六个先天性眼球震颤家系的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     对6个先天性眼球震颤家系,包括4个X连锁先天性特发性眼球震颤(X-linked congenital idiopathic nystagmus, XL-CIN)和2个伴有无虹膜的先天性感觉缺陷性眼球震颤(sensory defect nystagmus, SDN)家系进行分子遗传学研究,探讨其致病的分子基础。
     方法
     1、X连锁先天性特发性眼球震颤:收集4个XL-CIN家系的临床资料及采集家系成员外周静脉血各5m1,提取基因组DNA;以先证者基因组DNA为模板,PCR扩增XL-CIN候选致病基因FRMD7的全部外显子及其外显子-内含子拼接部的序列,DNA直接测序筛查突变位点;一旦发现致病性突变位点,则采用DNA直接测序方法在其家系成员进行疾病与致病突变共分离分析,进一步确认致病性突变位点。
     2、先天性感觉缺陷性眼球震颤:对2个伴有无虹膜的SDN家系成员进行全面的眼部检查,采集这2个家系共6例患者和5名健康成员外周静脉血各5ml,提取基因组DNA;以先证者基因组DNA为模板,PCR扩增候选致病基因PAX6的14个外显子及其外显子-内含子拼接部的序列,DNA直接测序筛查突变位点;一旦发现可疑致病性突变位点,则采用DNA测序方法在其家系成员进行疾病与致病突变共分离分析及单核苷酸多态性(SNP)排除分析,进一步确认致病性突变位点。
     结果
     1、4个先天性特发性眼球震颤家系的遗传模式符合X-连锁显性遗传伴外显不全,FRMD7基因突变筛查发现其中2个家系携带已知致病性突变位点,即XL-CIN02家系患者在FRMD7基因外显子8存在c.G886C错义突变(GGT>CGT),导致FRMD7蛋白第296位的甘氨酸被精氨酸代替(p.G296R);XL-CINO3家系患者在FRMD7基因外显子10存在c.C910T无义突变(CGA>TGA),导致该基因编码蛋白在304位的精氨酸提前终止(p.R304X),产生一个截短形式的变异多肽。
     2、2个先天性感觉缺陷性眼球震颤家系皆伴有先天性无虹膜,呈常染色体显性遗传。SDN-01家系患者还合并双眼黄斑中心凹发育不良和早发性白内障(presenile cataract),PAX6基因突变筛查发现患者在该基因第5外显子存在一个杂合性复制突变(c.95_105dupll),该突变为一个de novo新突变,导致该基因编码蛋白在第36位甘氨酸提前终止(p.G36X),产生一个截短的多肽;SDN-02家系表现单纯性无虹膜,突变筛查发现患者在PAX6基因第8外显子存在一个c.C607T杂合性无义突变,导致编码蛋白在第203位精氨酸提前终止(p.R203X),产生一个截短的多肽。
     结论
     1、FRMD7G296R和R304X突变分别是导致XL-CIN02和XL-CIN03家系患者致病的分子基础。
     2、在一个伴有双眼先天性无虹膜、黄斑中心凹发育不良和早发性白内障的先天性感觉缺陷性眼球震颤家系(SDN-01)中发现了一个de novo PAX6基因c.95_105dup11(p.G36X)新突变;在一个伴有单纯双眼先天性无虹膜的先天性感觉缺陷性眼球震颤家系(SDN-02)中发现了一个PAX6基因c.C607T(p.R203X)热点突变。
Objective
     To identify the molecular defect of six Chinese congenital nystagmus families, including four X-linked congenital idiopathic nystagmus (XL-CIN) families and two sensory defect nystagmus(SDN) families with aniridia.
     Methods
     1. XL-CIN:The members of the four pedigrees were recruited, clinical examinations were performed, and genomic DNA was extracted from peripheral blood leukocytes. The coding exons and splice junctions of the human FRMD7gene were amplified by polymerase chain reaction (PCR). The PCR products were purified, and then were performed direct sequencing. The mutation detected was confirmed in available other family members through co-segregation analysis.
     2. SDN: Eleven members of the two pedigrees were recruited, clinical examinations were performed, and genomic DNA was extracted from peripheral blood leukocytes. The coding exons and splice junctions of the human PAX6gene were amplified by polymerase chain reaction (PCR). The PCR products were purified and sequenced. When any interesting sequence variation suggestive of a mutation was found in the proband, it was later confirmed in parents and available relatives as well as in50normal unrelated individuals from the same ethnic background by directly sequencing the particular exon.
     Results
     1. The genetic models of four families with congenital idiopathic nystagmus were X-linked dominant inheritance with incomplete penetrance. FRMD7mutations were found in two of four families with XL-CIN:a missense mutation c.G886C(p.G296R) in exon8of FRMD7was detected in family XL-CIN02, and a nonsense mutation c. C910T (p.R304X) in exonlO of FRMD7gene in family XL-CIN03.
     2. Two sensory defect congenital nystagmus families accompanying with congenital aniridia showed autosomal dominant inheritance. The patients of SDN-01family also showed macular dysplasia and presenile cataract. A heterozygous mutation c.95_105dup11of PAX6was found in all of two patients in family SDN-01, not in unaffected individuals. This mutation is predicted to result in the truncation of the protein product within the linker region of PAX6(p.G36X). SDN-02pedigree were simple aniridia, a heterozygous mutation c.C607T of PAX6was found in all of four patients in family SDN-02, not in unaffected individuals. This nonsense mutation is predicted to result in the truncation of the protein product within the linker region of PAX6(p.R203X).The mutations co-segregated with the disease phenotype in all available family members.
     Conclusion
     1. Two known FRMD7G296R and R304X mutations were identified in Chinese XL-CIN family XL-CIN02and XL-CIN03, respectively.
     2. A de novo mutation of the PAX6gene (c.95_105dup11) was reported firstly in family SDN-01associated with aniridia, macular hypoplasia and presenile cataracts.
     3. The known mutation R203X, one of the three common recurrent mutations in PAX6, was also presented in Chinese sensory defect nystagmus family(SDN-02) with simple aniridia.
引文
[1]赵堪兴.斜视弱视学[M].北京:人民卫生出版社,2011:151-152.
    [2]Stayte M, Reeves B, Wortham C. Ocular and vision defects in preschool children [J]. Br J Ophthalmol,1993,77(4):228-232.
    [3]Casteels 1, Harris CM, Shawkat F, et al. Nystagmus in infancy [J]. Br J Ophthalmol,1992,76(7):434-437.
    [4]Abadi RV, Bjerre A. Motor and sensory characteristics of infantile nystagmus [J]. Br J Ophthalmol,2002,86(10):1152-1160.
    [5]Forssman B. A study of congenital nystagmus[J].Acta Otolaryngol,1964,57: 427-429.
    [6]Cabot A, Rozet JM, Gerber S, et al. A gene for X-linked idiopathic congenital nystagmus (NYS1) maps to chromosome Xp 11.4-p 11.3 [J].Am J Hum Genet, 1999,64(4):1141-1146.
    [7]Kerrison JB, Vagefi MR, Barmada MM, et al. Congenital motor nystagmus Linked to Xq26-q27[J].Am J Hum Genet,1999,64(2):600-607.
    [8]Mellott ML, Brown J Jr, Fingert JH, et al. Clinical characterization and linkage analysis of a family with congenital X-linked nystagmus and deuteranomaly [J]. Arch Ophthalmol,1999,117(12):1630-1633.
    [9]Oetting WS,Armstrong CM, Holleschau AM,et al. Evidence for genetic heterogeneity in families with congenital motor nystagmus(CN) [J].Ophthalmic Genet,2000,21(4):227-233.
    [10]Kerrison JB, Giorda R, Lenart TD,et al.Clinical and genetic analysis of a family with X-linked congenital nystagmus(NYS 1) [J].Ophthalmic Genet,2001,22(4): 241-248.
    [11]Zhang B, Xia K, Ding M, et al. Confirmation and refinement of a genetic locus of congenital motor nystagmus in Xq26.3-q27.1 in a Chinese family[J].Hum Genet,2005,116(1-2):128-131.
    [12]Tarpey P, Thomas S, Sarvananthan N, et al. Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus[J].Nat Genet,2006,38(11):1242-1244.
    [13]Zhang Q, Xiao X, Li S, et al. FRMD7 mutations in Chinese families with X-linked congenital motor nystagmus[J]. Mol Vis,2007,13:1375-1378.
    [14]Self JE, Shawkat F, Malpas CT,et al. Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus[J]. Arch Ophthalmol.,2007,125(9):1255-1263.
    [15]Zhang B, Liu Z, Zhao G,et al. Novel mutations of the FRMD7 gene in X-linked congenital motor nystagmus[J]. Mol Vis,2007,13:1674-1679.
    [16]Shiels A, Bennett TM, Prince JB,et al. X-linked idiopathic infantile nystagmus associated with a missense mutation in FRMD7[J]. Mol Vis,2007 Nov,13: 2233-2241.
    [17]Kaplan Y, Vargel 1, Kansu T,et al. Skewed X inactivation in an X linked nystagmus family resulted from a novel,p.R229G, missense mutation in the FRMD7 gene[J]. Br J Ophthalmol,2008,92(1):135-141.
    [18]Li N, Wang L, Cui L,et al. Five novel mutations of the FRMD7 gene in Chinese families with X-linked infantile nystagmus[J]. Mol Vis,2008,14:733-738.
    [19]李宁东王犁明崔丽红等.一个X连锁遗传的先天性眼球震颤家系基因突变研究[J].中华眼科杂志,2008,44(2):138-142.
    [20]He X, Gu F, Wang Z,et al. A novel frameshift mutation in FRMD7 causing X-linked idiopathic congenital nystagmus [J]. Genet Test,2008,12(4):607-613.
    [21]Fingert JH, Roos B, Eyestone ME,et al. Novel intragenic FRMD7 deletion in a pedigree with congenital X-linked nystagmus [J]. Ophthalmic Genet,2010,31(2): 77-80.
    [22]Thomas MG, Crosier M, Lindsay S,et al. The clinical and molecular genetic features of idiopathic infantile periodic alternating nystagmus[J]. Brain.2011 Mar;134(Pt3):892-902.
    [23]Li N, Wang X, Wang Y, et al. Investigation of the gene mutations in two Chinese families with X-linked infantile nystagmus[J]. Mol Vis,2011,17:461-468.
    [24]Betts-Henderson J, Bartesaghi S, Crosier M, et al. The nystagmus-associated FRMD7 gene regulates neuronal outgrowth and development J]. Hum Mol Genet. 2010,19(2):342-351.
    [25]Kubo T, Yamashita T, Yamaguchi A, et al. A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling[J].J Neurosci,2002,22(19):8504-8513.
    [26]ToyofukuT,Yoshida J,Sugimoto T, et al. FARP 2 triggers signals for Sema3A-mediated axonal repulsion[J].Nat Neurosci,2005,8(12):1712-1719.
    [27]Guo X, Li S, Jia X, et al. Linkage analysis of two families with X-linked recessive congenital motor nystagmus[J] J Hum Genet,2006,51(1):76-80.
    [28]Self JE, Ennis S, Collins A, et al. Fine mapping of the X-linked recessive congenital idiopathic nystagmus locus at Xq24-q26.3[J].Mol Vis,2006,12: 1211-1216.
    [29]Liu JY, Ren X, Yang X, et al. Identification of a novel GPR143 mutation in a large Chinese family with congenital nystagmus as the most prominent and consistent manifestation[J]. J Hum Genet,2007,52(6):565-570.
    [30]Zhou P, Wang Z, Zhang J,et al. Identification of a novel GPR143 deletion in a Chinese family with X-linked congenital nystagmus [J]. Mol Vis,2008,14: 1015-1019.
    [31]Peng Y, Meng Y, Zhang Z, et al. A novel GRP143 duplication mutation in a Chinese family with X-linked congenital nystagmus[J]. Mol Vis,2009,15: 810-814.
    [32]Schiaffino MV, Baschirotto C, Pellegrini G, et al. The ocular albinism type 1 gene product is a membrane glycoprotein localized to melanosomes[J]. Proc Natl Acad Sci USA,1996,93(17):9055-9060.
    [33]Preising M, Op de Laak JP, et al. Deletion in the OA1 gene in a family with congenital X linked nystagmus [J]. Br J Ophthalmol,2001,85(9):1098-1103.
    [34]Patton MA, Jeffery S, Lee N, et al. Congenital nystagmus cosegregating with a balanced 7;15 translocation [J].J Med Genet,1993,30(6):526-528.
    [35]Kerrison JB, Arnould VJ, Barmada MM, et al. A gene for autosomal dominant congenital nystagmus localizes to 6p12 [J]. Genomics,1996,33(3): 523-526.
    [36]Klein C, Vieregge P, Heide W, et al. Exclusion of chromosome regions 6p 12 and 15q 11, but not chromosome region 7p 11, in a German family with autosomal dominant congenital nystagmus[J].Genomics,1998,54(1):176-177.
    [37]Hoffmann S, Becker A, Hoerle S, et al. Autosomal dominant congenital nystagmus is not linked to 6p12,7p11, and15q11 in a German family[J].Am J Ophthalmo1,2004,138(3):439-443.
    [38]Bech-Hansen NT, Naylor MJ, Maybaum TA, et al. Loss-of-function mutations in a calcium-channel alphal-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness[J].Nat Genet,1998,19(3):264-267.
    [39]Wissinger B, Jagle H, Kohl S, et al.Human rod monochromacy:linkage analysisand mapping of a cone photoreceptor expressed candidate gene on chromosome 2q11 [J].Genomics,1998,51 (3):325-331.
    [40]Yuan H, Kang Y, Shao Z,et al. Two novel PAX6 mutations identified in northeastern Chinese patients with aniridia[J]. Mol Vis,2007,13:1555-1561.
    [41]Francke U, Holmes LB, Atkins L, et al. Aniridia-Wilms'tumor association: evidence for specific deletion of 11 p13 [J]. Cytogenet Cell Genet,1979,24(3): 185-192.
    [42]Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene[J]. Nat Genet,1992,2(3):232-239.
    [43]Walther C, Gruss P.Pax6, a murine paired box gene, is expressed in the developing CNS [J].Development,1991,113(4):1435-1449.
    [44]Yasuda T, Kajimoto Y, Fujitani Y. PAX6 mutation as a genetic factor common to aniridia and glucose intolerance [J].Diabetes,2002,51(1):224-230.
    [45]Neethirajan G, Solomon A, Krishnadas SR, et al. Genotype/phenotype association in Indian congenital aniridia [J]. Indian J Pediatr,2009,76(5):513-517.
    [46]Hertle RW, Dell'Osso LF. Clinical and ocular motor analysis of congenital nystagmus in infancy[J].JAAPOS,1999,3(2):70-79.
    [47]Hertle RW, Zhu X. Oculographic and clinical characterization of thirty-seven children with anomalous head postures, nystagmus, and strabismus:the basis of a clinical algorithm[J]JAAPOS,2000,4(1):25-32.
    [48]Ragge NK, Hartley C, Dearlove AM, et al. Familial vestibulocerebellar disorder maps to chromosome 13q31-q33:a new nystagmus locus[J]. J Med Genet, 2003,40(1):37-41.
    [49]Chishti AH, Kim AC, Marfatia SM, et al.The FERM domain:a unique module involved in the linkage of cytoplasmic proteins to the membrane[J].Trends Biochem Sci,1998,23(8):281-282
    [50]Han BG,Nunomura W, Takakuwa Y, et al.Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization[J].Nat Struct Biol,2000, 7(10):871-875.
    [51]Schorderet DF, Tiab L, Gaillard MC, et al.Novel mutations in FRMD7 in X-linked congenital nystagmus[J].Hum Mutat,2007,28(5):525.
    [52]Azuma N,Nishina S,Yanagisawa H,et al.PAX6 missense mutation in isolated foveal hypoplasia[J].Nat Genet,1996,13(2):141-142.
    [53]Hanson I,Churchill A,Love J,et al.Missense mutations in the most ancient residues of the PAX6 paired domain underlie a spectrum of human congenital eye malformations[J].Hum Mol Genet,1999,8(2):165-172.
    [54]Sisodiya SM, Free SL, Williamson KA,et al. PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans [J].Nat Genet,2001, 28:214-216.
    [55]Verloes A, Temple IK, Bonnet S, et al. Coloboma, mental retardation, hypogonadism,and obesity:critical review of the so-called Biemond syndrome type 2, updated nosology, and delineation of three "new" syndromes[J]. Am J Med Genet,1997,69 (4):370-379.
    [56]Gehring WJ, Ikeo K. Pax-6:mastering eye morphogenesis and eye evolution [J]. Trends Genet,1999,15(9):371-377.
    [57]Kumar JP.Signalling pathways in Drosophila and vertebrate retinal development [J].Nat Rev Genet,2001,2(11):846-857.
    [58]Halder G, Callaerts P, GehringWJ,et al. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila [J].Science,1995,267(5205): 1788-1792.
    [59]夏朝霞,刘奕志,刘欣华.同源盒基因Pax-6在晶状体发育过程中的表达分析[J].眼科研究,2003,21(1):4-7.
    [60]Ton CC, Hirvonen H,Miwa H,et al.Positional cloning and characterization of a paired box - and homeobox - containing gene from the aniridia region[J]. Cell, 1991,67(6):1059-1074.
    [61]Glaser T.Jepeal L,Edwards JG, et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects [J].Nat Genet,1994,7(4):463-471.
    [62]Pax6 Allelic Variant Database[http://pax6.hgu.mrc.ac.uk/].
    [63]Tzoulaki I,White IM, Hanson IM. PAX6 mutations:genotype-phenotype correlations[J].BMC Genet,2005,6:27.
    [64]Schedl A, Ross A, Lee M,et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities[J].Cell,1996,86(1):71-82.
    [65]Chao LY, Mishra R, Strong LC,et al. Missense mutations in the DNA-binding region and termination codon in PAX6[J].Hum Mutat,2003,21(2):138-145.
    [66]Atchaneeyasakul LO,Trinavarat A,Dulayajinda D,et al.Novel and de-novo truncating PAX6 mutations and ocular phenotypes in Thai aniridia patients [J]. Ophthalmic Genet,2006,27(1):21-27.
    [67]Kondo-Saitoh A, Matsumoto N, Sasaki T, et al. Two nonsense mutations of PAX6 in two Japanese aniridia families:case report and review of the literature[J].Eur J Ophthalmol,2000,10(2):167-172.
    [68]Zhang X, Tong Y, Xu W, et al. Two novel mutations of the PAX6 gene causing different phenotype in a cohort of Chinese patients[J]. Eye (Lond),2011,25(12): 1581-1589.
    [1]赵堪兴.斜视弱视学[M].北京:人民卫生出版社,2011:151-152.
    [2]Stayte M, Reeves B, Wortham C. Ocular and vision defects in preschool children[J].Br J Ophthalmol,1993,77(4):228-232.
    [3]Forssman B, Ringner B. Prevalence and inheritance of congenital nystagmus in a Swedish population[J].Ann Hum Genet,1971,35(2):139-147.
    [4]Abadi RV, Bjerre A. Motor and sensory characteristics of infantile nystagmus[J]. Br J Ophthalmol,2000,86(10):1152-1160.
    [5]Hertle RW, Dell'Osso LF. Clinical and ocular motor analysis of congenital nystagmus in infancy[J].JAAPOS,1999,3(2):70-79.
    [6]Hertle RW, Zhu X. Oculographic and clinical characterization of thirty-seven children with anomalous head postures, nystagmus, and strabismus:the basis of a clinical algorithm[J].JAAPOS,2000,4(1):25-32.
    [7]Mellott ML,Brown J Jr,Fingert JH,et al. Clinical characterization and linkage analysis of a family with congenital X-linked nystagmus and deuteranomaly[J].Arch Ophthalmol,1999,117(12):1630-1633.
    [8]Cabot A, Rozet JM, Gerber S, et al. A gene for X-linked idiopathic congenital nystagmus (NYS1) maps to chromosome Xp11.4-pll.3[J].Am J Hum Genet, 1999,64(4):1141-1146.
    [9]Kerrison JB, Vagefi MR, Barmada MM, et al. Congenital motor nystagmus Linked to Xq26-q27[J].Am J Hum Genet,1999,64(2):600-607.
    [10]Oetting WS,Armstrong CM, Holleschau AM,et al. Evidence for genetic heterogeneity in families with congenital motor nystagmus(CN) [J].Ophthalmic Genet,2000,21(4):227-233.
    [11]Kerrison JB,Giorda R,Lenart TD,et al.Clinical and genetic analysis of a family With X-linked congenital nystagmus(NYSl) [J].Ophthalmic Genet,2001, 22(4):241-248.
    [12]Zhang B, Xia K, Ding M, et al. Confirmation and refinement of a genetic locus of congenital motor nystagmus in Xq26.3-q27.1 in a Chinese family[J].Hum Genet,2005,116(1-2):128-131.
    [13]Tarpey P, Thomas S, Sarvananthan N, et al. Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus[J].Nat Genet,2006,38(11):1242-1244.
    [14]Zhang Q, Xiao X, Li S, et al. FRMD7 mutations in Chinese families with X-linked congenital motor nystagmus[J]. Mol Vis,2007,13:1375-1378.
    [15]Self JE, Shawkat F, Malpas CT,et al. Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus[J]. Arch Ophthalmol,2007,125(9):1255-1263.
    [16]Zhang B, Liu Z, Zhao G,et al. Novel mutations of the FRMD7 gene in X-linked congenital motor nystagmus[J]. Mol Vis,2007,13:1674-1679.
    [17]Shiels A, Bennett TM, Prince JB,et al. X-linked idiopathic infantile nystagmus associated with a missense mutation in FRMD7[J]. Mol Vis,2007,13:2233-2241.
    [18]Kaplan Y, Vargel I, Kansu T,et al. Skewed X inactivation in an X linked nystagmus family resulted from a novel,p.R229G, missense mutation in the FRMD7 gene[J]. Br J Ophthalmol,2008,92(1):135-141.
    [19]Li N, Wang L, Cui L,et al. Five novel mutations of the FRMD7 gene in Chinese families with X-linked infantile nystagmus[J]. Mol Vis,2008,14:733-738.
    [20]李宁东王犁明崔丽红等.一个X连锁遗传的先天性眼球震颤家系基因突变研究[J].中华眼科杂志,2008.44(2):138-142.
    [21]He X, Gu F, Wang Z,et al. A novel frameshift mutation in FRMD7 causing X-linked idiopathic congenital nystagmus[J]. Genet Test,2008,12(4):607-613.
    [22]Fingert.TH, Roos B, Eyestone ME,et al. Novel intragenic FRMD7 deletion in a pedigree with congenital X-linked nystagmus [J]. Ophthalmic Genet, 2010,31(2):77-80.
    [23]Thomas MG, Crosier M, Lindsay S,et al. The clinical and molecular genetic features of idiopathic infantile periodic alternating nystagmus[J]. Brain, 2011,134(Pt3):892-902.
    [24]Li N, Wang X, Wang Y, et al. Investigation of the gene mutations in two Chinese families with X-linked infantile nystagmus[J]. Mol Vis, 2011,17:461-468.
    [25]Betts-Henderson J, Bartesaghi S, Crosier M, et al. The nystagmus-associated FRMD7 gene regulates neuronal outgrowth and development J]. Hum Mol Genet, 2010,19(2):342-351.
    [26]Kubo T, Yamashita T, Yamaguchi A, et al. A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling[J].J Neurosci,2002,22(19):8504-8513.
    [27]Toyofuku T, Yoshida J, Sugimoto T, et al. FARP 2 triggers signals for Sema3A-mediated axonal repulsion[J].Nat Neurosci,2005,8(12):1712-1719.
    [28]Thomas S, Proudlock FA, Sarvananthan N, et al. Phenotypical characteristics of idiopathic infantile nystagmus with and without mutations in FRMD7[J]. Brain, 2008,131(Pt5):1259-1267.
    [29]Pu J, Li Y, Liu Z, et al. Expression and localization of FRMD7 in human fetal brain,and a role for F-actin[J]. Mol Vis,2011,17:591-597.
    [30]Self J, Haitchi HM, Griffiths H, et al. Frmd7 expression in developing mouse brain[J]. Eye(Lond),2010,24(1):165-169.
    [31]Hamada K,Shimizu T,Matsui T, et al. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain[J]. EMBO J,2000, 19(17):4449-4462.
    [32]Edwards SD, Keep NH. The 2.7A crystal structure of the activated FERM domain of moesin:an analysis of structural changes on activation[J]. Biochemistry, 2001,40(24):7061-7068.
    [33]Pearson MA, Reczek D, Bretscher A, et al. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain[J]. Cell,2000,101(3):259-270.
    [34]Chishti AH, Kim AC, Marfatia SM, et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane[J].Trends Biochem Sci,1998,23(8):281-282.
    [35]Bretscher A. Regulation of cortical structure by the ezrin-radixin-moesin protein Family[J]. Curr Opin Cell Biol,1999,11(1):109-116.
    [36]Brault E, Gautreau A, Lamarine M, et al. Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain[J]. J Cell Sci,2001,114(Pt10):1901-1912.
    [37]Moyer RA, Wendt MK, Johanesen PA, et al. Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia[J]. Lab Invest,2007,87(8):807-817.
    [38]Takegahara N, Kang S, Nojima S, et al. Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements[J]. FASEB J,2010,24(12):4782-4792.
    [39]Zhuang B,Su YS, Sockanathan S. FARP1 promotes the dendritic growth of Spinal motor neuron subtypes through transmembrane Semaphorin6A and PlexinA4 signaling[J]. Neuron,2009,61(3):359-372.
    [40]Hamada K, Shimizu T,Matsui T, et al. Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of the adhesion protein ICAM-2[J]. Acta Crystallogr D Biol Crystallogr,2001,57(Pt 6):891-892.
    [41]Kumar A, Gottlob I, McLean RJ, et al. Clinical and oculomotor characteristics of albinism compared to FRMD7 associated infantile nystagmus[J]. Invest Ophthalmol Vis Sci,2011,52(5):2306-2313.
    [42]Guo X, Li S, Jia X, et al. Linkage analysis of two families with X-linked recessive congenital motor nystagmus[J].J Hum Genet,2006,51(1):76-80.
    [43]Self JE, Ennis S, Collins A, et al. Fine mapping of the X-linked recessive congenital idiopathic nystagmus locus at Xq24-q26.3[J].Mol Vis,2006, 12:1211-1216.
    [44]Liu JY, Ren X, Yang X, et al. Identification of a novel GPR143 mutation in a large Chinese family with congenital nystagmus as the most prominent and consistent manifestation[J]. J Hum Genet,2007,52(6):565-570.
    [45]Zhou P, Wang Z, Zhang J,et al. Identification of a novel GPR143 deletion in a Chinese family with X-linked congenital nystagmus[J]. Mol Vis.2008.14: 1015-1019.
    [46]Peng Y, Meng Y, Zhang Z, et al. A novel GRP143 duplication mutation in a Chinese family with X-linked congenital nystagmus[J]. Mol Vis,2009,15: 810-814.
    [47]SchiaffinoMV, Baschirotto C, Pellegrini G, et al. The ocular albinism type 1 gene product is a membrane glycoprotein localized to melanosomes[J]. Proc Natl Acad Sci USA,1996,93(17):9055-9060.
    [48]Preising M, Op de Laak JP, Lorenz B. Deletion in the OA 1 gene in a family with congenital X-linked nystagmus[J]. Br J Ophthalmol,2001, 85(9):1098-1103.
    [49]Raynaud M, Dessay S, Ronce N, et al. Skewed X chromosome inactivation in carriers is not a constant finding in FG syndrome [J]. Eur J Hum Genet, 2003,ll(4):352-356.
    [50]Migeon BR. The role of X inactivation and cellular mosaicism in women's health and sex-specific diseases[J]. JAMA.2006,295(12):1428-1433.
    [51]Lyon MF. X-chromosome inactivation and human genetic disease[J]. Acta Paediatr Suppl,2002,91(439):107-112.
    [52]Sharp A, Robinson D, Jacobs P. Age-and tissue-specific variation of X chromosome inactivation ratios in normal women[J]. Hum Genet, 2000,107(4):343-349.
    [53]Plenge RM, Tranebjaerg L, Jensen PK, et al. Evidence that mutations in the X-linked DDP gene cause incompletely penetrant and variable skewed X inactivation[J]. Am J Hum Genet,1999,64(3):759-767.
    [54]Belmont JW. Insights into lymphocyte development from X-linked immune deficiencies[J]. Trends Genet,1995,11 (3):112-116.
    [55]Naumova AK, Plenge RM, Bird LM,et al. Heritability of X chromosome--inactivation phenotype in a large family[J]. Am J Hum Genet, 1996,58(6):1111-1119.
    [56]Patton MA, Jeffery S, Lee N, et al. Congenital nystagmus cosegregating with a balanced 7;15 translocation [J].J Med Genet,1993.30(6):526-528.
    [57]Kerrison JB, Arnould VJ, Barmada MM, et al. A gene for autosomal dominant congenital nystagmus localizes to 6pl2[J].Genomics,1996, 33(3):523-526.
    [58]Klein C, Vieregge P, Heide W, et al. Exclusion of chromosome regions 6pl2 and 15q11, but not chromosome region 7p11, in a German family with autosomal dominant congenital nystagmus[J].Genomics,1998,54(1):176-177.
    [59]Hoffmann S, Becker A, Hoerle S, et al. Autosomal dominant congenital nystagmus is not linked to 6p12,7p11, and 15q11 in a German family[J].Am J Ophthalmo1,2004,138(3):439-443.
    [60]Bech-Hansen NT, Naylor MJ, Maybaum TA, et al. Loss-of-function mutations in a calcium-channel alphal-subunit gene in Xpll.23 cause incomplete X-linked congenital stationary night blindness[J].Nat Genet,1998, 19(3):264-267.
    [61]Wissinger B, Jagle H, Kohl S, et al.Human rod monochromacy:linkage analysis and mapping of a cone photoreceptor expressed candidate gene on chromosome 2q11[J].Genomics,1998,51(3):325-331.
    [62]Yuan H, Kang Y, Shao Z, et al. Two novel PAX6 mutations identified in northeastern Chinese patients with aniridia[J]. Mol Vis,2007,13:1555-1561.
    [63]Francke U, Holmes LB, Atkins L, et al. Aniridia-Wilms'tumor association: evidence for specific deletion of 11 p13 [J]. Cytogenet Cell Genet,1979, 24(3):185-192.
    [64]Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene[J]. Nat Genet,1992,2(3):232 239.
    [65]Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS[J]. Development,1991,113(4):1435-1449.
    [66]Gehring WJ, Ikeo K. Pax-6:mastering eye morphogenesis and eye evolution [J].Trends Genet,1999,15(9):371-377.
    [67]Kumar JP. Signalling pathways in Drosophila and vertebrate retinal development [J].Nat Rev Genet,2001,2(11):846-857.
    [68]Halder G, Callaerts P, Gehring WJ,et al. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila [J].Science,1995, 267(5205):1788-1792
    [69]夏朝霞,刘奕志,刘欣华.同源盒基因Pax-6在晶状体发育过程中的表达分析[J]眼科研究,2003,21(1):4-7.
    [70]Ton CC, Hirvonen H,Miwa H,et al. Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region[J].Cell,1991, 67(6):1059-1074.
    [71]Glaser T, Jepeal L,Edwards JG,et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects [J].Nat Genet,1994,7(4):463-471.
    [72]http://pax6.hgu.mrc.ac.uk/
    [73]Tzoulaki I, White IM, Hanson IM. PAX6 mutations:genotype-phenotype correlations[J].BMC Genet,2005,6:27.
    [74]Schedl A, Ross A, Lee M,et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities.Cell,1996,86(1):71-82.
    [75]Sisodiya SM, Free SL,Williamson KA,et al.PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans [J].Nat Genet,2001, 28(3):214-216.
    [76]Yasuda T, Kajimoto Y, Fujitani Y,et al. PAX6 mutation as a genetic factor common to aniridia and glucose intolerance [J]. Diabetes,2002,51(1):224-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700