Appl. Catal. B: Environ, 2000, 25(4): 249-256
    [6] Kamalasanan M N, Subhas C. Sol-gel synthesis of ZnO thin films [J]. Thin Solid Films , 1996 , 288: 112-115
    [7] Bonamali P, Maheshwar S. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process [J]. Materials Chemistry and Physics, 2002,76: 82-87
    [8] Kim K S, Kim H W. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition [J]. Physica B, 2003, 328: 368-371
    [9] Kiwamu S, Kazuhito K, Kunio A. Hydrothermal synthesis of ZnO nanocrystals using microreactor [J]. Materials Letters, 2004, 58: 3229-3231
    [10] 何秋星, 刘蕤, 杨华等. 微乳液法制备纳米 ZnO 粉体[J]. 甘肃工业大学学报, 2003, 29(3): 72-75
    [11] 张靖峰, 杜志平, 赵永红等. 纳米氧化锌光催化降解壬基酚聚氧乙烯醚[J]. 日用化学工业, 2007, 37(1): 16-19
    [12] Klug H P, Alexander L E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials [M]. New York. Wiley, 1974. 618.
    [13] Hidaka H, Ihara K, Fujita Y, et al. Photodegradation of surfactants IV: Photodegradation of non-ionic surfactants in aqueous titanium dioxide suspensions [J]. J.Photochem.Photobio.A: Chem, 1988, 42: 375-381.
    [14] 张立德, 牟季美著. 纳米材料和纳米结构[M]. 北京:科学出版社, 2001:147-148
    [1] 冯春波, 杜志平, 赵永红等. Au 改性纳米 TiO2材料对 NPE-10 光催化降解的活性[J]. 物理化学学报, 2006, 22(8): 953-957
    [2] Du Zh P, Feng Ch B, Zhao Y H, et al. Photodegradation of NPE-10 Surfactant by Au Doped Nano-TiO2. Article for the 16th International Sympsoum on Surfactant in Solution [C]. Seoul, Hanyang Univ, 2006
    [3] Chatterjee D. Photocatalytic reduction of hydrazine to ammonia catalysed by [RuIII(Edta)(H2O)]- complex in a Pt/TiO2 semiconductor particulate system[J]. J Mol Catal A, 2000, 154(1/2): 1-13
    [4] Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2 [J]. J Photochem Photobiol A, 1996, 96(1-3): 181-185
    [5] Sclafani A, Mozzanega M N, Pichat P. Effect of silver deposits on the photocatalytic activitv of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol [J]. J Photochem Photobiol A, 1991, 59(2): 181-189
    [6] 尤先锋, 陈锋, 张金龙等. 银促进的 TiO2 光催化降解甲基橙[J]. 催化学报, 2006, 27(3): 270-274
    [7] Carlos A K G, Fernando W, Sandra G M, et al. Semiconductor-assisted photodegradation of lignin, dye, and kraft e.uent by Ag-doped ZnO [J]. Chemosphere,2000, 40(4): 427-432
    [8] 井立强, 蔡伟民, 孙晓君等. Pd/ ZnO 和 Ag/ ZnO 复合纳米粒子的制备、表征及光催化活性[J]. 催化学报, 2002, 23(4): 336-340
    [9] Wang R H, Xin J H Zh, Yang Y, et al. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites [J]. Appl Surf Sci, 2004, 227(1-4): 312-317
    [10] 张靖峰, 杜志平, 赵永红等. 纳米 Ag/ZnO 光催化剂及其催化降解壬基酚聚氧乙烯醚[J]. 催化学报, 2007, 28(5): 457-462
    [11] Klug H P, Alexander L E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials [M]. New York. Wiley, 1974. 618.
    [12] Yu J G, Xiong J F, Cheng B, et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Appl Catal B, 2005, 60(3/4): 211-221
    [13] Yu J C, Yu J G, Ho W K, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem Mater, 2002, 14(9): 3808-3816
    [14] 辛柏福, 井立强, 任志宇等. 多价态共存的 Ag-TiO2 光催化剂的制备及光催化活性[J]. 化学学报, 2004, 62(12): 1110-1114
    [15] 任学昌, 史载锋, 孔令仁. TiO2 薄膜的 Ag 改性剂光催化活性[J]. 催化学报, 2006, 27(9): 815-822
    [16] Jing L Q, Xu Z L, Sun X J, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles [J]. Appl Surf Sci, 2001, 180(3/4): 308-314
    [17] Xin B F, Jing L Q, Ren Zh Y, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2 [J]. J Phys Chem B, 2005, 109(7): 2805-2809
    [18] 井立强, 李晓倩, 李姝丹等. 纳米 Au/TiO2 光催化剂的 XPS 和 SPS 研究[J]. 催化学报, 2005, 26(3): 189-193
    [19] Ilisz I, Laszlo Z, Dombi A. Investigation of the photodecomposition of phenol innear-UV-irradiated aqueous TiO2 suspensions I: Effect of charge-trapping species on the degradation kinetics [J]. Appl Catal A, 1999, 180(1-2): 25-33
    [20] Provenzano P L, Jindal G R, Sweet J R, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO, and SnO2 [J]. J. Lumin, 2001, 92: 297-305
    [21] Hagfeldt A, Graztel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev, 1995, 95: 49-68
    [22] Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of TiO2 on the photolytic degradation of phenol in aqueous dispersion [J]. J Phys Chem, 1990, 94(2): 829-832
    [23] Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphousanatase mixture of titanium(Ⅳ) oxide particles suspended in aqueous solutions [J]. J Phys Chem B, 1997, 101(19): 3746-3752
    [24] Bae E Y, Choi W Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light [J]. Environ Sci Technol, 2003, 37(1):147-152
    [25] Zhang F L, Zhao J C, Zang L,et al. Photoassisted degradation of dye pollutants in aqueous TiO2 dispersions under irradiation by visible light [J]. J Mol Catal A, 1997, 120(1-3): 173-178
    [1] Choi W, Termin A, Hoffmann M R. The role of metallic dopants in quantum-sized TiO2: correlation between photocareactivity and charge carrier recombination dynamics [J]. J Phys Chem, 1994, 98(51): 13669-13679
    [2] Navio J A, Colon G, Trillas M. Hetergeneous Photoca talysis Reactions of Nitrite Oxidation and Cr (Ⅳ) Reduction on Iron-Doped Titantia Prepared by the Wet ImpregnationMethod [J]. ApplCatal B, 1998, 16(2): 187-196
    [3] Yu J G, Zhao X J, Du J C, et al. Preparation,microstructure and photocatalytic activity of the porous TiO2 anatase coating by Sol-Gel processing[J]. J Sol-Gel Sci Technol, 2000, 17(2): 163-171
    [4] Kineri T, Mori M, Kadono K, et al. Preparation and Optical Properties of Gold-Dispersed BaTiO3 Thin Films [J]. J Ceram Soc Jpn, 1993, 101(12): 1340-1345
    [5] Litter M I, Navio J A. Photocatalytic properties of iron-doped titania semiconductors [J]. J Photochem Photobiol A, 1996, 98(3): 171-181
    [6] 水淼, 岳林海, 徐铸德. 几种制备方法的掺 Fe3+二氧化钛光催化特性[J]. 物理化学学报, 2001, 17(3): 282-285
    [7] 周磊, 刘昌, 赵文宽等. 液相沉积法制备光催化活性掺铁 TiO2 薄膜[J]. 催化学报, 2003, 24(5): 359-363
    [8] 张靖峰, 杜志平, 赵永红等. Fe3+改性纳米 ZnO 光催化降解壬基酚聚氧乙烯醚. 催化学报, 2007, 28(6): 561-566
    [9] Klug H P, Alexander L E, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials [M], Wiley, New York, 1974, p. 618.
    [10] Jiang H B, Gao L. Enhancing the UV inducing hydrophilicity. of TiO2 thin film by doping Fe ions [J]. Mater Chem Phys, 2002, 77(3): 878-881
    [11] Yu J G, Zhou M H, Yu H G, et al. Enhanced photoinduced super-hydrophilicity of the sol-gel-derived TiO2 thin films by Fe-doping [J]. Mater Chem Phys, 2006, 95(2-3): 193-196
    [12] 陈恒, 龙明策, 徐俊等. 可见光响应的氯掺杂 TiO2 的制备、表征及其光催化活性[J]. 催化学报, 2006, 27(10): 890-894
    [13] Jing L Q, Xu Z L, Sun X J, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles [J]. Appl Surf Sci, 2001, 180(3/4): 308-314
    [14] 井立强, 李晓倩, 李姝丹等. 纳米 Au/TiO2 光催化剂的 XPS 和 SPS 研究[J]. 催化学报, 2005, 26(3): 189-193
    [15] Long M C, Cai W M, Wang Z P, et al. Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped TiO2 [J]. Chem Phys Lett, 2006, 420(1-3): 71-76
    [16] Provenzano P L, Jindal G R, Sweet J R, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO, and SnO2 [J]. J. Lumin, 2001, 92: 297-305
    [17] Hagfeldt A, Graztel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev, 1995, 95: 49-68
    [18] Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of TiO2 on the photolytic degradation of phenol in aqueous dispersion [J]. J Phys Chem, 1990, 94(2): 829-832
    [19] Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphousanatase mixture of titanium(Ⅳ) oxide particles suspended in aqueous solutions [J]. J Phys Chem B, 1997, 101(19): 3746-3752
    [20] Crarp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide [J]. Progress Solid State Chemistry, 2004, 32(1-2): 33-177
    [21] Zhou M H, Yu J G, Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method [J]. J Hazardous Materials, 2006, 137 (3): 1838-1847
    [1] Gouvea C A K, Wypych F, Moreas S G, et al. Semiconductor-assisted Photocatalytic Degradation of Reactive Dyes in Aqueous Solution[J]. Chemosphere, 2000, 40(4): 433-438
    [2] 赵旭, 杨少风, 赵敬哲等. 氧化锌包覆超细二氧化钛的制备及其紫外屏蔽性能[J]. 高等化学学报, 2000, 21(11): 1617-1620
    [3] Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors [J]. J Photochem Photobiol A: Chem, 1995, 85(3): 247-255
    [4] Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids.22.Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles [J]. J Am Chem, 1987, 109: 6632-6635
    [5] Rabani J. Sandwich colloids of ZnO and ZnS in aqueous solutions [J]. J Phys Chem, 1989, 93: 7707-7713
    [6] Wang C, Zhao J C, Wang X M, et al. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts [J]. Applied Catalysis B: Environmental, 2002, 39(3): 269-279
    [7] 牟柏林, 侯天意, 霍丽娟等. 天然沸石负载 ZnO/SnO2 复合半导体的光催化活性[M]. 硅酸盐学报, 2005, 33(11): 1366-1370
    [8] 方丽梅, 李志杰, 刘春明等. 水热法制备 Fe3+改性的 SnO2 纳米颗粒[M]. 物理化学学报, 2006, 22(10):1212-1216
    [9] 王存, 王鹏, 徐柏庆. ZnO-SnO2 纳米复合氧化物光催化剂催化降解对硝基苯胺[M]. 催化学报, 2004, 25(12): 967-972
    [10] Klug H P, Alexander L E, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials [M]. New York, Wiley, 1974, p.618.
    [11] 柳清菊, 杨喜昆, 刘强等. TiO2/SnO2 复合薄膜的亲水性能研究[J]. 无机化学学报, 2003, 18(6): 1331-1336
    [12] 王静, 冯玉杰, 刘正乾. 稀土 Gd 掺杂对 SnO2电催化电极性能影响的研究[J]. 功能材料,2005, 36(6): 877-880
    [13] Jing L Q, Xu Z L, Sun X J, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles [J]. Appl Surf Sci, 2001, 180(3/4): 308-314
    [14] 井立强, 蔡伟民, 孙晓君等. Pd/ ZnO 和 Ag/ ZnO 复合纳米粒子的制备、表征及光催化活性[J]. 催化学报, 2002, 23(4): 336-340
    [15] 张光旭, 马沛生, 吴元欣等. 非均相催化一步合成碳酸二苯酯的研究(Ⅶ):Pd-Sn 催化剂失活及再生[J]. 催化学报, 2003, 24(11): 835-838
    [16] Ilisz I, Laszlo Z, Dombi A. Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I. Effect of charge-trapping species on the degradation kinetics [J]. Appl Catal A, 1999, 180(1-2): 25-33
    [17] 梅长松, 钟顺和. Cu/SnO2-TiO2 的结构、光吸收能力和催化反应性能[J]. 化学物理学报, 2005, 18(5): 821-826
    [18] Provenzano P L, Jindal G R, Sweet J R, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO, and SnO2 [J]. J. Lumin, 2001, 92(4): 297-305
    [19] Hagfeldt A, Graztel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev, 1995, 95: 49-68
    [20] Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of TiO2 on the photolytic degradation of phenol in aqueous dispersion [J]. J Phys Chem, 1990, 94(2): 829-832
    [21] Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphousanatase mixture of titanium(Ⅳ) oxide particles suspended in aqueous solutions [J]. J Phys Chem B, 1997, 101(19): 3746-3752
    [22] Li D, Haneda H. Synthesis of nitrogen-containing ZnO powers by pyrolysis and their visible photocatalysis in gas-phase acetaldehyde decomposition [J]. Photochem Photobiol, 2003, 155(1-3):177-178
    [23] Fu X Z, Clark L A, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2 [J]. Environ. Sci. Technol, 1996, 30: 647-653
    [24] Jung K Y, Park S B. Enhanced photoactivity of silica-embeded titanua particles preparaed by sol-gel process for the decomposition of trichroethelene [J]. Appl Catal B: Environ, 2000, 25: 249-256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700