磁性薄膜/多层膜中的交换偏置及其热稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于磁性薄膜/多层膜的磁电子器件或磁敏感单元的可靠性和使用寿命受到材料热磁稳定性的制约。近年来,国内外众多学者针对磁性薄膜/多层膜中的交换偏置及其热磁稳定性开展了卓有成效的研究工作。本文通过XRD、XRR、AFM、HRTEM、STEM以及VSM等分析测试手段,系统研究了基于CoFe/IrMn的磁性隧道结多层膜中的交换偏置及其热磁稳定性,探讨了Ga~+离子辐照对磁性隧道结中的交换偏置场热稳定性的影响。此外,还对新型功能材料BiFeO_3/NiFe双层膜和Ni_(50)Mn_(37)In_(13)薄膜中的交换偏置及其热磁稳定性作了初步探索。研究结果表明:
     磁场退火处理能够提高磁性隧道结多层膜的热稳定性。通过磁场退火处理可增大多层膜中反铁磁层的单轴各向异性,使得多层膜中的交换偏置场H_(ex)~p增大,弛豫时间τD变大。在负饱和场中等待的过程中,被钉扎层的磁滞回线向正场方向移动,交换偏置场H_(ex)~p随等待时间单调减小;随着测量温度T_m的升高,多层膜中的交换偏置场H_(ex)~p单调下降;在多个温度下进行负饱和场等待过程中,磁滞回线均向正场方向移动,交换偏置场H_(ex)~p不仅单调减小,且随温度升高减小的速度加快。
     经1×1013ion·cm~(-2)剂量Ga~+离子辐照后,磁性隧道结多层膜中的交换偏置场H_(ex)~p明显变大,而经6×1013ion·cm~(-2)剂量和3×1014ion·cm~(-2)剂量的Ga~+辐照后,H_(ex)~p则显著减小。随着辐照剂量的增大,磁性多层膜的结构损伤效应将起着主要的影响。另外,大剂量的Ga~+离子辐照可明显抑制热激活磁化反转;而低剂量的Ga~+离子辐照有利于热激活磁化反转。Ga~+离子辐照后,随着在负饱和场中停留时间的增加,H_(ex)~p呈单调减小趋势,且在负饱和场中停留的初期,H_(ex)~p的减小速率较快,但随后逐渐减慢。
     磁场诱导生长的BiFeO_3/NiFe双层膜呈现出显著的面内磁单向各向异性,并产生交换偏置效应。BiFeO_3/NiFe双层膜的交换偏置场H_(ex)未表现出显著的磁练习效应。在负场等待过程中,BiFeO_3/NiFe双层膜磁滞回线的前支和后支曲线都随着在负饱和磁场中等待时间的增加向正场方向偏移。交换偏置场H_(ex)的大小随着等待时间的增加而减小,矫顽力基本不变。交换偏置场H_(ex)的大小随测量温度T_m的升高变化不明显,也就是说交换偏置场H_(ex)大小对温度不敏感,呈现出良好的热稳定性;但矫顽力H_c随T_m的升高而显著减小。良好的热稳定性可能来源于铁电性和反铁磁性间的耦合作用。
     场冷后的Ni_(50)Mn_(37)In_(13)薄膜在低温下表现出了一定的交换偏置现象。在特征温度Tf以下,合金处于超自旋玻璃SSG态,场冷后出现了从自旋玻璃态SSG向磁有序的超铁磁SFM结构的变化,SFM结构中的SFM团簇与反铁磁基体构成了铁磁/反铁磁耦合,从而导致了交换偏置的产生。Ni_(50)Mn_(37)In_(13)薄膜交换偏置场H_(ex)未表现出明显的磁练习效应。在负场等待过程中,Ni_(50)Mn_(37)In_(13)薄膜磁滞回线的前支和后支曲线都随着在负场中等待时间的增加向正场方向偏移,交换偏置场H_(ex)的大小随着等待时间的增加而减小,矫顽力基本不变。交换偏置场H_(ex)大小随测量温度T_m的升高急剧减小,矫顽力H_c大小随T_m的升高也呈快速减小趋势,但和交换偏置场H_(ex)相比,矫顽力H_c减小趋势则稍弱。场冷后的Ni_(50)Mn_(37)In_(13)薄膜中交换偏置场较差的热磁稳定性说明交换偏置的热稳定性更多地受界面磁结构的影响。
Reliability and service life of magnetic-electronic devices or magnetic-sensitive units based onthe magnetic thin films/multilayers are restricted by the thermal stability of the materials. Recently,many studies have been focused on the thermal stability of the exchange bias in the magnetic thinfilms/multilayers. In this thesis, the exchange bias field and its thermal stability ofIr_(20)Mn_(80)/Co_(7)5Fe_(25)/AlO_x/Co_(75)Fe_(25)magnetic tunnel junction (MTJ) multilayer have been investigatedby XRD, XRR, AFM, HRTEM, STEM and VSM. The effect of Ga~+ion irradiation on the thermalstability of the magnetic tunnel junction multilayer has also been studied. In addition, the exchangebias and their thermal stability of the novel functional materials, e.g. Ni_(50)Mn_(37)In_(13)film andBiFeO_3/NiFe bilayer, have also been investigated.
     The thermal stability of the MTJ multilayer can be improved after annealing in a magnetic field.The exchange bias field (H_(ex)~p) in the pinned ferromagnetic layer increases and the relaxation time (τD)prolongs due to the enhancement of unidirectional anisotropy of antiferromagnetic layer in MTJ afterannealing. The relaxation effect appears in the pinned ferromagnetic layer while holding the films in anegative saturation field; that is, the hysteresis loop shifts to the positive field direction and theexchange bias field H_(ex)~pmonotonously decreases with the waiting time increasing. The exchange biasfield H_(ex)~pdecreases with the increase of the temperature T_m. While holding in the negative saturationfield at higher temperature the hysteresis loop shifts to the positive field direction and the exchangebias field H_(ex)~preduces more rapidly.
     The exchange bias field H_(ex)~pincrease markably after Ga~+ion irradiation with a dose of1×1013ion·cm~(-2); however, the H_(ex)~pdecrease obviously after Ga~+ion irradiation with doses of6×1013ion·cm~(-2)and3×1014ion·cm~(-2). With the irradiation dose increasing, the microstructure damage will play a majorrole, which leads to the mixing of interfacial atoms. Moreover, large doses of Ga~+ion irradiation cansignificantly suppress the thermally activated magnetization reversal; and low dose of Ga~+ionirradiation is conducive to thermally activated magnetization reversal. The exchange bias field H_(ex)~preduces monotonously with the time holding the film at a negative saturation field. The decrease rateof the exchange bias field H_(ex)~pis fast at the initial stages; however, it gradually slows downsubsequently.
     The BiFeO_3/NiFe bilayer sputtered in an electromagnetic field presents an in-plane uniaxialmagnetic anisotropy and show a significant exchange bias effect. The exchange bias field H_(ex)in the BiFeO_3/NiFe bilayer does not show a visible training effect. The forward and recoil loop shiftstowards positive fields while holding the film in a negative saturation field. The H_(ex)decreasesmonotonously with the increase of the holding time (tsat), whereas the H_cis almost the same. The H_(ex)will not alter significantly with the increase of the temperature T_m,which means that the H_(ex)is notsensitive to the temperature, showing a good thermal stability. However, the H_creduce rapidly withthe increase of the temperature T_m. We believe that the good thermal stability may result from thecoupling between ferroelectric and antiferromagnetic moments in BiFeO_3.
     Exchange bias can be found in the field cooled Ni_(50)Mn_(37)In_(13)film at low temperature. Below thecharacteristic temperature Tf, the alloy presents a super spin glass (SSG) state when cooled in theabsence of a magnetic field; however, it will transform to the super ferromagnetic (SFM) structureafter magnetic field cooled. The SFM clusters in the SFM structure are coupled with theantiferromagnetic matrix, resulting in the exchange bias. The exchange bias field H_(ex)in theNi_(50)Mn_(37)In_(13)film does not show a significant training effect. The forward and recoil loop shiftstowards positive fields while holding the film in a negative field. The H_(ex)decreases monotonouslywith the increase of the holding time, whereas coercivity is essentially the same. Although the H_(ex)andH_creduce rapidly with the increase of the measuring temperature T_m, the decrease extent of the H_cisweaker than that of the H_(ex). The thermal stability of the field cooled Ni_(50)Mn_(37)In_(13)film is poor,indicating that the thermal stability is more affected by the magnetic structure at the interface.
引文
[1] Baibich M N, Broto J M, Fert A. Giant Magnetoresistance of (001)Fe/(001)Cr MagneticSuperlattices [J]. Physical Review Letters,1988,61(21):2472-2475.
    [2] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magneticstructures with antiferromagnetic interlayer exchange [J]. Physical Review B,1989,39(7):4828-4830.
    [3]韩秀峰,刘东屏,温振超.从物理发现到成功应用—兼谈2007年度诺贝尔物理学奖授予巨磁电阻效应发现者[J].科技导报,2007,25(24):17-24.
    [4] Julliere M. Tunneling between ferromagnetic films [J]. Physics Letters A,1975,54(3):225-226.
    [5] Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junctions [J]. Journal ofMagnatism and Magnetic Material,1995,139: L231-L234.
    [6] Lenssen K M H, Van Kesteren H W, Rijks T G S M, et al. Giant magnetoresistance and itsapplication in recording heads [J]. Sensors and Actuators A,1997,60:90-97.
    [7] Coehoorn R, Kools J C S, Rijks T G S M, et al. Giant Magnetoresistance materials for read heads [J].Philips Journal of Research,1998,51(1):93-124.
    [8] Victora R H, Chen Xi. Predicted effects of pinhole and surface roughness in magnetoresistive readhead [J]. IEEE Transactions on Magnetics,2010,46(3):702-708.
    [9] Lee K, Kang S H. Design consideration of magnetic tunnel junctions for reliable high-temperatureoperation of STT-MRAM [J]. IEEE Transactions on Magnetics,2010,46(6):1537-1540.
    [10] Cao J, Freitas P P. Wheatstone bridge sensor composed of linear MgO magnetic tunnel junctions [J].Journal of Applied Physics,2010,107(9):09E712.
    [11] Meiklejohn W H, Bean C P. New Magnetic Anisotropy [J]. Physical Review,1956,102(5):1413-1414.
    [12] Malozemoff A P. Random-field model of exchange anisotropy at rough ferromagneticantiferromagnetic interfaces [J]. Physical Review B,1987,35(7):3679-3682.
    [13] Fernandez-Outon L E, Vallejo-Fernandez G, Manzoor S, et al. Interfacial spin order in exchangebiased systems [J]. Journal of Applied Physics,2008,104(9):093907.
    [14] Nogués J, Schuller I K. Exchange bias [J]. Journal of Magnetism and Magnetic Materials,1999,192:203-232.
    [15]代波,蔡建旺,赖武彦. Ni81Fe19/Ni100-xMnx双层膜的交换偏置对Ni100-xMnx层Mn成分和厚度的依赖[J].物理学报,2003,52(2):478-482.
    [16]周仕明,李合印,袁淑娟,等.铁磁/反铁磁双层膜中交换偏置[J].物理学进展,2003,23(1):62-81.
    [17]袁淑娟.层状膜和多层膜的磁性和磁弛豫研究[D].复旦大学博士学位论文,2004.
    [18] Nagai H, Ueno M, Hikami F, et al. Thermal stability of pinned layer in PtMn based syntheticspin-valve [J]. IEEE Transactions on Magnetics,1999,35(5):2964-2966.
    [19] Jungblut R, Coehoorn R, Johnson M T, et al. Orientational dependence of the exchange biasing inmolecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50bilayers (invited)[J]. Journal of Applied Physics,1994,75(10):6659-6664.
    [20] Zhang S, Dimitrov D V, Hadjipanayis G C, et al. Coercivity induced by random field atferromagnetic and antiferromagnetic interfaces [J]. Journal of Magnetism and Magnetic Materials,1999,198-199:468-470.
    [21] Tsang C, Heiman N, Lee K. Exchange induced unidirectional anisotropy at FeMn-Ni80Fe20interfaces[J]. Journal of Applied Physics,1981,52(3):2471-2473.
    [22] Van Driel J, De Boer F R, Lenssen K M H, et al. Exchange biasing by Ir19Mn81: Dependence ontemperature, microstructure and antiferromagnetic layer thickness [J]. Journal of Applied Physics,2000,88(2):975-982.
    [23] Imakita K, Tsunoda M, Takahashi M. Thickness dependence of exchange anisotropy ofpolycrystalline Mn3Ir/Co-Fe bilayers [J]. Journal of Applied Physics,2005,97(10):10K106.
    [24] Choi Y S, Petford-Long A K, Ward R C C. Epitaxial PtMn/NiFe exchange-biased bilayerscontaining directly deposited ordered PtMn [J]. Journal of Applied Physics,2005,97(10):10C512.
    [25] Kume T, Yamato T, Kato T, et al. Thickness dependence of exchange anisotropy for (001) orientedMn89Pt11/NiFe and Mn80Ir20/NiFe bilayers [J]. Journal of Magnetism and Magnetic Materials,2007,310(2):2298-2300.
    [26] G kemeijer N J, Penn R L, Veblen D R, et al. Exchange coupling in epitaxial CoO/NiFe bilayers withcompensated and uncompensated interfacial spin structures [J]. Physical Review B,2001,63(17):174422.
    [27] Burkett S L, Kora S, Lusth J C, et al. Annealing of spin valves with high exchange pinning fields [J].IEEE Transactions on Magnetics,1997,33(5):3544-3546.
    [28] Pakala M, Huai Y, Anderson G, et al. Effect of underlayer roughness, grain size, and crystal texture onexchange coupled IrMn/CoFe thin films [J]. Journal of Applied Physics,2000,87(9):6653-6655.
    [29] Lee H K, Okabe Y. Exchange bias with interacting random antiferromagnetic grains [J]. PhysicalReview B,2006,73(14):140403.
    [30] Manzoor S, Vopsaroiu M, Vallejo-Fernandez G, et al. Grain-size effects in exchange-biasedFeMn/NiFe bilayers [J]. Journal of Applied Physics,2005,97(10):10K118.
    [31] Bai Y H, Yun G H. Exchange bias for ferromagnetic/antiferromagnetic bilayers with the uniaxialanisotropy being misaligned with the exchange anisotropy [J]. Science in China Series G: PhysicsMechanics and Astronomy,2008,52(12):1885-1892.
    [32] Hu H N, Qiu X P, Shi Z, et al. Exchange bias in NiFe/granular-FeMn–MgO bilayers [J]. AppliedPhysics Letters,2008,93(12):122503.
    [33] Nogues J, Moran T J, Lederman D, et al. Role of interfacial sturcture on exchange-biased FeF2-Fe [J].Physical Review B,1999,59(10):6984-6993.
    [34] Moran T J, Gallego J M, Schuller I K. Increased exchange anisotropy due to disorder atpermalloy/CoO interfaces [J]. Journal of Applied Physics,1995,78(3):1887-1891.
    [35] Nogue′s J, Moran T J, Lederman D, et al. Role of interfacial structure on exchange-biased FeF2-Fe[J].Physical Review B,1999,59(10):6984-6993.
    [36] Han D H, Zhu J G, Judy J H. NiFe/NiO bilayers with high exchange coupling and low coercive field[J]. Journal of Applied Physics,1997,81(8):4996-4998.
    [37] Lee Y W, Hong s, Kim C G, et al. Asymmetric exchange bias in NiFe/FeMn/NiFe multilayer films [J].Journal of Magnetism and Magnetic Materials,2004,272-276: e943-e944.
    [38] Nascimento V P, Passamani E C, Alvarenga A D, et al. Influence of the roughness on the exchangebias effect of NiFe/FeMn/NiFe trilayers [J]. Journal of Magnetism and Magnetic Materials,2008,320:e272-e274.
    [39] Kim J V, Stamps R L, McGrath B V, et al. Angular dependence and interfacial roughness inexchange-biased ferromagnetic/antiferromagnetic bilayers [J]. Physical Review B,2000,61(13):8888-8894.
    [40] Kim J V, Stamps R L. Defect-Modified exchange bias [J]. Applied Physics Letters,2001,79(17):2785-2787.
    [41] Hwang D G, Lee S S, Park C M. Effect of roughness slope on exchange biasing in NiO spin valves[J].Applied Physics Letters,1998,72(17):2162-2164.
    [42] Takano K, Kodama R H, Berkowize A E, et al. Interfacial uncompensated antiferromagnetic spins:role in unidirctional anisotropy in polycrystalline Ni81Fe19/CoO bilayers [J]. Physical Review Letters,1997,79(6):1130-1133.
    [43] Choo D, Chantrell R W, Lamberton R, et al. A model of the magnetic properties of coupledferromagnetic/antiferromagnetic bilayers [J]. Journal of Applied Physics,2007,101(9):09E521.
    [44] Nogues J, Lederman D, Moran T J, et al. Positive exchange bias in FeF2-Fe Bilayers [J]. PhysicalReview Letters,1996,76(24):4624-4627.
    [45] Feng F Y, Chien C L. Spiraling spin structure in an exchange-coupled antiferromagnetic layer [J].Physical Review Letters,2000,85(12):2597-2600.
    [46] Ambrose T, Chien C L. Dependence of exchange coupling on antiferromagnetic layer thickness inNiFe/CoO bilayers [J]. Journal of Applied Physics,1998,83(11):6822-6824.
    [47] Parker F T, Takano K, Berkowitz A E. Exchange coupling mechanisms at ferromagnetic/CoOinterfaces [J]. Physical Review B,2000,61(2): R866-R869.
    [48] Fuke H N, Saito K, Kamiguchi Y, et al. Spin-valve giant magnetoresistive films withantiferromagnetic Ir-Mn layers [J]. Journal of Applied Physics,1997,81(8):4004-4006.
    [49] Macedo W A A, Sahoo B, Kuncser V, et al. Changes in ferromagnetic spin structure induced byexchange bias in Fe/MnF2films [J]. Physical Review B,2004,70(22):224414-4.
    [50] Kiwi M, Mejia-Lopez J, Portugal R D, et al. Exchange-bias systems with compensated interfaces [J].Applied Physics Letters,1999,75(25):3995-3997.
    [51] Kiwi M, Mejia-Lopez J, Portugal R D, et al. Positive exchange bias model: Fe/FeF2and Fe/MnF2bilayers [J]. Solid State Communicatioins,2000,116(6):315-319.
    [52] Chai C L, Teng J, Yu G H, et al. Effects of annealing on properties of spin-valve pinned with FeMnalloy [J]. Acta Physica Sinica,2002,51(8):1846-1850.
    [53] Yoshiyuki F, Kenichi S, Atsushi K, et al. High thermal stability of magnetic tunnel junctions withoxide diffusion barrier layers [J]. Applied Physics Letters,2004,84(2):233-235.
    [54] Li F F, Sharif R, Jiang L X, et al. Thermsl stability of Ir-Mn/Co-Fe-B/Al-O/Co-Fe-B tunnel junctiongs[J]. Journal of Applied Physics,2005,98(11):113710.
    [55] Li Y F, Xiao J Q, Dimitrov D V. Exchange bias in standard spin valves after different thermalprocesses [J]. Journal of Applied Physics,2002,91(10):7227-7229.
    [56] Schlenker P C, Paccard D. Couplages ferromagnetiques-antiferromagnetiques: etude des contractionsde cycles dhysteresis a laide dun traceur de cycle tres basses frequences [J]. Journal de PhysiqueArchives,1967,28(7):611-616.
    [57] Brems S, Buntinx D, Temst K, et al. Reversing the training effect in exchange biased CoO/Cobilayers [J]. Physical Review Letter,2005,95(15):157202.
    [58] Fulcomer E, Charap S H. Temperature and frequency dependence of exchange anisotropy effects inoxidized NiFe films [J]. Journal of Applied Physics,1972,43(10):4184-4190.
    [59] Amitesh P, Stefan M. Microscopic origin of training in exchange bias system [J]. Applied PhysicsLetters,2009,95(9):092501.
    [60] Zhang J, Du J, Bai X J, et al. Training effect and hysteretic behavior of angular dependence ofexchange bias in Co/IrMn bilayers [J]. Chinese Physics Letters,2009,26(4):047501.
    [61] Chan M K, Parker J S, Crowell P A, et al. Identification and separation of two distinct contributions tothe training effect in polycrystalline Co/FeMn bilayers [J]. Physical Review B,2008,77(1):014420.
    [62] Hoffmann A. Symmetry driven irreversibilities at ferromagnetic interfaces [J]. Physical ReviewLetters,2004,93(9):097203.
    [63] Binek C, He X, Polisetty S. Temperature dependence of the training effect in a Co/CoO exchange-biaslayer [J]. Physical Review B,2005,72(5):054408.
    [64] Binek C. Training of the exchange-bias effect: A simple analytic approach [J]. Physical Review B,2004,70(1):014421-5.
    [65] Sahoo S, Polisetty S, Binek C, et al. Dynamic enhancement of the exchange bias training effect [J].Journal of Applied Physics,2007,101(5):053902-5.
    [66] Xi H, Franzen S, White R M, et al. Characterization and analysis of the training effect of exchangebias in coupled NiFe/IrMn bilayers [J]. Journal of Applied Physics,2007,101(9):09E513-4.
    [67] Lee C G, Jung J G, McMichael R D, et al. Structural, magnetic, and thermal stability of IrMnexchange biased layers [J]. Journal of Applied Physics,2002,91(10):8566-8568.
    [68] Mao S N, Gao Z. Characterization of magnetic and thermal stability of PtMn spin valves [J]. IEEETransactions on Magnetics,2000,36(5):2860-2862.
    [69] Kaltofen R, Monch I, Schumann J, et al. Magnetotransport properties and thermal stability ofmagnetic tunnel junctions with wave resonance plasma oxidized barrier [J]. Journal of Magnetism andMagnetic Materials,2005,290,1146-1149.
    [70] Hung C Y, Mao M, Funada S, et al. Exchange biasing and thermal stability of CoFe/PtPdMn films [J].Journal of Applied Physics,2000,87(9):4915-4917.
    [71] Jeong H D, Lee J H, Yoon C S, et al. Thermal stability of the exchange-biased NiFe/IrMn/CoFeelectrode in the magnetic tunnel junctions [J]. Applied Surface Science,2002,199(1-4):6-10.
    [72] Vallejo-Fernandez G, Fernandez-outon L E, O’Grady K. Thermal activation of bulk and interfacialorder in exchange biased systems [J]. Journal of Applied Physics,2008,103(7):07C101.
    [73] Wang Y G, Petford-Long A K. Magnetization reversal of the ferromagnetic layer in IrMn/CoFebilayers [J]. Journal of Applied Physics,2002,92(11):6699-6707.
    [74] Sang H, Du Y W, Chien C L. Exchange coupling in Fe50Mn50/Ni81Fe19bilayer: Dependence onantiferromagnetic layer thickness [J]. Journal of Applied Physics,1999,85(8):4931-4933.
    [75] Devasahayam A J, Kryder M H. The dependence of the antiferromagnet/ferromagnet blockingtemperature on antiferromagnet thickness and deposition conditions [J]. Journal of Applied Physics,1999,85(8):5519-5521.
    [76] Zhou G H, Qi X J, Chen J, et al. The thermal decay in the IrMn-based spin valve [J]. Journal ofPhysics: Conference Series,2009,152(1):012037.
    [77] Su C H, Lo S C, Lin K W, et al. Modulating nanomagnetism in Ni80Fe20/(Ni, Fe)O thin films bytuning the interfacial microstructure using ion bombardment [J]. Journal of Applied Physics,2009,105(3):033904.
    [78] Cai J W, Ambrose T, Chien C L.Exchange coupling in the paramagnetic state [J]. Physical Review B,1999,60(1):72-75.
    [79] Van der Heijden P A A, Mass T F M M, Kool J C S, et al. Influences on relaxation of exchangebiasing in NiO/Ni66Co18Fe16bilayers [J]. Journal of Applied Physics,1998,83(11):7207-7209.
    [80] Hughes T, Laidler H, O’Grady K. Thermal activation of magnetization reversal in spin-valve systems[J]. Journal of Applied Physics,2001,89(10):5585-5591.
    [81] Hughes T, O’Grady K, Laidler H, et al. Thermal activation in exchange biased bilayers [J]. Journal ofMagnetism and Magnetic Material,2001,235:329-336.
    [82]柴春林,滕蛟,于广华,等.退火对FeMn钉扎自旋阀性质的影响[J].物理学报,2002,51(8):1846-1850.
    [83] Ma Q L, Feng J F, Feng G, et al. Annealing effect on tunneling magnetoresistance in MgO-basedmagnetic tunnel junctions with FeMn exchange-bias layer [J]. Journal of Magnatism and MagneticMaterial,2010,322(1):108-111.
    [84] Meiklejohn W H, Bean C P. New Magnetic Anisotropy [J]. Physical Review,1957,105(3):904-913
    [85] Meiklejohn W H. Exchange Anisotropy-A Review [J]. Journal of Applied Physics,1962,33(3):1328-1335.
    [86] Tsunoda M. Systematic Study for Magnetization Dependence of Exchange Anisotropy Strength inMn-Ir/FM (FM Ni-Co, Co-Fe, Fe-Ni) Bilayer System [J]. IEEE Transactions on Magnetics,2009,45(10):3877-3880.
    [87] Mauri D, Siegmann H C, Bagus P S, et al. Simple model for thin ferromagnetic films exchangecoupled to an antiferromagnetic substrate [J]. Journal of Applied Physics,1987,62(7):3047-3049.
    [88] Malozemoff A P. Mechanisms of exchange anisotropy (invited)[J]. Journal of Applied Physics,1988,63(8):3874-3879.
    [89] Malozemoff A P. Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy [J].Physical Review B,1988,37(13):7673-7679.
    [90] Berkowitz A E, Takano K J. Exchange anisotropy–A reciew [J]. Journal of Magnetism and MagneticMaterials,1999,200:552-570.
    [91] Koon N C. Calculations of Exchange Bias in Thin Films with Ferromagnetic/AntiferromagneticInterfaces [J]. Physical Review Letters,1997,78(25):4865-4868.
    [92] Parkin S S P, York B R. Influence of deposition temperature on giant magnetoresistance of Fe/Crmultilayers [J]. Applied Physics Letters,1993,62(15):1842-1844.
    [93] White R L. Giant magnetoresistance: A primer [J]. IEEE Transactions on Magnetics,1992,28(5):2482-2487.
    [94]都有为,自旋电子学功能材料进展[J].世界科技研究与发展,2006,28(4):1-6.
    [95] Devasahayam A J, Sides P J, Kryder M H. Magnetic, temperature, and corrosion properties of theNiFe/IrMn exchange couple [J]. Journal of Applied Physics,1998,83(11):7216-7218.
    [96] Toney MF, Tsang C, Howard J K. Thermal annealing study of exchang biased NiFe-FeMn films [J].Journal of Applied Physics,1991,70(10):6227-6229.
    [97] Devasahayam A J, Kryder M H. A study of the NiFe/NiMn exchange couple [J]. IEEE Transactionson Magnetics,1996,32(5):4654-4656.
    [98] Xi H W, Bian B, Laughlin D E, et al. Exchange biasing in sputtered NiFe/PtMn bilayers [J]. Journalof Applied Physics,2000,87(9):4918-4920.
    [99]程遥,徐小龙,李燕飞. Ni80Fe20/Al2O3/Ni80Fe20磁性隧道结中间绝缘层同TMR关系的研究[J].哈尔滨师范大学自然科学学报,2004,20(1):38-40.
    [100] Popova E, Faure-Vincent J, Tiusan C, et al. Epitaxial MgO layer for low-resistance and coupling-freemagnetic tunnel junctions [J]. Applied Physics Letters,2002,81(6):1035-1037.
    [101] Mitani S, Moriyama T, Takanashi K. Fe/MgO/FeCo(100) epitaxial magnetic tunnel junctionsprepared by using in situ plasma oxidation [J]. Journal of Applied Physics,2003,93(10):8041-8043.
    [102]徐祖耀,金学军.形状记忆材料的新进展[J].功能材料,2004,35:6-12.
    [103] Moffet M, Clark A, Wun-Fogle M, et al. Characterization of Terfenol-D formagnetostrictivetransducers [J]. Journal of the Acoustical Society of America,1991,89(3):1448-55.
    [104] O'Handley R C, Allen S M. Ferromagnetic shape memory materials [M]. Encyclopedia of SmartMaterials, John Wiley and Sons, New York,2001.
    [105]蒋成保,王敬民,徐惠彬.磁性形状记忆合金研究进展[J].中国材料进展,2011,(9):42-50.
    [106] Rumpf H, Craciunescu C M, Modrowc H, et al. Successive occurrence of ferromagnetic and shapememory properties during crystallization of NiMnGa freestanding films [J]. Journal of Magnetismand Magnetic Materials,2006,302:421-428.
    [107] Ito W, Imano Y, Kainuma R, et al. Martensitic and Magnetic Transformation Behaviors inHeusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys [J]. Metallurgical andMaterials Transactions A,2007,38(4):759-766.
    [108] Oikaw K, Ito W, Imano Y, et al. Effect of magnetic field on martensitic transition of Ni46Mn41In13Heusler alloy [J]. Applied Physics Letters,2006,88(12):122507.
    [109] O'Handley R C, Murray S J, Marioni M, et al. Phenomenology of Giant Magnetic-Field inducedStrain in Ferromagnetic Shape Memory Materials [J]. Journal of Applied Physics,2000,87(5):4712-4717.
    [110] Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa singlecrystals [J]. Applied Physics Letter,1996,69:1966-1968.
    [111] Gaidukova I Y, Granovskiy S A, Markosyan A S. Magnetic properties of nonstoichiometric Ni2MnInHeusler alloys [J]. Bulletin of the Russian Academy of Sciences: Physics,2010,74(10):1373-1375.
    [112] Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phasetransformation [J]. Nature,2006,439:957-960.
    [113] Krenke T, Acet M, Wassermann E F, et al. Ferromagnetism in the austenitic and martensitic states ofNi-Mn-In alloys [J]. Physical Review B,2006,73(17):174413.
    [114] Ito W, Nagasako M, Umetsu R Y, et al. Atomic ordering and magnetic properties in theNi45Co5Mn36.7In13.3metamagnetic shape memory alloy [J]. Applied Physics Letters,2008,93(23):232503.
    [115] Khan M, Dubenko I, Stadler S, et al. Exchange bias behavior in Ni-Mn-Sb Heusler alloys [J].Physical Review B,2007,91(7),072510.
    [116] Pathak A K, Khan M, Gautam B R, et al. Exchange bias in bulk Ni-Mn-In-based Heusler alloys [J].Journal of Magnetism and Magnetic Materials,2009,321:963-965.
    [117] Jing C, Chen J P, Li Z, et al. Exchange bias behavior and inverse magnetocaloric effect inNi50Mn35In15Heusler alloy [J]. Journal of Alloys and Compounds,2009,475:1-4.
    [118] Wang B M, Liu Y, Ren P, et al. Large Exchange Bias after Zero-Field Cooling from anUnmagnetized State [J].Physical Review Letters,2011,106(7):077203.
    [119] Scholtyssek J M, Meier G, Merkt U. Growth of Ni2MnIn films on InAs and Si [J]. Journal of CrystalGrowth,2008,311(9):79-84.
    [120] Bohse S, Zolotaryov A, Volland A, et al. Structural and magnetic properties of Ni2MnIn Heusler thinfilms grown on modulation-doped InAs heterostructures with metamorphic buffer [J]. Journal ofCrystal Growth,2012,338(1):91-95.
    [121] Huang M D, Lee N N, Kim B J, et al. Correlation between structure and magnetic properties ofNi2MnIn films [J]. Journal of the Korean Physical Society,2004,45(1):18-21.
    [122] Kurfiss M, Anton R. Structural and magnetic properties of vapour deposited thin films of the Heusleralloy Ni2MnIn [J]. Journal of Alloys and Compounds,2003,361(1-2):36-39.
    [123] Xie J Q, Lu J, Dong J W, et al. Effects of growth temperature on the structural and magneticproperties of epitaxial Ni2MnIn thin films on InAs(001)[J]. Journal of Applied Physics,2005,97(7):073901-5.
    [124]刘小辉,屈绍波,陈江丽,等.磁电材料的研究进展及发展趋势[J].稀有金属材料与工程,2006,35(s2):13-16.
    [125] Eerenstein W, Morrison F D, Dho J, et al. Comment on "Epitaxial BiFeO3multiferroic thin filmheterostructures"[J]. Science,2005,307(5713):1203-1203.
    [126] Pradhan A K, Zhang K, Hunter D, et al. Magnetic and electrical properties of single-phasemultiferroic BiFeO3[J]. Journal of Applied Physics,2005,97(9):093903.
    [127] Shanthy S, Singh S K. Multiferroic BiFeO3films: Candidate for room temperature micro biosensor[J]. Integrated Ferroelectrics,2008,99:77-85.
    [128] Singh M K, Yang Y, Takoudis C G, et al. Multiferroic BiFeO3Thin Films for MultifunctionalDevices [J]. Journal of Nanoscience and Nanotechnology,2010,10(9):6195-6199.
    [129] Schmid H. Multiferroic magnetoelectrics [J]. Ferroelectrics,1994,162:665-685.
    [130] Kumar M M, Palkar V R, Srinivas K, et al. Observation of Coupled Magnetic and Electric Domains[J]. Nature,2002,2764-2766.
    [131] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3multiferroic thin film heterostructures [J].Science,2003,299(5613):1719-1722.
    [132] Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroicBiFeO3films at room temperature [J]. Nature Materials,2006,5(10):823-829.
    [133] Morean J M, Michel C, Gerson R, et al. Ferroelectric BiFeO3X-ray and neutron diffraction study [J].Journal of Physics and Chemical Solids,1971,32:1315-1319.
    [134] Lim S H, Murakami M, Sarney W L, et al. The effects of multiphase formation on strain relaxationand magnetization in multiferroic BiFeO3thin films [J]. Advanced Functional Materials,2007,17(14):2594-2599.
    [135] Fiebig M, Lottermoser T, Frohlich D, et al. Observation of Coupled [J]. Nature,2002,419:818-820.
    [136] Chang H J, Borisevich A Y, Balke N, et al. Interfacial Structure in Multiferroic BiFeO3Thin Films [J].Microscopy and Microanalysis,2009,15:1028-1029.
    [137] Teague J R, Gerson R, James W J. Dielectric hysteresis in single crystal BiFeO3[J]. Solid StateCommunications,1970,8(13):1073-1074.
    [138]杨彩霞,林殷茵,汤庭鳌.溶胶-凝胶法制备BiFeO3铁电薄膜的结构和特性[J].功能材料,2005,3(36):340-345.
    [139] Wang Y P, Zhou L, Zhang M F, et al. Room-temperature saturated femoelectric polarization inBiFeO3ceramics synthesizd by rapid liquid phase sintering [J]. Applied Physics Letter,2004,84:1731-1733.
    [140] Moriya T. Anisotropic Superexchange Interaction and Weak Ferromagnetism [J]. Physics review,1960,120(1):91-98.
    [141] Sosnowska I, Neumaier T P, Steichele E. Spiral magnetic ordering in bismuth ferrite [J]. Journal ofPhysics C: Solid State Physics,15(23):4835-4846.
    [142] Ederer C, Spaldin N A. Weak Ferromagnetism and Magnetoelectiic Coupling in Bismuth Ferrite [J].Physical Review B,2005,71(6):060401.
    [143]崔铮.微纳米加工技术及其应用[M].北京:高等教育出版社,2005.
    [144]肖啸,刘世杰.光刻技术发展现状分析[J].乐山师范学院学报,2004,19(5):26-29.
    [145]孔祥东,张玉林,魏守水.基于电子束光刻的LIGA技术研究[J].微细加工技术,2004,1:18-22.
    [146]李飞飞,张谢群,杜关祥,等.高磁电阻磁性隧道结的几种微制备方法研究[J].物理学报,2005,54(8):3831-3838.
    [147]王寅岗,李子全,周广宏,等.基于薄膜/多层膜纳米磁电子器件的无掩模制备方法[P].2009.
    [148] Zschech E, Langer E, Engelmann H J, et al. Physical failure analysis in semiconductor industrychallenges of the copper interconnects process [J]. Materials Science in Semiconductor Processing,2003,5:457-464.
    [149] Volinsky A A, Rice L, Qin W, et al. FIB failure analysis of memory arrays [J]. MicroelectronicEngineering,2004,75:3-11.
    [150]陈强.聚焦离子束在集成电路失效分析中的应用和实例分析[D].上海交通大学硕士学位论文,2007年.
    [151]王蓓,陈忠浩,陆海纬,等.聚焦离子束无掩膜注入单晶硅离子浓度深度分布的研究[J].复旦学报(自然科学版),2007,46(1):96-99.
    [152]董雷,王克礼,张化一.微机控制聚焦离子束扫描装置的研制与实验[J].真空科学与技术,1989,9(3):160-162.
    [153] Fassbender J, Ravelosona D, Samson Y, Tailoring magnetism by light-ion irradiation [J]. JournalPhysical D: Applied Physics,2004,37: R179-R196.
    [154] Reuter D, Meier C, Seekamp A, et al. Fabrication of two-dimensional in-plane gate transistors byfocused ionbeam doping [J]. Physica E,2002,13:938-941.
    [155] Kaminsky W M, Jones G A C, Patel N K, et al. Patterning ferromagnetism in Ni80Fe20films via Ga+ion irradiation [J]. Applied Physics Letter,2001,78(11),1589-1591.
    [156] Fassbender J, McCord J. Magnetic patterning by means of ion irradiation and implantation [J].Journal of Magnetism and Magnetic Materials,2008,320:579-596.
    [157] Ampere A. Tseng,苏才钧,周兆英,等.微加工中的聚焦离子束直接写入技术[J].微纳电子技术,2003,11:1-8.
    [158] Qian H X, Zhou W, Miao J M, et al. Fabrication of Si microstructures using focused ion beamimplantation and reactive ion etching [J]. Journal of Micromechanics and Microengineering,2008,18(3):035003.
    [159]彭友贵,任大志.离子束材料改性、合成及辐照模拟研究的新进展[J].武汉大学学报,1994,6:39-44.
    [160] McGrouther D, Chapman J N, Vanhelmont F W M. Effect of Ga+ion irradiation on the structural andmagnetic properties of CoFe/IrMn exchange biased bilayers [J]. Journal of Applied Physics,2004,95(12):7772-7778.
    [161] Blomeier S, McGrouther D, O’Neill R, et al. Modification of the magnetic properties of exchangecoupled NiFe/FeMn films by Ga+ion irradiation [J]. Journal of Magnetism and Magnetic Materials,2005,290-291:731-734.
    [162] Wang Y G, McGrouther D, McVitie S, et al. Investigation of the origin of the decrease in exchangebiasing in Ga+ion irradiated CoFe/IrMn films [J]. Journal of Applied Physics,2006,100(7):073901.
    [163] Qi X J, Wang Y G, Zhou G H, et al. Thermal relaxation of exchange bias field in exchange coupledCoFe/IrMn bilayer [J]. Chinese Physics B,2010,19(3):037503.
    [164] Clemens W, van den Berg H A M, Rupp G, et al. Contactless potentiometer based on giantmagnetoresistance sensors [J]. Journal of Applied Physics,1997,81:4310-4312.
    [165] Parkin S S P, Roche K P, Samant M G, et al. Exchange-biased magnetic tunnel junctions andapplication to nonvolatile magnetic random access memory (invited)[J]. Journal of Applied Physics,1999,85(8):5828-5833.
    [166] Tehrani S, Engel B, Slaughter J M, et al. Recent developments in magnetic tunnel junction mram [J].IEEE Transactions on Magnetics,2000,36(5):2752-2757.
    [167] Kume T, Sugiyama Y, Kato T, et al. Exchange anisotropy of MBE grown Mn1-xPtx/NiFe bilayers with(001) orientation [J]. Journal of Magnetism and Magnetic Materials,2004,272-276: e827-e828.
    [168] Paul A, Damm T, Bürgler D E, et al. Optimizing the giant magnetoresistance of NiFe/Cu/Co pseudospin-valves prepared by magnetron sputtering [J]. Applied Physics Letters,2003,82(12):1905-1907.
    [169] Isogami S, Tsunoda M, Takahashi M.30-nm scale fabrication of magnetic tunnel junctions using EBassisted CVD hard masks [J]. IEEE Transactions on Magnetics,2005,41(10):3607-3609.
    [170] Li G B, Li G Q, Lei M K, et al. Formation of nanometer magnetic iron nitride film by IBED [J].Surface and Coatings Technology,1997,96(1):34-38.
    [171]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [172] Yu A C C, Han X F, Murai J, et al. Micro structural and magnetic characteristics of IrMnexchange-biased tunnel junctions [J]. Journal of Magnetism and Magnetic Materials,2002,240(1-3):130-133.
    [173] Tiilikainen J, Bosund V, Tilli J-M, et al. Genetic algorithm using independent component analysis inx-ray reflectivity curve fitting of periodic layer structures [J]. Journal of Physics D: Applied Physics,2007,40:6000-6004.
    [174]侯海虹,孙喜莲,田光磊,等.利用总积分散射仪对光学薄膜表面散射特性的研究[J].物理学报,2009,58(9):6425-6429.
    [175] Holy V, Pietsch U, Baumbach T. High-Resolution X-Ray Scattering from Thin Films and Multilayer
    [M]. Berlin: Springer,1999.
    [176] Feranchuk I D, Feranchuk S I, Ulyanenkov A P. Self-consistent approach to x-ray reflection fromrough surfaces [J]. Physical Review B,2007,75(8),085414.
    [177] Ulyanenkov A. Novel methods and universal software for HRXRD, XRR and GISAXS datainterpretation [J]. Applied Surface Science,2006,253:106-111.
    [178] Goodman A M, O’Grady K, Laidler H, et al. Magnetization reversal processes in exchange-biasedspin-valve structures[J]. IEEE Transactions on Magnetics,2001,37(1):565-570.
    [179] Ziegler J F. SRIM-2003[J]. Nuclear Instruments and Methods in Physics Research B,2004,219-220:1027-1036.
    [180] Ziegler J, Biersack J, Littmark. The stopping of ions in matter [M]. Pergamon, New York,1985.
    [181]李斗星.原子分辨率的原子序数衬度成像及应用[J].电子显微学报,2005,24(4):3-5.
    [182]李鹏飞. Z衬度像的特点及在材料研究中的应用[J].兵器材料科学与工程,2002,25(5):17-20.
    [183]闫静. CoFe/AlOx/CoFe磁性隧道结结构多层膜的热稳定性研究[D].南京航空航天大学硕士论文,2011.
    [184] Cormier M, March K, Ferré J, et al. Asymmetry of the magnetization reversal process in a magnetictunnel junction [J]. Physical Review B,2008,77(5):054419.
    [185] Paccard D, Sehlenker C, Mssenet O, Montmory R, and Yelon A. A new property offerromagnetic-antiferromagnetic coupling [J]. Physica Status Solidi,1966,16(1):301-311.
    [186]陈杰,王寅岗,周广宏,等. IrMn基自旋阀结构多层膜的热弛豫研究[J].稀有金属材料与工程,2009,38(12):2175-2178.
    [187]祁先进,王寅岗,周广宏,等. CoFe/Cu/CoFe/IrMn自旋阀结构多层膜磁化反转过程的研究[J].功能材料,2009,40(7):1084-1086.
    [188] Xi H W, Franzen S, Mao S, et al. Exchange bias relaxation in reverse magnetic fields [J]. PhysicalReview B,2007,75(1):014434.
    [189] Driel J, Boer F R, Lenssen K M H, et al. Exchange biasing by Ir19Mn81: Dependence on temperature,microstructure and antiferromagnetic layer thickness [J]. Journal of Applied Physics,2000,88:975-982.
    [190] Khapikov A F, Harrell J W, Fujiwara H, et al. Temperature dependence of exchange field andcoercivity in polycrystalline NiO/NiFe film with thin antiferromagnetic layer: Role ofantiferromagnet grain size distribution [J]. Journal of Applied Physics,2000,87,4954-4956.
    [191] Zhou G H, Wang Y G, Qi X J. Thermal Stability of CoFe/Cu/CoFe/IrMn Top Spin Valve [J]. ChinesePhysics Letters,2009,26(03):037501.
    [192] Mao S, Amin N, Murdock E D. Temperature dependence of giant magnetoresistance properties ofNiMn pinned spin balves [J]. Journal of Applied Physics,1998,83(11):6807-6809.
    [193] Zeltser A M, Pentek K. Thermal stability of CoFe, Co and NiFe/Co spin valves [J]. IEEETransactions on Magnetics,1998,34(4):1417-1419.
    [194] Stamps R L. Dynamic magnetic hysteresis and anomalous viscosity in exchange bias systems [J].Physical Review B,2000,61(18):12174-12180.
    [195]周广宏,王寅岗,祁先进,黄一中. Ga+离子辐照对CoFe铁磁膜结构和磁性的影响[J].稀有金属材料与工程,2009,38(07):1264-1268.
    [196] Wang Y G, Li Z Q. Physical origin of decrease in exchange coupling in Ga+ion irradiated CoFe/IrMnfilms [J]. Transactions of Nonferrous Metals Society of China,2005,15(S3):375-380.
    [197] Frey L, Lehrer C, Ryssel H. Nanoscale effects in focusd ion beam processing [J]. Applied physics A:Materials Science and Processing,2003,76(7):1017-1023.
    [198] Hastings I J, Scoberg J A, Mackenzie K. Grain growth in UO2in reactor and laboratory testing [J].Nuclear Instruments and Methods in Physics Research B,1979,82:435-436.
    [199] Kaoumi D, Motta A T, Birtcher R C. Grain growth in Zr-Fe thin films during in situ ion irradiation ina TEM [J]. Nuclear Instruments and Methods in Physics Research B.2006,242:490-493.
    [200] Mougin A, Mewes T, Jung M, et al. Local manipulation and reversal of the exchange bias field by ionirradiation in FeNi/FeMn double layers [J]. Physical Review B,2001,63(6):060409.
    [201] Qi X J, Wang Y G, Miao X F, et al. Influence of Ga+ion irradiation on thermal relaxation ofexchange bias field in exchange-coupled CoFe/IrMn bilayers [J]. Chinese Physics B,2011,20(5):057503.
    [202] Qi X J, Wang Y G, Miao X F,et al. Influence of Ga+ion irradiation on magnetization reversal processand magnetoresistance in CoFe/Cu/CoFe/IrMn spin valves [J]. Chinese Physics B,2010,19(3):037505.
    [203] Lin J G, Wu M R, Ngu D H, et al. Effect of ion-irradiation on the NiFe/Cu/NiFe/NiMn spin valve [J].Journal of Magnetism and Magnetic Materials,2000,209:128-130.
    [204] Zhou G H, Wang Y G, Huang Y Z, et al. Thermal stability of low dose Ga+ion irradiated magnetictunnel junctions [J]. Journal of Modern Physics B,2010,24(32):6211-6218.
    [205]许勉,潘靖,沈影,等.铁磁/反铁磁双层膜中的磁锻炼效应[J].物理学报,2010,10:657-661.
    [206] Kerr E, van Dijken S, Langford R M, et al. Effects of Ga+ion implantation on the magnetoresistiveproperties of spin valves [J]. Journal of Magnetism and Magnetic Materials,2005,290-291:124-126.
    [207] Seidel J, Martin L W, He Q, et al. Conduction at domain walls in oxide multiferroics [J]. NatureMaterials,2009,8(3):229-234.
    [208] Wu J, Wang J. BiFeO3thin films deposited on LaNiO3-buffered SiO2/Si substrate [J]. Journal ofAmerican Ceramic Society,2010,93(5):1422-1426.
    [209] Han D H, Gao Z, Mao S I, et al. Magnetic and thermal relaxation in (NiFe/CoFe)/PtMn andNiFe/NiMn bi-layers for spin valve heads [J]. Journal of Applied Physics,2000,87(9):6424-6426.
    [210] Zeches R J, Rossell M D, Zhang J X, et al. A strain-driven morphotropic phase boundary in BiFeO3[J]. Science,2009,326(5955):977-980.
    [211] Yuan X, Xue X, Zhang X, et al. The exchange bias in polycrystalline BiFeO3/Ni81Fe19bilayers on Sisubstrate with LaNiO3buffer layer [J]. Solid State Communications,2012,152(4):241-243.
    [212] Zavaliche F, Zheng H, Mohaddes-Ardabili L, et al. Electric field-induced magnetization switching inepitaxial columnar nanostructures [J]. Nano Letters,2005,5(9):1793-1796.
    [213] Karmakar S, Taran S, Bose E, et al. Evidence of intrinsic exchange bias and its origin inspin-glass-like disordered L0.5Sr0.5MnO3manganites (L=Y, Y0.5Sm0.5, and Y0.5La0.5)[J]. PhysicalReview B,2008,77(14):144409.
    [214] Qian T, Li T, Zhang T, et al. Exchange bias tuned by cooling field in phase separated Y0.2Ca0.8MnO3[J]. Applied Physics Letters,2007,90(1):012503.
    [215] De K, Patra M, Majumdar S, et al. Exchange bias in La-deficient cluster-glass compoundLa0.87Mn0.7Fe0.3O3[J]. Journal of Physics D: Applied Physics,2008,41(17):175007.
    [216] Tang Y K, Sun Y, Cheng Z H. Exchange bias associated with phase separation in the perovskitecobaltite La1-xSrxCoO3[J]. Physical Review B,2006,73(17):174419.
    [217] Rios S, Karaman I, Zhang X. Crystallization and high temperature shape memory behavior ofsputter-deposited NiMnCoIn thin films [J]. Applied Physics Letters,2010,96(17):173102.
    [218] Buschbeck J, Niemann R, Heczko O, et al. In situ studies of the martensitic transformation inepitaxial Ni-Mn-Ga films [J]. Acta Materialia,2009,57:2516-2526.
    [219] Vishnoi R, Kaur D. Structural and magnetic properties of magnetron sputtered Ni-Mn-Snferromagnetic shape memory alloy thin films [J]. Journal of Applied Physics,2010,107(10):103907.
    [220] Y. Sutou, Y. Imano, N. Koeda, et al. Magnetic and martensitic transformations of NiMnX(X=In, Sn,Sb) ferromagnetic shape memory alloys [J].Applied Physics Letters,2004,85(19):4358-4360.
    [221] Cador O, Grasset F, Haneda H, et al. Memory effect and super-spin-glass ordering in an aggregatednanoparticle sample [J]. Journal of Magnetism and Magnetic Materials,2004,268(1-2):232-236.
    [222] Zheng R K, Gu H W, Xu B, et al. Memory effects in a nanoparticle system: Low-field magnetizationand ac susceptibility measurements [J]. Physical Review B,2005,72(1):014416.
    [223] Cong D Y, Roth S, Liu J, et al. Superparamagnetic and superspin glass behaviors in the martensiticstate of Ni43.5Co6.5Mn39Sn11magnetic shape memory alloy [J]. Applied Physics Letters,2010,96(11):112504.
    [224] Kainuma R, Ito K, Ito W, et al. NiMn-Based Metamagnetic Shape Memory Alloys [J]. MaterialsScience Forum,2010,635:23-31.
    [225] M rup S, Madsen M B, Franck J.A new interpretation of M ssbauer spectra of microcrystallinegoethite:“Super-ferromagnetism” or “super-spin-glass” behaviour?[J]. Journal of Magnetism andMagnetic Materials,1983,40(1-2):163-174.
    [226] Bedanta S, Kleemann W. Supermagnetism [J]. Journal of Physics D: Applied Physics,2009,42(1):013001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700