ThLEA3基因过表达提高黄檗抗渗透胁迫能力的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晚期胚胎富集蛋白(Late embryogenesis abundant protein, LEA)是一类在植物种子成熟期间高富集的与渗透调节有关的多功能的逆境蛋白。研究结果表明LEA基因可以在干旱和ABA处理条件下诱导表达,并且LEA蛋白的表达与ABA变化相一致;很多LEA基因的过表达能提高植物的抗旱能力,但其参与植物抗逆胁迫的分子机制还未深入研究,对其结构和功能的了解尚不完善,且存在很多争议。本研究主要以转柽柳LEA3基因的转基因黄檗(Phellodendron amurense Rupr.)为研究对象,通过对转基因黄檗在渗透胁迫下的生理指标变化、气孔关闭程度、荧光分子探针标记、非损伤微测技术和转录组测序等研究NO、H2O2和ABA在诱导气孔关闭过程中的变化规律,初步研究柽柳LEA3基因在渗透胁迫下快速诱导气孔关闭的调控机理,探索在渗透胁迫条件下的分子保护机制。其主要的实验结果如下:
     (1)经7%PEG6000处理10小时后,对照的黄檗叶片有明显的萎蔫现象,叶片严重失水;而转ThMT3转基因黄檗的叶片保持正常,说明ThLEA3基因的过表达提高了转基因黄檗的抗渗透胁迫能力。各种生理指标的比较结果表明,在渗透胁迫下,与对照相比,转基因黄檗的SOD、CAT的活性没有明显的差异,而脯氨酸含量、可溶性蛋白含量、丙二醛(MDA)含量均高于非转基因对照。
     (2)扫描电镜观察结果表明,7%PEG6000处理5小时后,转基因株系的气孔关闭,而非转基因对照的气孔是开着的,同时保卫细胞发生变形,说明ThLEA3转基因黄檗组培苗通过气孔的快速关闭来抵抗渗透胁迫。
     (3)荧光分子探针检测结果表明,转基因黄檗气孔中的NO荧光强度高于对照,而转基因黄檗气孔中的H202荧光强度低于对照。ABA、H2O2、SNP及PEG6000处理能引起转基因株系的气孔中Ca2+的荧光强度,并引起气孔关闭;而不能引起对照的气孔关闭。非损伤微测技术检测结果表明PEG6000处理引起转基因植株气孔中Ca2+内流,H+、K+外流,最终导致气孔的关闭,而对照气孔中Ca2+、H+、K+全部外流,导致气孔不能关闭和保卫细胞的破坏。
     (4)内源ABA含量检测结果表明,在渗透处理之前非转基因对照(NT)叶片中ABA含量高于ThLEA3转基因植株。而7%PEG6000处理之后,两者ABA的含量提高幅度都很大,但是胁迫后的还是对照叶片中ABA含量高于转基因叶片。
     (5)为进一步在基因水平上验证相关基因的表达,我们利用Illumina高通量测序技术测定了转基因及对照组培苗叶片的转录组。测序分析结果表明,ThLEA3转基因引起大量基因表达量的变化,即有30,494个差异表达的基因,其中有12263个基因是上调表达的,有18231个基因是下调表达的。进一步分析表明,与对照相比,ABA合成代谢途径的各类基因在转基因黄檗中呈现出从上游基因上调到下游基因下调逐渐过渡的趋势,而且ABA的生物合成途径的最后一个关键基因abscisic aldehyde oxidase (AAO)的同源基因全部下调表达。另外,调控NO合成的NOS和NR基因都上调表达。
Late embryogenesis abundant proteins (LEA proteins) is a group of multifunctional adversity protein, which accumulating late in plant seeds embryogenesis. The results showed that LEA can be induced by drought and ABA stresses, and the expression level is positively relative to ABA content. Many studies indiated that LEA overexpression could improve the drought resisitant ability. However, up to now, less information on LEA functional moleculat mechanism and not perfect understanding of structure and function were known, also lots of controversy exsited. In this study, ThLEA3transgenic Phellodendron amurense Rupr. was used as research object, by the methods of physiological indexes change, stomatal closure degree, fluorescence molecular probe, SIET technology and Illumina high-throughout sequencing, change of NO, H2O2and ABA in stomatal closure process were investigated. We firstly researched the mechanism of rapidly stomatal closure under osmotic stress, and speculated the pobable molecular protective mechanism under this condition. The maining results are listed as following:
     (1) After7%PEG6000treated for10h, the leaves of non-transgenic plant apparently wilting with servious water loss, while ThLEA3transgenic plant still grown normally, indicatingThLEA3transgenic plant confer to osmotic tolerance. Different physiological indexes results showed that there is no differece of SOD, CAT activity between non-transgenic and transgenic plant under osmotic stress, while proline, soluble protein and MDA content in transgenic plant were higher than that in the control one.
     (2) SEM observation result indicate that stoma of transgenic plant closed, while stoma of non-transgenic plant was opened, even deformed under7%PEG6000, suggesting ThLEA3improved osmotic tolerance by rapidly stomatal closure.
     (3) Fluorescence probe detection results showed that, NO in transgenic P. amurense stoma was stronger than that in non-transgenic plant. But H2O2fluorescence result was opposite to NO. Meanwhile,Ca2+fluorescence in transgenic plant stoma was higher under ABA, H2O2, NO donror SNP and PEG6000treatment, also induced stomatal closure. SIET result showed that Ca2+was influxed, K+and H+were effluxed under PEG6000stress, finally, induced stomatal closure. But Ca2+、H+、K+in stoma of non-transgenic plant effluxed, resulting in gard cell damaged and not closed.
     (4) Content of endogenious ABA in non-transgenic plant leaves was higher than that in transgeni plant leaves with non-treatment. After7%PEG6000treatment, ABA in both ones greatly increased, however, ABA content in non-transgenic plant leaves was still higher than this in transgenic plant.
     (5) To further verify the expression of relative genes at trascrition level, transcriptome of non-and transgenic plant leaves were analyzed by Illumina high-throughout sequencing. The sequencing results indicated that ThLEA3overexpression changed expression level of30,494genes, among which,12263were up-regulated, and18231were down-regulated. Further analysis results showed that genes involve in ABA synthesis pathway presents the transition from up-rugulaion to down-regulation trend in transgenic plant compared with non-transgenic plant. In addition, the homologous genes of abscisic aldehyde oxidase, the last key step, involve in ABA synthesis were all down-regulated. Interestingly, all the gene relative to NO synthesis, such as NOS and NR were up-rugulated.
引文
安国勇,李保珠,武桂丽,宋纯鹏.H2O2作为根源信号介导盐胁迫诱导的蚕豆气孔关闭反应植物生理学报,2012,48:265-271.
    安国勇,宋纯鹏,张骁,荆艳彩,阳冬梅,黄美娟,周培爱,吴才宏.过氧化氢对蚕豆对气孔运动和质膜K+通道的影响.植物生理学报,2000,26:458-464.
    候书林.植物生理学实验指导.北京:科学出版社,2004.
    刘贯中,陈珈.钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用.植物学通报,2003,20:160-167.
    权宏,施和平,李玲.脱落酸诱导气孔关闭的信号转导研究.植物学通报,2003,20:664-670.
    孙存华,杜伟,陈湘玲,徐新娜,张亚红,孙东,施剑杰.聚乙二醇渗透胁迫对藜幼苗叶片干旱诱导蛋白和可溶性蛋白的影响.安徽农业科学,2009,37:4373-4408.
    孙丽,吴忠义,李学东,于荣.植物气孔运动过程中的信号转导机制.植物生理学通讯,2006,42:1203-1210.
    王晶英,敖红,张杰,曲桂琴.植物生理生化技术与原理.哈尔滨:东北林业大学出版社,第一版,2003.
    王茂良.植物抗渗透胁迫及其与脯氨酸的关系.北京园林,2006,22:21-24.
    於丙军,丁义,陈宣钦.几种信号类物质对蚕豆气孔运动的效应.植物生理学通讯,2004,40:285-288.
    赵波.黄檗组织培养及转基因体系的建立.哈尔滨:东北林业大学硕士学位论文,2007.
    赵世领,孙立荣,张换,马丽娅,陆宝石,郝福顺.胞质碱化介导了外源—氧化氮诱导的蚕豆气孔关闭.作物学报,2010,36:533-538.
    Amara A, Odena A, Oliveira E, Moreno A, Masmoudi K, Pages K, Goday A. Insights into maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol,2011,53:312-329.
    Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology,2004,55:373-399.
    Babu RC, Zhang J, Blum A, Ho T-HD, Wu R, Nguyen HT. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa) via cell membrane protection. Plant Sci,2004,166:855-862.
    Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci,2005,24:23-25.
    Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins. Plant Physiol,2008,148:6-24.
    Bates LS, Waldren RP, Teare ID. Rapid determination of free proline content for water-stress studies. Plant and Soil, 1973,39:205-207.
    Ben HA, Ghanem ME, Bouzid S, Lutts S. An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot,2008,59:1315-1326.
    Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol,2008,67:107-124.
    Birch RG Plant transformation:problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol,1997,48:297-326.
    Blatt MR. Ca2+ signalling and control of guard cell Volume in stomatal movements. Curr Opin Plant Biol,2000, 3:196-204.
    Bohnet HJ, Nelson DE, Jensen RD. Adaptations to environmental stresses. Plant Cell,1995,7:1099-1111.
    Bohnet HJ, Shevleva E. Plant stress adaptation-making metabolisms move. Curr Opin Plant Biol,1998,1:267-274.
    Bray EA. Plant responses to water deficit. Trends Plant Sci,1997,2:48-54.
    Breusegem FV, Bailey-Serres J, Mittler R. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol,2008,147:978-984.
    Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J,2006,45:113-122.
    Busk PK, Pages M. Regulation of abscisic acid-induced transcription. Plant Mol Biol,1998,37:425-435.
    Campos F, Zamudio F, Covarrubias AA. Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochem Bioph Res Co,2006,342: 406-413.
    Cantrel C, Vazquez T, Puyaubert J, Reze'N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol,2011,189:415-427.
    Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B. Preparation of protein extraction from recalcitrant plant tissues:An evaluation of different methods for two-dimensional gelelectrophoresis analysis. Proteomics,2005,5:2497-2507.
    Chakrabortee S, Tripathi R, Watson M, Schierle GSK, Kurniawan DP, Kaminski CF, Wise MJ, Tunnacliffe A. Intrinsically disordered proteins as molecular shields. Mol Biosyst,2012,8:210-219.
    Chandler PM, Robertson M. Gene expression regulated by abscisic acid and its relation to stress tolence. Ann Rev Plant Physiol Plant Biol,1994,45:113-141.
    Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. Nitric oxide acts downstream of auxin to trigger root ferricchelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol,2010,154: 810-819.
    Cheng Z, Targolli J, Huang X, Wu R. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed,2002,10:71-82.
    Crawford NM. Mechanisms for nitric oxide synthesis in plants. J Exp Bot,2006,57:471-478.
    Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS. Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol,2007, 176:275-287.
    Cushman JC, Bohnert HJ. Genomic approaches to Plant stress toleranee.Curr Opin Plant Biol,2000,3:117-24.
    Dalai M, Kumar GS, Mayandi K. Identification and expression analysis of group 3 LEA family genes in sorghum [Sorghum bicolor (L.) Moench]. Acta Physiol Plant,2013,35:979-984.
    Denes K, Bianka A, Peter T. Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav,2008, 3:710-713.
    Desikan R, Cheung K, Bright J, Henson D, Hancock JT, Neill S. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot,2004,55:205-212.
    Desikan R, Griffiths R, Hancock JT, Neill S. A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA,2002,99:16314-16318.
    Dhindsa RS, Plumb-Dhinsa P, Thorpe TA. Leaf senescence:corelated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot, 1981,32:93-101.
    Divi UK, Krishna P:Brassinosteroids confer stress tolerance. In Plant stress biology:genomics goes systems biology Edited by:Hirt H. Weinheim:Wiley-VCH; 2009,119-135.
    Divi UK, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol,2010,10:151-164.
    Dure L, Greenway SC, Galau GA. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry,1981,20:4162-4168.
    Dure L III. Structural motifs in Lea proteins. In:Close TJ, Bray EA (eds). Plant responses to cellular dehydration during environmental stress. The American Society of Plant Physiologists, Rockville, MD,1993,91-103.
    Fan LM, Zhao Z, Assmann SM. Guard cells:a dynamic signaling model. Curr Opin Plant Biol,2004,7:537-546.
    Figueras M, Pujal J, Saleh A, Save R, Pages M, Goday R. Maize Rabl 7 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol,2004,144:251-257.
    Finkel T, Holbrook JN. Oxidants, oxidative stress and the biology of ageing. Nature,2000,408:239-247.
    Galau GA, Huges DW, Dure L. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol,1986,7:155-170.
    Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the plant adaptive plant responses against drought stress. Plant Physiol,2001,126:1196-1204.
    Garcia-Mata C, Lamattina L. Nitric oxide and abscisic acid cross-talk in guard cells. Plant Physiol,2002,128: 790-792.
    Gbelef J, Benamar A, Teyssier E. Identification in pea seed mitochondria of a late embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol,2005,137:157-167.
    Twig G, Jung SK, Messerli MA, Smith PJS, Shirihai OS. Real-Time detection of reactive oxygen intermediates from single microglial cells. Biol Bull,2001,201:261-262.
    Gonzalez A, Cabrera M, Henriquez MJ, Contreras RA, Morales B, Moenne A. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol,2012,158:1451-1462.
    Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science,2003,302:100-103.
    Hamilton DWA, Hills A, Kohler B, Blatt MR. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA,2000,97:4967-4972.
    Hao GP, Xing Y, Zhang JH. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. J Integr Plant Biol,2008,50:435-442.
    Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem,2004,42:657-662.
    Hara M, Terashima S, Fukaya T, Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta,2003,217:290-298.
    He JM, Xu H, She XP, Song XG, Zhao WM. The role and interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol,2005,32:237-247.
    He JM, Zhang Z, Wang RB, Chen YP. UV-B-induced stomatal closure occurs via ethylene-dependent NO generation in Vicia faba. Funct Plant Biol,2011,38:293-302.
    Hetherington AM, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol,2004,55:401-427.
    Hetherington AM. Guard cell signaling. Cell,2001,107:711-714.
    Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol,2002,130:675-687.
    Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet,1978,163:181-187.
    Houde M, Dallaire S, N'Dong D, Sarhan F. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotech J,2004,2:381-387.
    Hu X, Zhang A, Zhang J, Jiang M. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol,2006,47:1484-1495.
    Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics,2008,9:118.
    Dcuta A, Hakamura T, Urabe H. Indolopyridoquinazoline, furoquinoline and canthinone type alkaloids from Phellodendron amurense callus tissues. Phytochemistry,1998,48:285-291.
    Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403.
    Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI. Guard cell ABA and CO2 signalling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol,2006,9:654-663.
    Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol,1998,116:173-181.
    Iturriaga G, Schneider K, Salamini F, Bartels D. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol,1992,20:555-558.
    Jacob T, Ritchie S, Assmann SM, Gilroy S. Abscisic acid signal transduction in guard cells is mediated by phospholi-pase D activity. Proc Nat 1 Acad Sci USA,1999,96:12192-12197.
    Jia W, Zhang J. Stomatal movements and long-distance signaling in plants. Plant Signal Behav,2008,3:772-777.
    Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol,2001,42:1265-1273.
    Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network:advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol,2010,61:561-591.
    Kirch HH, Phillips J, Bartels D. Dehydration-stress signal transduction. In:Scheel D, Wasternack C (eds) Plant signal transduction. Oxford University Press, New York,2002,591-616.
    Krishna P. Brassinosteroid-mediated stress responses. J Plant Growth Regul,2003,22:289-297.
    Kunkel JG, Cordeiro S, Xu Y, Shipley AM, Feijo JA. The use of noninvasive ion-selective microelectrode techniques for the study of plant development, In AG Volkov, ed, Plant Electrophysiology-Theory and Methods. Springer-Verlag, Berlin/Heidelberg,2006,109-137.
    Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI. NADPH oxidase AtrbohD AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis. EMBO J,2003,22:623-2633.
    Kwak JM, Nguyen V, Schroeder JI. The role of reactive oxygen species in hormonal responses. Plant Physiol, 2006,141:323-329.
    Lan T, Gao J, Zeng QY. Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree Genet Genomes.2013,9:253-264.
    Leiper LJ, Walczysko P, Kucerova R, Ou J, Shanley LJ, Lawson D, Forrester JV, McCaig CD, Zhao M, Collinson JM. The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6+-mouse model of epithelial wound-healing delay. BMC Biol,2006,4:27-50.
    Leung J, Giraudat J. Abscisic acid signial transduction. Ann Rev Plant Physiol Plant Mol Biol,1998,49:199■ 222.
    Li S, Assmann SM, Albert R. Predicting essential components of signal transduction networks:a dynamic model of guard cell abscisic acid signaling. PLoS Biol,2006,4:1732-1748.
    Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signaling. J Exp Bot, 2009,60:3221-3238.
    Lozano-Juste J, Leon J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol,2011,156:1410-1423.
    Lu S, Wang Z., Peng X, Guo Z, Zhang G, Han L, An efficient callus suspension culture system for triploid bermudagrass(Cynodon transvaalensis×C. dactylon) and somaclonal variations, Plant Cell Tiss Org Cult, 2006,87:77-84.
    Lum HK, Butt YK, Lo SC. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide,2002,6:205-213.
    McAinsh MR, Clayton H, Mansfield TA, Hetherington AM. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol,1996,111:1031-1042.
    McAinsh MR, Pittman JL. Shaping the calcium signature. New Phytol,2009,181:275-294.
    Meinhard M, Rodriguez PL, Grill E. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta,2002,214:775-782.
    Mendez-Bravo A, Raya-Gonzalez J, Herrera-Estrella L, Lopez-Bucio J. Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant Cell Physiol,2010,51:1612-1626.
    Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris, Ribeiro D, Wilson L. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot,2008,59:165-176.
    Neill SJ, Desikan R, Clarke A, Hancock JT. Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiol,2002a,128:13-16.
    Neill SJ, Desikan R, Hancock JT. Hydrogen peroxide signalling. Curr Opin Plant Biol,2002b,5:388-395.
    Oiwer AE, Leprince O, Wolkersw F. Non-disaccharide-based mechanises of protein during drying. Cryobiol, 2001,43:151-167.
    Outlaw WHJ. Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci,2003,22: 503-529.
    Park BJ, Liu ZC, Kanno A, Kameya T. Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci,2005,169:553-558.
    Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature,2000,406:731-734.
    Reddy PS, Reddy GM, Pandey P, Chandrasekhar K, Reddy MK. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum:protection against abiotic stresses. Mol Biol Rep,2012,39:7163-7174.
    Rohila JS, Jain RK, Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hval cDNA. Plant Sci,2002,163:525-532.
    Romano LA, Jacob T, Gilroy S, Assmann SM. Increase in cytosolic Ca+ are not required for abscisi cacid-inhibition of inward K+ currents in guard cells of Vicia faba L. Planta,2000,211:209-217.
    Sasse JM. Physiological actions of brassinosteroids:an update. J Plant Growth Regul,2003,22:276-288.
    Schroeder JI, Kwak JM, Allen G Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature,2001,410:327-330.
    Seemann JR, Critehley C. Effects of salt stress on the growth, ion content, stomatal behaviour and photo-synthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta,1985,164:151-162.
    Shih MD, Hoekstra FA, Hsing YE. Late embryogenesis abundant proteins. Adv Bot Res,2008,48:212-240.
    Shinozaki K,Yamaguehi-Shinozaki K.Gene expression and signal transduction in water stress response. Plant Physiol,1997,115:327-334.
    Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress-signaling pathways. Curr Opin Plant Biol,2000,3:217-223.
    Siddiqui MH, Al-Whaibi M, Basalah MO. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma,2011,248:447-55.
    Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci,2000,155:1-9.
    Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y. NaCl-induced alternation of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar sepecies. Plant Physiol,2009,149:1141-1153.
    Swamy PM, Smith B. Role of abscisic acid in plant stress tolerance. Curr Sci,1999,76:1220-1227.
    Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol,2001,52:627-658.
    She XP, Song XG, He IM. Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba. Acta Botanica Sinica.2004,46:1292-1300.
    Steigner W, Kohler K, Simonis W, Urbach W. Transient cytoplasmic pH changes in correlation with opening of potassium channels in Eremosphaera. J Exp Bot,1988,39:23-36.
    Tabaeizadeh Z. Drought-induced reponses in plant cells. Int Rev Cytol,1998,182:193-247.
    Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J, 2009,60:795-804.
    Torres MA, Dangl JL. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol,2005,8:397-403.
    Torres MA. ROS in biotic interactions. Physiol Plantarum,2010,138:414-429.
    Velten J, Oliver MJ. Tr288, a rehydrin with a dehydrin twist. Plant Mol Biol,2001,45:713-722.
    Vert G, Nemhauser JL, Geldner N, Hong F, Chory J. Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol,2005,21:177-201.
    Wang YC, Jiang J, Zhao X, Liu GF, Yang CP, Zhan LP. A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci,2006,171:655-662.
    Wendehenne D, Durner J, Klessig DF. Nitric oxide:a new player in plant signalling and defence responses. Curr Opin Plant Biol,2004,7:1-7.
    Wilkinson S, DaviesWJ. ABA-based chemical signalling:the co-ordination of responses to stress in plants. Plant Cell Environ,2002,25:195-210.
    Wilkinson S, Davies WJ. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation. J Exp Bot,2008,59:619-631.
    Wise MJ. LEAping to conclusions:a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics,2003,4:52-70.
    Wise MJ, Tunnacliffe A. POPP the question:what do LEA proteins do? Trends Plant Sci,2004,9:13-17.
    Xiao B, Huang Y, Tang N, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet,2007,115:35-46.
    Xiong J, An LY, Lu H, Zhu C. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta,2009,230:755-765.
    Xu Y, Sun X, Jin J, Zhou H. Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. J Plant Physiol,2010,167:512-518.
    Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene in involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6:251-264.
    Yamamizo C, Doke N, Yoshioka H, Kawakita K. Involvement of mitogen-activated protein kinase in the induction of StrbohC and StrbohD genes in response to pathogen signals in potato. J Gen Plant Pathol,2007, 73:304-313.
    Yin Z, Rorat T, Szabala BM, Ziolkowska A, Malepszy S. Expression of a Solatium sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci,2006,170:1164-1172.
    Zhang AY, Jiang MY, Zhang JH, Ding HD, Xu SC, Hu XH, Tan MP. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol,2007,175:36-50.
    Zhang S, Cai Z, Wang X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA,2009,106:4543-4548.
    Zhang SS, Wei Y, Lu YN, Wang XL. Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signal Behav,2009,4:1117-1120.
    Zhang X, Miao YC, An GY, Zhou Y, Shangguan ZP, Gao JF, Song CP. K+channels inhibited by hydrogen peroxide mediate abscisic acid signalling in Vicia guard cells. Cell Res,2001,11:195-202.
    Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol,2001,126:1438-1448.
    Zhang Z, Wang H, Wang X, Bi Y. Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots. Plant Cell Rep,2011,30:1701-1711.
    Zhao MG, Chen L, Zhang LL, Zhang WH. Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol,2009,151:755-767.
    Zhou B, Guo Z, Xing J, Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot,2005,56:3223-3228.
    Zhou B, Wang J, Guo Z, Tan H, Zhu X. A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul,2006,49:113-118.
    Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002,53:247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700