基于数字图像处理技术的水稻氮素营养诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择田间水稻为研究对象,利用旋翼无人机获取不同氮素水平下的水稻冠层图像,同时在室内获取水稻样品叶片扫描图像,通过数字图像处理技术建立水稻氮素水平诊断指标,得到水稻氮素营养诊断的初步研究结果。具体如下:
     (1)本研究采用日本新一代旋翼式无人航空摄影平台HeraklesⅡ,自带高稳定性减震拍摄系统。选取日本Canon公司的EOS 30D型数码单反(单镜头反光)相机作为传感器。从摄影系统采集的数据看,本次实验的影像质量较高,田块边界比较清晰,每组影像的亮度、景深等都有所差异。这样在后期的影像信息提取工作中有更多样化的数据可供选择;
     (2)选用扫描仪作为传感器获取水稻叶片的数字图像,通过水稻氮素和叶绿素含量、SPAD值之间的相关性分析,得到有效的颜色特征参量B、b、b/(r+g)、b/r、b/g。同时比较不同叶位、不同位点的变异系数,选择较为稳定的第三完全展开叶(L2)作为指示叶或参照叶;最后建立不同氮素水平的识别模型,得到四个氮素水平的正确识别率为:N0:74.9%;N1:52%;N2:84.7%;N3:75%;
     (3)通过对旋翼无人机获取的水稻图像进行色彩分析,结果表明,无人机拍摄冠层图像的颜色特征参量G值与水稻叶片的SPAD、叶绿素和氮含量均有很好的相关关系。通过高光谱遥感数据的相关分析,从机理上说明基于数字图像处理技术的水稻氮素营养诊断是可行的。引入深绿色指数DGCI,研究认为颜色特征参量G值和DGCI可以用来表征水稻拔节期氮素营养状况。同时建立不同氮素水平的水稻冠层数字图像识别模型,得到四个氮素水平的正确识别率为:N0:91.6%;N1:70.83%;N2:86.7%;N3:95%。
In this paper, the remotely-controlled helicopter (Herakles II) was selected as the monitoring platform and digital camera (EOS 30D) was used to collect canopy data of rice. And the scanner was adopted as the digital image sensor to collect information of leaf, the method and model of diagnosing the status of rice was established based on image processing.
     (1) In this study, the remotely-controlled helicopter (Herakles II) was selected as the monitoring platform and digital camera (EOS 30D) was used to collect data.These two are both produced from Japan. The digital image got from the remotely-controlled helicopter was quite well, the boundary between different fields was clear and the variety of light was obvious. It would provide enough datas to extract information for later studying from these images.
     (2) According to the analysis of relations between value of rice leaf SPAD, leaf percentage nitrogen contents and plant percentage nitrogen contents, the effective color parameter had been abstraced as B、b、b/(r+g)、b/r、b/g. It was suggested that the third leaf from the top was the most ideal indicator and it was choosen as the object researched. Finally the method and model of diagnosing the status of rice was established and the accuracy were as follows: NO: 74.9%; N1: 52%; N2: 84.7%; N3: 75%.
     (3) It is suggested that there was a good relation between the data of G, value of rice leaf SPAD, leaf percentage nitrogen contents and plant percentage nitrogen contents. The correlative relationship between leaf spectral characteristics and hyperspectral remote sensing was studied. It was indicated that the diagnose of nitrogen at different leaf positon based on the color characteristic values is feasible. The DGCI was introduced to certify that the data of G and DGCI could express the different status of rice on the jointing stage. Finally the method and model of diagnosing the status of rice was established and the accuracy were as follows: NO: 91.6%; N1: 70.83%; N2: 86.7%; N3: 95%.
引文
[1] Adamsen F.J, Paul J.Pinter and Jr.E.M.Barnes, et al.Measuring wheat senescence with a digital canera. Crop Sci.1999, 39:719-724.
    [2] Chappelle E, M S Kim, J E McMurtrey. Ratio analysis of relflectance spectra(RARS); An algorithm for the remote estimation of the concentrations of chlorophyll a,chlorophyll b, and carotenoids in soybena leaves. Remote Sems.Enivron. 1992, 39:239-247.
    [3] Coifman B.et al, Roadway traffic monitoring from an unmanned aerial vehicle, IEE Proceedings on Intelligent Transport Systems, 2006, 153(1):11-20.
    [4] Douglas E.Karcher and Michael D.Richardson.Quantifying Turfgrass Color Using Digital Image.
    [5] Daughtry C S T, Walthall C L, Kim M S, et al.Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of the Environment, 2000, 74: 229-239.
    [6] Furfaro R. et al, Leaf-canopy model inversion via a neural network: application to ripe cherry estimation for UAV images, 19th Int'l Conf. Transport Theory, 2003.
    [7] Herwitz S.R. et al, Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support, Computers and Electronics in Agriculture, 2004, 44: 49-61.
    [8] Hunt E. R., Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status, Precision Agriculture, 2005,6: 359-378.
    [9] Holden Erin L. et al, Remote sensing of plant condition for precision insect pest management, The ESA 2001 Annual Meeting - 2001: An Entomological Odyssey of ESA San Diego, CA.
    [10] Kawashima,S. and C.M.Trotter.Directional reflectance of vegetation measured by a calibrated digital camera.Appl.Optics,1997,36:4314-4319.
    [11] Knipling E B. Physical and physiological basis for the reflectance of visible and near infrared radiation from vegetation.Remote Sensing of Environment, 1970, 1:155-159.
    [12] Moran, M.S. et al, Opportunities and limitations for image-based remote sensing in precision crop management,1997,Remote Sensing of Environment 61:319-346.
    [13]Plant,R.E.,Sitespecific management:the application of information technology to crop production.Comput.Elctron.Agric.2001.30(13):929.
    [14]R.Carreres J.Sendra,R.Ballesteros.Effects of preflood nitrogen rate and midseason nitrogen timing on flooded rice.Journal of Agricultural Science,2000.134:379-390.
    [15]Ryo Sugiura,Noboru Noguchi,Kazunobu Ishii.Romote-sensing technology for vegetation Monitoring using an unmanned helicopter.Biosystems Engineering,2005,90(4):369-379.
    [16]Scaife,M.A.,and K.L.Stevens,1983,Monitoring sap nitrate in vegetable crops:concentration of test strips with electrode,and effects of time of day and leaf positon,Commum.Soil Sci.Plant Anal.,14(9),761-771.
    [17]Scharf P C and J A Lory.Calibrating corn color form aerial photographs to predict sidedress nitrogen need.Agron J,2002,94:394-404.Analysis.Crop Sci,2003,43:943-951.
    [18]Smeal,D.,Zhang,H.Chlorophyll meter evaluation for nitrogen management in corn.Commun.Soil Sci.Plant Sci,1995,75:179-182.
    [19]Thomas M.Lillesand,Ralph W.Kiefer.遥感与图像解译(第四版).电子工业出版社,2003.
    [20]Tian,L.F.,and D.C.Slaughter.Environmentally odaptive segmentation algorithm for outdoor ima ges segmentation.Computer& Election.in Agric.1998,21(3):153-1.
    [21]V.Balasubramanian,A.C.Morales,R.T.Cruz.On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems.Nutrient cycling.Agroecosystems,1999,53:59-69.
    [22]Yoder,B.J.,Pettigrew-Crosby,R.E.,Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra(400-2500nm)at leaf and canopy scales.Remote Sensing of Environment.1995,53:199-211.
    [23]Zhou G.et al,Unmanned aerial vehicle(UAV)real-time video registration for forest fire monitoring,IEEE International Symposium of Geoscience and Remote Sensing(IGARSS'05),2005.3:1803-1806.
    [24]白由路等,低空遥感技术及其在精准农业中的应用,土壤肥料,2004,(1):3-5.
    [25]陈洪滨,马舒庆,汪改,宣越健等.基于微型自动驾驶飞机的航拍航摄遥感系统. 遥感技术与应用,2001,16(3):144-148.
    [26]陈东平.基于航空影像更新地形图的栅格化方法.测绘技术装备.2000.2(2):11-13.
    [27]陈琳.数字摄影.杭州:浙江摄影出版社,1998:38-40.
    [28]陈信华.SIFT特征匹配在无人机低空遥感影像处理中的应用.现代测绘.2007
    [29]陈佳娟,纪寿文等.基于遗传神经网络的玉米叶色的自动测定研究.农业工程学报.2000,Vol.16,No.(3):115-117.
    [30]程效军,胡敏捷.数字相机的检验.铁路航测.2001,(4):12-14.
    [31]程一松,胡春胜,王成,于贵瑞.养分胁迫下的夏玉米生理反应与光谱特征.资源科学,2001,23(6):54-58.
    [32]崔红霞,林宗坚,孙杰.无人机遥感监测系统研究.测绘通报,2005(5):11-14.
    [33]丁圣彦.精确农业的技术体系与应用研究进展.农业现代化研究,2002,23(3):222-225.
    [34]冯伟.基于高光谱遥感的小麦籽粒产量预测模型研究.麦类作物学报.2007
    [35]国家测绘局,国家测绘局测绘标准化研究所,中国标准出版社.测绘标准汇编-摄影测量与遥感卷.北京:中国标准出版社,2002.
    [36]郭金运,朱明法,徐浮林.地图数据几何纠正时仿射变换与相似变换的对比分析.测绘通报.2001,(4):23-24.27.
    [37]郭建华.主动遥感光谱仪Greenseeker与SPAD对玉米氮素营养诊断的研究.植物营养与肥料学报.2008.
    [38]贾浩正.非量测摄影机、摄像机应用于量侧场合的研究团.飞行试验.2000,16(4):37-42.
    [39]韩杰等.无人机遥感国土资源快速监察系统关键技术研究.测绘科学.2008.
    [40]姜大志,孙俊兰,郁倩.标准图形法求解相机镜头非线形畸变的研究.东南大学学报(自然科学版),2001,31(4):111-116.
    [41]姜大志,孙闭,刘森等.数码相机标定方法研究.南京肮空航天大学学报.200133(1):55-59.
    [42]雷咏雯,危常州,冶军等.计算机辅助叶色分析进行棉花氮素营养诊断的初步研究.石河子大学学报(自然科学版).2004,22(4):113-116.
    [43]雷咏雯,王娟,郭金强等.一种基于图像分析提取作物冠层生物学参数的方法与验证.西北农业学报2006,15(3):45-49.
    [44]林宗坚.遥感影像无(稀少)地面控制点纠正技术.地理与地理信息科学.2003,19(4):64-65.
    [45]林宗坚,用航空航天影像更新地形图地物要素的栅格化方法.中国工程科学.2000.2(4):43-7.
    [46]李宇昊.无人遥感飞机在营造林核查中应用可行性的研究.林业资源管理,2006,2(1):91-94.
    [47]李爱军,沈毅,章卫国.发展中的高空长航时无人机.航空科学技术,2001,(2):34-36.
    [48]吕书强等.无人机遥感系统的集成与飞行试验研究.测绘科学.2007.
    [49]刘洪见等.基于数字图像处理技术的玉米氮肥营养状态诊断.农业网络信息.2007.
    [50]马瑞升,孙涵,林宗桂.微型无人机遥感影像的纠偏与定位.南京气象学院学报,2005,28(5):643.
    [51]马瑞升等,基于微型无人机影像的土地利用调查试验,遥感信息,2006,(1):43-45.
    [52]马轮基等,微型无人机遥感应用初探,广西气象,2005,180-181.
    [53]孙杰,林宗坚,崔红霞.无人机低空遥感监测系统.遥感信息,2003(1):49-51.
    [54]孙明,凌云.基于计算机视觉的萝卜幼苗自动识别技术.农业机械学报.2002,Vol.33,No(5):75-77.
    [55]单成钢等.应用数字图像技术估测冬小麦冠层生物量垂直分布特征的研究.作物学报.2007.
    [56]唐延林,王人潮,王秀珍,李云梅.水稻叶面积指数和叫片生化的光谱法研究.华南农业大学学报,2003,24(Ⅰ):3-7.
    [57]汪懋华.精细农业发展与工程技术创新.农业工程学报,1999,15(1):1-8.
    [58]王峰,林宗坚.航空影像与地图的配准纠正.中国图象图形学报.2001 6(4):383-386.
    [59]王磊,李和军.低空遥感平台摄影测量技术的探索和应用.北京测绘.2003(4):28-30.
    [60]王耀南,李树涛.多传感器信息融合及其应用综述.2001,16(5):518-522.
    [61]王占宏,马晓萍,成燕辉.GB/T 17941.1-2000,数字测绘产品质量要求(第1部分).北京:中国标准出版社,2000.7.
    [62]王娟,韩登武,任岗等.SPAD值与棉花叶绿素和含氮量关系的研究.新疆农业科学2006,43(3):167-170.
    [63]王秀峰.应用数字图像技术进行黄瓜和番茄氮素营养诊断的研究.吉林农业大学.2005.
    [64]王克如,李少昆,王崇桃等.用机器视觉技术获取棉花叶片叶绿素浓度.作物学报.2006.32(1):34-40.
    [65]王秀珍,王人潮,李云梅等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究.浙江大学学报,2001,27(3)301-306.
    [66]王晓静.地面数字图像技术在棉花氮素营养诊断中的初步研究.棉花学报.2007.
    [67]魏克让,江聪世.空间数据的误差处理.科学出版社,北京:2003.
    [68]魏益鲁.遥感地理学.青岛出版社,青岛:2002:181-184.
    [69]翁永玲,田庆久.遥感数据融合方法分析与评价综述.遥感信息,2003,(3):49-54.
    [70]吴芳华,张跃鹏,金澄.GIS空间数据质量的评价.测绘学院学报,2001,18(1):63-66.
    [71]武汉测绘学院《测量学》编写组.测量学.北京:测绘出版社,1985.100-101.
    [72]肖志刚,张曙光,么永强,李雁.精确农业的现状及发展趋势的研究.河北农业大学学报,2003,26(sup):256-259.
    [73]宣文玲,林宗坚.中心投影影像制作正射影像的多种方法研究.测绘科学,2003,28(2):9-11.
    [74]尹贡白,王家耀,田德森等.地图概论.北京:测绘出版社,1999:13-57.
    [75]严阅朝.数码相机的选购和使用洲.北京:人民交通出版社,航空工业出版社,2002:47-52.
    [76]遥感信息.国产地理信息系统和遥感软件产业化跃上新台阶.遥感信息.2003(4):59-59.
    [77]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003:67-103.
    [78]张祖勋,张剑清.数字摄影测量学.武汉:武汉测绘科技大学出版社,1996.
    [79]张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用.西北农林科技大学学报(自然科学版).2003,31(2):177-179.
    [80]郑团结,王小平,唐剑.无人机数字摄影测量系统的设计和应用.计算机测量与控制,2006,14(5):613-627.
    [81]朱宜营,李静迟.数码相机的知识与评定.影像技术,2001,(2):27-30.
    [82]朱述龙,张占睦.遥感图像获取与分析.北京:科学出版社,2000:115-134.
    [83]祝晓东.一种遥感图像滤波处理方法.计算机测量与控制.2006.14(4):517-518.
    [84]周启发,王人潮.水稻氮素营养水平与光谱特征的关系.浙江农业大学学报,1993, 19(增刊):40-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700