城市污泥加热面阴极化干燥法的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥的减量化、稳定化、无害化和资源化是城市污泥处理与处置的基本原则和目标,而脱水和干燥是其基本的单元操作。在干燥过程中,污泥的粘附问题对干燥设备的运行效率和稳定性具有很大影响,特别对于间接式干燥过程,一直是工艺设计与操作中必须面对的问题。文章以污泥的粘壁问题为研究对象,分析了污泥性状与操作条件对其粘壁特性的影响,提出了加热面阴极化干燥方法并实验考察了其操作条件的影响,进一步利用分形与时间序列相关理论分析了其蒸发速度的变化规律,并通过数理模拟的方法分析了微观传质特性。
     污泥的性状和操作条件对其粘壁特性具有直接的影响,其中污泥含水率和有机粘性物含量及加热面温度尤其重要。在含水率高于60%时,随着含水率的降低,粘壁量增加,在含水率60%附近达到最大值,随后随着含水率的降低,粘壁量下降。另外,污泥中的有机粘性物含量与粘壁量也有直接的关系,有机粘性物质较多的未消化污泥的粘壁量大于其有机粘性物含量较少的消化污泥。在较常用的以热水或低压蒸汽加热的较低温度范围内,,随着温度增加污泥粘壁量降低,如120℃的加热面温度产生的粘壁量小于100℃时。
     实验考察了加热面阴极化干燥过程中操作条件的影响,当污泥饼厚度为10mm时,从粘壁量、干燥时间和电能消耗等方面综合而言,最佳的电压梯度为4-5V/cm,其电场电能的消耗为3.87 kWh/t。通过现象观察和分析可以认为加热面阴极化对粘壁的克服作用是由以下三种因素综合作用的结果,即电渗透作用改变了加热面处污泥的水份分布,加热面产生了负电位变化,电化学反应产生的气膜阻止了污泥的粘附。
     通过对污泥干燥时蒸发速度曲线的直接观察和功率谱分析可以证明其传质过程具有分形特性,利用变换法和Hausdorff维数计算法得到了其反应内部传质动力特性的分形维数,为理论分析提供了依据。通过R/S分析发现,蒸发速度时间序列属正相关序列,Hurst指数介于0.7~1.0之间。通过对污泥干燥过程的数理模拟分析进一步证实加热面阴极化干燥方法可以有效促进污泥内部水份的运动能力,对传质具有促进作用。
Volume reduction, stabilization, harmlessness and resourcefulness are the fundamental and object of urban sludge treatment and disposal. Dewatering and drying are the basic processes of them. But when the drying process is designed and operated, the problem about sludge adhesion has to be considered, because it can bring some bad effects to drying efficiency and stability, especially for indirect drying. This paper based on the problems of sludge adhesion to the dryer wall, analyzed the effects of sludge properties and working conditions on adhesion, gave and studied experimentally an application of a polarized electric field to reduce adhesion of a biological sludge to the dryer wall by contact drying of a sludge cake deposited on a heated metal plate serving as the cathode. Some theories about fractal and time series were used to analyze the variety of evaporation speed in sludge drying. A symbolic simulation was taken to analyze the microcosmic matter transfer.
     The sludge properties and working conditions directly affected the sludge-to-wall adhesion, especially including water contents, sticky organic matter and plate temperature. When the sludge contained water above 60% wb, the adhering intensity increased with the decreasing of water contents, and got to the maximum at around 60% wb. After that, it began to decrease following the moisture. The adhering intensities of indigested sludge with more sticky organic matter were more than the one of digested sludge. In the range of low temperatures which were applied on usual hot water or vapour drying, the sludge adhering intensities decreased with increase of plate temperature, for example, the plate temperature of 120℃made the adhering intensities more than the one of 100℃.
     The experiments were made to research the working conditions of sludge drying by applying a polarized electric field. The results showed, when sludge samples were 10mm thick, the voltage gradient of 4 to 5 V/cm was found to be optimal for adhering intensity, drying time and electric energy. Here, the electric energy consumption amounted to 3.87 kWh/t. By observing and analyzing, the reasons of reducing adhering intensity with a polarized electric field were thought to be following three results: the electro-osmosis changed the water distributing of sludge around the plate, the zeta potential of heat plate became negative, the gas generated owing to electrochemistry on the cathode wall stopped the sludge adhering to wall.
     The visual judgement and power spectral of drying speed were used to prove the fractal occurred during matter transfering. The methods of variety and hausdorff were used to calculate the dimensions that estimated or supported the kinetics of heat and matter transfer. The R/S analysis showed, the drying speed series belong to positive correlative series and its Hurst index existed between 0.7 and 1.0. The paper also gave a symbolic simulation that results showed applying polarized electric field could boost the water transfer of drying sludge.
引文
[1] 何品晶,顾国维,李笃中,等.城市污泥处理与利用[M].北京:科学出版社,2003,1-37
    [2] Peterson,R R. Meeting the challenges of the next century [J].Journal of Management in Engineering,1997,13(1):19-23
    [3] 赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002,211-244
    [4] 周立祥,沈其荣,陈同斌,等.重金属及养分元素中城市污泥主要组分中的分配及其化学形态[J].环境科学学报,2000,20(3):269-274
    [5] Couillard D,Zhu S. Bacterial leaching of heavy metals from sewage sludge for agricultural application [J].Water,Air and Soil Pollution,1992,63(1-2):67-80
    [6] 金儒林.污泥处置[M].北京:中国建筑工业出版社,1982,263-275
    [7] 姚刚.德国的污泥利用和处置(1) [J].城市环境与城市生态,2000,13(1):43-47
    [8] Diane Garvey,Carman Guarino,Robert Davis. Sludge disposal trends around the globe [J].Water Engineering &Management,1993,140(12):17-20
    [9] 李媛.焚烧工艺在污水厂污泥处理中的应用[J].中国环保产业,2004,(1):32-33
    [10] 张宁生,周强泰,芮新红.污泥的焚烧处理技术[J].能源研究与利用,2003,(1):35-37
    [11] 李美玉,李爱民,王志,等.发展我国污泥流化床焚烧技术[J].劳动安全与健康,2001,(18):20-23
    [12] 方建华,翟华,王雪青,等.污泥在循环流化床炉内的燃烧和污染排放特性[J].工程热物理学报,2001,22(3):370-373
    [13] G Minirmi,R Di Bartolo Zuccarello.A design model of sewage sludge incineration plants with energy recovery [J].Wat.Sci.Tech,1997,36(11):2l1-218
    [14] 谭铁鹏.城市固体废弃物及下水污泥的焚烧处理与废热利用[J].新疆环境保护,1995,17(2):37-42
    [15] Jan N,Michal K. Co-combustion of sludge with coal [J].Applied Energy,2003,75(3,4):239-248
    [16] J Werther,T Ogada.Co-combustion of sludge with coal [J].Progress in Energy and Combustion Science,1999,25(1):55-l16
    [17] 江刚.美国污水厂污泥焚烧装置面临更严格的排放限制[J].中国环境科学,1999,(6):509-512
    [18] 李爱民,曲艳丽,姚伟,等.污泥焚烧底灰中重金属残留特性的实验研究[J].环境污染治理技术与设备,2002,3(11):20-24
    [19] 张延,池涌,李建新,等.污泥焚烧过程中重金属排放特性试验研究[J].电站系统工程,2005,21(3):27-29
    [20] 郭媚兰,王逵,张青喜. 太原市污水污泥农业利用研究[J].农业环境保护,1993,12(6):258-262
    [21] 乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响[J].土壤,2000,32(2):79-85
    [22] 闫双堆,卜玉山,刘利军.城市污泥、垃圾复混肥对油菜产量及土壤肥力性状的影响[J].山西农业科学,2005,33(2):45-48
    [23] 李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000,31-73
    [24] 林兰稳,钟继洪,张国林,等.广州市污水污泥堆肥在环境绿化中的应用[J].生态环境,2006,15(5):974-978
    [25] 吕彦,马利民.快速堆肥对污泥中重金属的影响[J].东华理工学院学报(自然科学版),2005,28(1):30-33
    [26] 张增强,薛澄泽.施用污泥后一些树木和灌木的生长反应[J].西北农业大学学,1996,24(1):65-69
    [27] 李 南 生 . 剩 余 污 泥 用 于 粉 煤 灰 陶 粒 的 研 究 [J]. 硅 酸 盐 建 筑 制品,1993,(2):10-13
    [28] 刘莲香,张涛.污水处理厂污泥在建材生产中的综合应用[J].砖瓦,2004,(5):12—13
    [29] 童辉,刘丹,杨顺林,等.利用油田污泥烧结制作建筑材料的研究[J].武汉理工大学学报,2004,26(3):51-53
    [30] 龙腾锐,陈秋南,任伯帜.粉煤灰-粘土砖烧制过程处理城市污水污泥的试 验研究[J].环境科学学报,2003,23(3):414-416
    [31] Tay J H,龚辉. 污泥焚烧灰渣作为波特兰水泥混凝土填料[J].国外建材科技,1990,11(2):23-26
    [32] 王道江.利用活性污泥制造水处理吸附剂[J].环境污染与防治,1982,4(3):15
    [33] Chen Guohua,Po Lock Yue,Arun S Mujumdar. Sludge Dewatering and Drying[J].Drying Technology,2002,20(4&5):883-916.
    [34] Brashear G. S,Ward R L. Inactivation of indigenous viruses in raw sludge by air drying [J].Applied and Environmental Microbiology,1983,45(6):1943-1945
    [35] Cree C N L. The evolution of thermal drying as a sludge treatment process stage [A].Seminar on the Drying of sewage sludge[C]. Wakefield:1993
    [36] EPA. Process design manual for sludge treatment and disposal [Z]. Center for environmental research information technology transfer,USA:1979
    [37] Hirst G.. Drying sewage sludge at Halifax [Z]. Center for environmental research information technology transfer,USA:1979
    [38] Wiesman J. Zurich’s search for the ideal solution to sewage sludge disposal [J]. Water Quality Internation,1994(2):14-16
    [39] Boyles F. The vomm turbo-dryer system [A]. Seminar on the drying of sewage sludge [C]. Wakefield:1993
    [40] Smith M A B. The development of fluid beds for drying sewage sludge [A]. Seminar on the drying of sewage sludge [C]. Wakefield:1993
    [41] 蔡顺华,陈涛,范琼璋.水泥工业回转窑处理污泥方案的研究[J].新世纪水泥导报,2004,B11(增刊):65-68
    [42] Gruter H,Matter M,Oehlmann K H,et al. Drying of sewage sludge [J]. An important step in waste disposal.Water Science and Technology,1990,22(12):57-63
    [43] Ferrasse J H,Arlabosse P,Lecomte D. Heat,momentum and mass transfer measurements in indirect agitated sludge dryer [J].Drying Technology,2002,20(4&5):749-769
    [44] Kudra T. Sticky region in drying-definition and identification [J].Drying Technology,2003,21(8):1457-1469
    [45] Hasatani M,Kobayashi N,Li Z Y. Drying and dewatering R & D in Japan [J].Drying Technology,2001,19(7):1223-1251
    [46] 郭淑琴,孙孝然.几种国外城市污水处理厂污泥干化技术及设备介绍[J].给水排水,2004,130(16):34-37
    [47] Li Z Y,Chen G H. Drying of Sludge [M]. In Modern Drying Technologies. Pan Y K,Wang X Z,Liu X D,Eds. Beijing:Chemical Industry Press,2007,1-34
    [48] 朱南文,高廷耀,贾金平.污泥干化成套设备研制及其性能分析[J].中国给水排水,2001,17(3):16-19
    [49] Hasserbrauck Martin,Ermel Gerrit. Two examples of thermal drying of sewage [J].Water Science and Technology,1996,33(12):235-242
    [50] 李爱民,曲艳丽,陈满堂,等.污水污泥干燥特性的实验研究[J].燃烧科学与技术,2003,9(5):404-408
    [51] 邵立明,何品晶,胡龙,等.城市污水厂污泥间壁热干燥过程实验研究[J].重庆环境科学,2001,23(2):49-51
    [52] Vaxelaire J,Bongiovanni J M,Mousques P,Puiggali J R. Thermal drying of residual sludge[J].Water Research,2000,34(17):4318-4323
    [53] 李爱民,曲艳丽,杨子贤,等.水污泥干燥过程中表观形态变化及水分析出特性[J].化工学报,2004,55(6):1011-1015
    [54] Tao T,Peng X F,Lee D J. Thermal drying of wastewater sludge:Change in drying area owing to volume shrinkage and crack development[J].Drying Technology,2005,23(3):669-682
    [55] Chen J B,Peng X F,Tao T,et al. Thermal drying of wastewater sludge with crack formation [J]. Water Science and Technology,2004,50(9):177-182
    [56] Léonard A,Salmon T,Janssens O,et al. Kinetics modelling of convective heat drying of wastewater treatment sludge [A].Proceedings of the 2nd Congress of Chemical Engineering (ECCE2) [C].Montpellier,France:1999,5-7
    [57] Reyes A,Eckholt M,Troncoso F,et al. Drying kinetics of sludge from awastewater treatment plant [J].Drying Technology,2004,22(9):2135-2150
    [58] 林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995,152-191
    [59] 张济忠.分形[M].北京:清华大学出版社,2001,1-18
    [60] 张东晖,杨浩,施明恒.多孔介质分形模型的难点与探索[J].东南大学学报(自然科学版),2002,32(5):692-697
    [61] 施明恒,陈永平.多孔介质传热传质分形理论初析[J].南京师大学报(工程技术版 ),2001,1(1):6-12
    [62] 陶斌斌,杨历,刘春元.多孔介质干燥的非平衡热力学模型[J].河北工业大学学报,2005,34(1):109-112
    [63] 马晓彤.融合整体论与还原论的构想[J].清华大学学报(哲学社会科学版),2006,21(2):125-128
    [64] 张自杰,林荣忱,金儒霖.排水工程(下册)第四版[M].北京:中国建筑工业出版社,2000,1-11
    [65] Camacho P,Deleris S,Geaugey V,et al. A comparative study between mechanical,thermal and oxidative disintegration techniques of waste activated sludge [J].Water Science & Technology,2002,46(10):79-87
    [66] 程时远,李盛彪,黄世强.胶粘剂[M]. 北京:化学工业出版社,2001,263-271
    [67] 许景文.一种污泥脱水的新方法-电渗透脱水法[J].重庆环境科学,1990,12(6):45-49
    [68] Yuan C,Weng C H. Sludge dewatering by electrokinetic technique:Effect of processing time and potential gradient[J].Advances in Environmental Research,2003,7:727-732
    [69] Yoshida H,Kitajyo K,Nakayama M. Electroosmotic dewatering under A.C. electric field with periodic reversals of electrode polarity [J]. Drying Technology,1999,17(3):539-554
    [70] Barton W A,Miller S A,Veal C J. Electrodewatering of sewage sludges [J]. Drying Technology,1999,17(3):497-522
    [71] Zhou J,Liu Z,She P,et al. Water removal from sludge in a horizontal electric field [J]. Drying Technology,2001,19(3&4):627-638
    [72] 李克亚.加热面电极电位对污泥干化过程影响的研究[D].天津:天津大学,2006
    [73] 裴玉龙,李洪萍.快速路交通流时间序列分形维数研究[J].公路交通科技,2006,23(2):115-119
    [74] 唐依民,肖江,杨喜陶,等.矿井涌水量时间序列的多重分形维数谱计算[J].煤炭学报,2001,26(4):394-398
    [75] 许俊奇. 地震发生的时间序列分析[J].华南地震,1994,14(1):33-37
    [76] 陈军飞. 股价指数时间序列的分形性质分析[J].经济数学,2000,17(1):25-30
    [77] 曾文曲,刘世耀. 分形几何——数学基础及应用[M].沈阳:东北大学出版社,1991,10-11
    [78] 王东生,曹磊. 混沌、分形及其应用[M].合肥:中国科技大学出版社,1995,1-5
    [79] 吕金虎,陆君安,陈士华. 混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002,46-57
    [80].Oppenheim V,Schafer R W. Digital Signal Processing[M].Englewood Cliffs,New Jersey:Prentice-Hall,Inc.,1975
    [81] Carlos Sevcik. A procedure to Estimate the Fractal Dimension of Waveforms [J]. Complexcity international,1998,5(7):17-21
    [82] 孙霞,吴自勤,黄畇.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003,46-47
    [83] 屈世显,张建华.复杂系统的分形理论与应用[M].西安:陕西人民出版社,1996,341-345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700