汽油机进气混合O_2/CO_2的燃烧机理与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的不断增加和排放法规的日益严格,传统能源利用技术的创新已成为备受瞩目的焦点问题。其中,发动机混合进气富氧化以其优越的节能与环保效应引起了广泛的关注。进气混合助燃气体与非助燃气体对发动机性能存在不同影响,即进气混合助燃气体(如02),将提高动力性与燃料经济性,降低HC和CO排放,但是NOx排放显著升高;进气混合非助燃气体(如CO2),将使动力性与燃料经济性恶化,HC和CO排放升高,但是NOx排放显著降低。因此,本文从改善燃烧降低排放的目标出发,以数值模拟和台架试验为主要研究手段,针对汽油机富氧进气混合气性质、化学反应动力学燃烧机理与排放特性,混合02对汽油机低温冷起动燃烧与排放的改善作用,O2/CO2混合最佳进气配比等问题,主要进行了以下研究工作:
     第一,以理论分析为基础,分析了增加O2体积分数对异辛烷氧化过程燃烧产物与中间产物的影响,以及富氧进气汽油机的燃烧机理和排放特性,总结了富氧进气汽油机燃烧过程的本质特性和规律。提高O2体积分数使汽油机化学反应速度加快,OH和CH20等重要燃烧中间产物的生成量和生成宽度增加,从而促使燃料燃烧更加彻底,燃烧温度与燃烧压力增加,不完全燃烧产生的CO和未燃HC排放降低。但是,提高O2体积分数在改善缸内燃烧状况的同时,带来了NOx排放显著升高的问题。所以,本文采用进气中混合CO2的方法,以降低富氧进气产生的较高NOx排放。
     第二,根据汽油机进气成分中O2/CO2的进气配比,确定相应的研究内容及研究方法,并使用相应的试验系统与测试仪器,构建混合进气汽油机性能试验台架及低温冷起动试验台架,开展相关试验研究。
     第三,基于循环控制的方法,对不同O2体积分数汽油机低温冷起动最初60s内的CO、CO和NOx排放及缸内燃烧状况的影响进行分析;根据汽油机应用富氧进气后的发动机运行状态,选择最佳富氧比例范围。研究结果表明:从控制汽油机冷起动阶段排放的角度出发,23%-25%富氧进气更适合本试验汽油机在低温环境冷起动。
     第四,针对不同稳态工况和不同混合进气组分条件,设计试验方案,测试发动机的动力性能、经济性能、燃烧特性和排放特性。研究汽油机进气单独混合02、同时混合O2/CO2后的性能,重点研究进气组分与发动机工况的匹配,在保证发动机功率和油耗率的基础上,尽可能地减少CO、CO和NOx等有害气体排放。富氧进气汽油机的负荷特性与速度特性试验结果显示,23%-25%O2体积分数为最佳富氧进气方式。进一步增加O2体积分数将使NOx排放成倍增长,但其他有益指标的变化幅度明显减弱。向25%02体积分数富氧进气汽油机添加体积分数为2%的CO2,可以在提高动力性和燃料经济性的同时,降低HC、CO和NOx排放,提高燃烧温度。
     第五,利用CHEMKIN软件,导入异辛烷化学反应动力学机理,模拟不同混合进气组分时的燃烧过程,并结合试验检测结果对模型的精度进行了验证,分析了进气成分对中间反应基团及异辛烷氧化机理的影响,补充试验研究的不足,对改变压缩比和过量空气系数后富氧进气汽油机燃烧过程的变化也进行了分析。
As the vehical number increases and the emission regulations are stringent, innovation on traditional energy technology has become a focused issue. And the engine with oxygen enriched intake air, of superior energy-saving and environmental protection effects, has been broadly concerned. As combustion-supporting gas or non-combustion-supporting gas can be respectively mixed into the intake air, different impact on engine performance is caused; that is, if combustion-supporting gas is mixed into intake air (such as O2), the motive performance and fuel economy will be raised, but NOx emissions will be much higher; if non-combustion-supporting gas is mixed into intake air (such as CO2), the motive performance and fuel economy will worsen, but NOx emissions will be much lower. Therefore, in this paper, with the objective to improve combustion and reduce emissions, according to the main means of numerical simulation and bench test, and based on the property of oxygen enriched intake air in gasoline engine, combustion mechanism and emission performance of chemical reaction kinetics, improvement impact of mixed O2 on combustion and emission of gasoline engine low temperature cold start, and optimum proportioning of O2/CO2 in intake air, etc., the following researches are conducted:
     First, based on theoretical analysis, from the perspective of chemical reaction kinetics, the impact of O2 rate increase on combustion products and intermediate products in isooctane oxidation process is analyzed; and based on combustion mechanism and emission performance of oxygen enriched intake air gasoline engine, innate characteristics and principle of combustion process of oxygen enriched intake air gasoline engine is summarized. By increasing O2 rate chemical reaction speed in gasoline engine is raised, generation volume and range of major intermediate products such as OH and CH2O, etc. in combustion increase, thus .the fuel is burnt more completely, the combustion temperature and combustion pressure increase, and CO2 caused by incomplete combustion and unburned HC emissions are reduced. However, at the same time the increased O2 rate improves combustion in the cylinder, the significantly increased NOx emissions problem is also caused. Therefore, in this paper, with the method to reduce CO2 mixed in intake air, the high NOx emissions produced by the oxygen enriched intake air are prevented.
     Second, according to proportioning of O2/CO2 in intake air of gasoline engine, the relevant research contents and research method are determined, and the relevant test system and test instrument are applied to build test-bed of mixed intake air gasoline engine performance and test-bed of low temperature cold start for experimental research.
     Third, HC, CO and NOx emission under different O2 rates within 60s after the low temperature cold start, as well as impact on combustion status in the cylinder is analyzed; and according to the running status of gasoline engine after oxygen enriched intake air applied, the optimum oxygen enrichment proportional range is chosen. From the research, from the perspective of control emission within 60s after the low temperature cold start,23%-25% oxygen enriched intake air is more appropriate for low temperature cold start of gasoline engine in this experiment.
     Fourth, based on the different steady working conditions and the different mixed intake air constituent conditions, the testing program is designed, and the power performance, economy performance, combustion characteristic and emission performance are tested. Gasoline engine performance with intake air of O2 and O7/CO2 is respectively researched; the emphasis is on research of matching between intake air constituents and engine working conditions, and with the premise that engine power and fuel consumption reach required value, HC, CO and NOA emission should be reduced as much as possible. From the test result of load& speed characteristics in oxygen enriched intake air gasoline engine, the 23%-25%O2 rate is the optimum oxygen enriched intake air proportion. As O? rate is further raised, NOx emission can be doubled, while other beneficial indicators range ability obviously weakens. Addition of 2% of CO2 into the 25% O2 will not only boost the motive performance and fuel economy, but also reduce HC, CO and NOx emission, and increase the combustion temperature.
     Fifth, with CHEMKIN, the mechanism of isooctane Chemical Reaction Kinetics is imported, and combustion process with different intake air constituents is simulated, the model accuracy is verified based on test, impact of intake air constituents on intermediate reaction groups and isooctane oxidization mechanism is analyzed, thus insufficiency of experimental study is supplemented, and change of combustion process of oxygen enriched gasoline engine after compression ratio and excess air ratio altered is also analyzed.
引文
[1]Fuquan (Frank) Zhao.汽油车近零排放技术[M].北京:机械工业出版社,2010
    [2]Jepson Stewart. Oxygen-enhanced combustion provides advantages in Al-melting furnaces[J]. Industrial Heating,2005,72(6):29-35
    [3]http://baike.baidu.com/view/583443.htm1#6
    [4]冯洪庆.催化剂组合控制稀燃汽油机排放策略的试验研究[J].内燃机学报,2007,25(4):322-325
    [5]蒋德明.火花点火发动机燃烧研究新进展[J].车用发动机,2008,(5):1-8
    [6]W. J. Wartinbee, Jr. Emissions. Study of Oxygen Enriched Air[C]. SAE 710606
    [7]Olikara C. and G. L. Borman. A Computer Program for Calculating Properties of Equilibrium combustion Products with Some Application to IC Engines[C]. SAE 750468
    [8]A. A. Quader. Exhaust Emissions and Performance of a Spark Ignition Engine Using Oxygen Enriched Intake Air[J]. Combustion Science and Technology,1978,19:81-86.
    [9]B.Detuncq, J.Williams, C.Guernier, et al. Performance of a Spark Ignition Engine Fueled by Natural Gas Using Oxygen Enriched Air[C]. Society of Automotive Engineers. SAE 881658
    [10]S. Kajitani, N. Sawa, T. Mccomiskey, et al. A Spark Ignition Engine Operated by Oxygen Enriched Air [C]. Society of Automotive Engineers. SAE 922174.
    [11]H. K. Ng, R. R. Sekar, S. W. Kraft, et al. The Potential benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle[C]. Society of Automotive Engineers. SAE 932803.
    [12]Kashmir S. Virk, Uygur Kokturk and Craig R.Bartels. Effects of Oxygen-Enriched Air on Diesel Engine Exhaust Emissions and Engine Performance[C]. SAE 931004.
    [13]沈光林.膜法富氧助燃技术在节能和环保中的应用[J].能源环境保护,2005,19(6):5-7
    [14]K. S. Virk, U. Kokturk, C. R. Barteks. Effects of oxygen-enriched air on diesel engine exhaust emissions and engine performance[C]. SAE 931004
    [15]R. B. Poola, D. E. Longman. Membrane-Based Nitrogen-Enriched Air for NOx Reduction in Light-Duty Diesel Engines[C]. SAE 2000-01-0228
    [16]C. D. Rakopoulos, D. T. hountalas and Y. A. Levendis. Operational and Environmental Evaluation of Diesel Engines Burning Oxygen-Enriched Intake Air or Oxygen-Enriched Fuels, AReview[C]. SAE 2004-01-2924
    [17]D. E. Longman and R. L. Cole. Injection of Air/Oxygen-Enriched Air to Reduce Diesel Exhaust Emissions[J]. Joint Meeting of the US Sections of the Combustion Institute,2005(5):56-64
    [18]S. M. Connell and R. Sekar. Nitrogen-enriched Air for the Reduction of NOx Emissions in Heavy-Duty Diesel Engines, Ⅱ.A.8.Advanced Combustion Engine R&D,2004 Annual Progress Report, Energy Efficiency and Renewable Energy[J]. Office of Freedom CAR and Vehicle Technologies,2004(12):209-218
    [19]肖广飞.氧化剂改善内燃机燃烧的研究[D].上海交通大学博士学位论文,2007
    [20]沈光林.膜法富氧技术用于节能研究[J].节能,1996,(6):28-30
    [21]Xiao Guangfei, Qiao Qinqi, Li Gong, et al. Investigation of RunningBehaviors of an LPG SI Engine with Oxygen-enriched Air during Start/warm-up and Hot Idling[J]. International Journal of Automotive Technology, Ksae,2007, (4):437-444
    [22]左承基.富氧燃烧对柴油机排放特性的影响[J].小型发动机与摩托车,2003,32(5):15-18
    [23]张黎立.富氧助燃对天然气/汽油双燃料发动机动力性和排放性能影响的试验研究[D].重庆大学硕士学位论文,2006
    [24]张人杰.富氧条件下发动机燃烧的数值模拟与分析[D].吉林大学硕士学位论文,2007
    [25]关强,姚春玲.基于分形理论的汽油机富氧燃烧模型[J].东北林业大学学报,2008,36(4):56-57
    [26]于秀敏,杨睿,唐世春等.汽油机与LPG发动机冷起动特性试验[J].农业机械学报,2007,38(4):4-7
    [27]Horie K., Takahasi H., Akazaki S., Emissions reduction during warm-up period by incorporating a wall—wetting fuel model on the fuel injection strategy during engine starting[C]. SAE 952478
    [28]姚春玲.汽油机冷起动过程富氧燃烧试验研究[J].哈尔滨工程大学学报,2009,30(8):940-943
    [29]R. B. Poola, K. C. Stork, R. Sekar, et al. Variable Air Composition with Polymer Membrane-A New Low Emissions Tool[C]. SAE 980178
    [30]K. Callaghan, S. Nemser, W. Johanson. Oxygen enriching membranes for reduced cold start emissions[C]. SAE 1999-10-1232
    [31]肖广飞,乔信起,栗工等.膜法富氧进气降低点燃式发动机冷起动排放[J].上海交通大学学报,2006,40(8):1297-1300
    [32]栗工.乔信起.李理光.LPG点燃式发动机冷起动首循环进气富氧试验研究[J].内燃机学报,2007,25(1):53-59
    [33]Nasser S H, Morris S and James S. A Novel Fuel Efficient and Emission Abatement Technique for Internal Combustion Engines[C]. SAE 982561
    [34]白敏丽,朱国朝,李河等.臭氧强化内燃机燃烧研究[J].内燃机工程,1999,(4):28-31
    [35]白敏丽,李河,许锋等.臭氧助燃内燃机的燃烧及排放性能试验研究[J].小型内燃机,1997,26(6):20-23
    [36]谢法,杨绍普,高文中.柴油发动机臭氧助燃技术应用研究[J].内燃机,2007,(2):42-44
    [37]邱先文.降低车用稀燃汽油机有害排放物NOx的排气再循环的研究[D].天津大学博士论文,2002
    [38]郭志东.三菱公司缸内直喷汽油机的废气净化新技术[J].国外内燃机,1998,(6):58-60
    [39]S. X. Shi, et al. A Study of Effect of EGR on Exhaust emissions and Fuel Economy for a Five-Valve SI Engine[J]. Proceedings of 1999 Sino-Korea International Conference on Internal Combustion Engines,1999, (8):188-194
    [40]秦静,尧命发,段家修等.内燃机燃烧研究的新进展[J].小型内燃机与摩托车,2009,4(31):41-44
    [41]Kevin Callaghan, Stuart Nemser. Oxygen Enriching Membranes for Reduced Cold Start Emissions[C]. SAE 1999-10-1232
    [42]R. B. Poola, D. E. Longman. Membrane-Based Nitrogen-Enriched Air for NOx Reduction in Light-Duty Diesel Engines[C]. SAE 2000-01-0228
    [43]姚春德,居钰生,孙家峰等.非助燃气体对准均质压燃燃烧过程的影响[J].内燃机学报,2003,21(4):205-210
    [44]田芳,关强,李宏刚.汽油机掺烧CO2对NOx排放性能的改善[J].东北林业大学学报,2009,36(6):57-60
    [45]陈暹,蔡锐彬,陈子健.排气再循环中CO2对车用直喷式柴油机排气排放的影响[J].小型内燃机,1999,28(3):22-25
    [46]吕林,姚光荣,温苗苗.利用水降低柴油机NOx排放研究[J].武汉理工大学学报(交通科学与工程版),2004,2(28):159-162
    [47]鄢岚,任自中.工质加湿对柴油机NOx排放的影响[J].柴油机,2007,29(2):32-35
    [48]刘青妍.进气成分对压燃式发动机燃烧影响的研究[D].上海交通大学硕士学位论文,2007
    [49]章俊良,黄震,Shiga Seiichi等.EGR与富氧进气控制柴油机排放的机理探讨[J].内燃机学报,1998,(4):399-404
    [50]周玉明.内燃机废气排放及控制技术[M].北京:人民交通出版社,2001
    [51]姚春玲.汽油机富氧燃烧试验及数值模拟[D].东北林业大学硕士毕业论文,2008
    [52]Yuh-Yih Wu, K. David Huang. Improving the Performance of a Small Spark-Ignition Engine by Using Oxygen-Enriched Intake Air[C]. SAE 2007-32-0004
    [53]Kazuro Hotta, Yuki Yoshikawa and Kiyotaka Okuma, et al. Characteristics of Combustion in Lean Mixtures Initiated by an Imploding Detonation Plug[C]. SAE 2007-01-1911
    [54]Helmut Eichiseder, Eckard Baumann and Peter Muller. Gasoline Direct Injection-A Promising Engine Concept for Future Demands[C]. SAE 2000-01-0248
    [55]Per Vesterberg, von Scheele and Grzegorz Moroz. Fuel Savings Experience from 80 Oxy-fuel Installations in Reheat Furnaces[J]. Iron&steel technology,2005, (5):204-211
    [56]Rauscher M.分层喷水对降低氮氧排放的影响[J].国外内燃机,1997,(1):25-32
    [57]张志沛.汽车发动机原理[M].大连:大连海运学院出版社,1993
    [58]Deschamps B, Snyder R, Baritaud T. Effect of Flow and Gasoline Stratification on Combustion in a 4-Valve SI Engine[C]. SAE 941993
    [59]汪映,周龙保,蒋德明.均匀充量压缩燃烧方式的研究进展及存在问题[J].车用发动机,2002,10(5):6-9
    [60]朱涛.EGR对汽油机排放和性能影响的研究[D].天津大学硕士论文,2004
    [61]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001
    [62]Shi Shao-xi. Recent Process in Combustion Technologies for Automotive Engines[J].燃 烧科学与技术,2001, (1):1-10
    [63]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005
    [64]栗工,乔信起,李理光等.LPG点燃式发动机冷起动首循环进气富氧试验研究[J].内燃机学报,2007,25(1):53-59
    [65]S. Kajitanti, N. Sawa, T. MeComiskey, et al. A Spark Ignition Engine Operated by Oxygen Enriched Air. Society of Automotive Engineers[C]. SAE 922174
    [66]蒋德明,陈长佑,杨嘉林等.高等车用内燃机原理[M].西安:西安交通大学出版社,2007
    [67]蒋德明,黄左华.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007
    [68]苏万华,赵华,王建听等.均质压燃低温燃烧发动机理论与技术[M].北京:科学出版社,2010
    [69]贾明,解茂昭.均质压燃发动机燃烧特性的详细化学反应动力学模型[J].内燃机学报,2004,22(2):122-128
    [70]蒋炎坤.CFD辅助发动机工程的理论和应用[M].北京:科学出版社,2004
    [71]Shadi Gharahbaghi, Trevor S. Wilson, Hongming Xu,Simon, et al. Modeling and Experimental Investigations of Supercharged HCCI Engines[C]. SAE 2006-01-0634
    [72]SONG Rizhi, HU Tiegang, LIU Shenghua, et al. Investigation on the Emission Characteristics of a SI Engine Fueled with Alcohol Gasoline Blends During Cold Start Process [J]. Transaction s of CSICE,2008,26(3):243-247
    [73]刘巽俊.内燃机的排放与控制[M].北京:机械工业出版社,2002
    [74]栗工,李理光,邱冬平等.冷起动首循环瞬态HC排放与进气道燃料输运特性的关系[J].燃烧科学与技术,2008,14(1):73-78
    [75]Huang Z. H., Guo H. T.. Predietion and Experimental study on hydroearbon Emission from combustion Chamber DePositsinas Park Ignition Engine[J]. Combust.Sei and Tech,1998, (3):67-83
    [76]栗工,李理光,邱冬平等.冷起动首循环瞬态HC排放特性试验研究[J].内燃机学报,2007,25(2):118-124
    [77]Tang X G. An artificial UEGO sensor for engine cold start-meth-odology design and performance[C]. SAE 2000-01-0541.
    [78]Hu Tie-gang, Wei Yan-ju, Liu Sheng-hua, et al. Improvement of spark-ignition (SI) engine combustion and emission during cold-start, fueled with methanol/gasoline blends [J]. Energy and Fuels,2007,21(1):171-175
    [79]Liguang Li, Gong Li, Dongping Qiu. A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model[C]. SAE 2008-01-1652
    [80]Guillaume Bression, Dominique Soleri, Sylvain Savy, et al. A Study of Methods to Lower HC and CO Emissions in Diesel HCCI[C]. SAE 2008-01-0034
    [81]Reggie Zhan, Scott T.Eakle, Phillip Weber. Simultaneous Reduction of PM, HC, CO and NOx Emissions from a GDI Engine[C]. SAE 2010-01-0365
    [82]李兴虎.汽车环境保护技术[M].北京:北京航空航天出版社,2004
    [83]Swati Bhimasenrao Wadawadagi, Reddy C Venkataramana. Experimental Investigations on Reduction of CO and HC in SI Engine with Catalytic Converter[C]. SAE 2007-32-0055
    [84]Kanta Yamamoto, Keishi Takada, Jin Kusaka, et al. Influence of Diesel Post Injection Timing on HC Emissions and Catalytic Oxidation Performance[C]. SAE 2006-01-3442
    [85]辛志玲,赵基钢,张大全等.富氧膜材料的研究进展与应用[J].化工科技,2009,17(2):45-49
    [86]沈光林.膜法富氧技术的研究与应用[J].现代节能,1998,14(5):4-7
    [87]Mulder M. Basic Principles of Membrane Technology.2nd Ed. Kluwer Academic Publishers, The Netherlands:Dordrecht,2003
    [88]R. B.Poola. Utilizing in-take-air oxygen-enrichment technology to reduce cold-phase emissions[C]. SAE 952420
    [89]E. Robert Becker, Richard J. Watson. Future trends in automotive emission control[C]. SAE 980413
    [90]Myung-Sik Choi, Hayung Sun, The Study of HC Emission Characteristics and Combustion Stability with Spark Timing Retard at Cold Start in Gasoline Engine Vehicle[C]. SAE 2000-01-1082
    [91]Kristine Drobot Isherwood, Jan-Roger Linna, et al, Using On-board Fuel Reforming by Partial Oxidation to Improve SI Engine Cold-Start Performance and Emissions[C]. SAE 980939
    [92]Jerald A. Caton. Use of a Cycle Simulation Incorporating'the Second Law of Thermodynamics:Results for Spark-Ignition Engines Using Oxygen Enriched Combustion Air[C]. SAE 2005-01-1130
    [93]Rajesh G. Shyani, Jerald A. Caton. Results from a Thermodynamic Cycle Simulation for a Range of Inlet Oxygen Concentrations Using Either EGR or Oxygen Enriched Air for a Spark-Ignition Engine[C]. SAE 2009-01-1108
    [94]纪常伟,潘耀江.活性炭吸附汽油机冷起动HC排放的实验[J].农业机械学报,2007,38(3):61-64
    [95]D. K. Mather, D. E. Foster, R. B. Poola, et al. Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions[C]. SAE 2002-01-1158
    [96]傅维镳,龚景松,侯凌云.含水燃料的燃烧[M].北京:高等教育出版社,2009
    [97]Kimitoshi TANOUE, Wataru MIENO, Tomohiro MIYAHARA, et al. Effects of Flame Structure and Inert Gases on Extinction Properties in DME Diffusion Flames[C]. SAE 2007-01-2013
    [98]K.A. Subramanian, A. Ramesh. Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine[C]. SAE 2001-01-0205
    [99]Ronald J. Donahue, David E. Foster. Effects of Oxygen Enhancement on the Emissions from a DI Diesel via Manipulation of Fuels and Combustion Chamber Gas Composition[C]. SAE 2000-01-0512
    [100]Takayuki Hirano, Tetsuo Nohara. DME Hybrid Power System with CO2 Recycling for Commercial Vehicles[C]. SAE 2010-01-1789
    [101]Md. Nurun Nabi, Johan Einar Hustad. Effect of Fuel Oxygen on Engine Performance and Exhaust Emissions Including Ultrafine Particle Fueling with Diesel-Oxygenate Blends[C]. SAE 2010-01-2130
    [102]Oldrich Vitek, Jan Macek, Milos Polasek. Comparison of Different EGR Solutions[C]. SAE 2008-01-0206
    [103]侯宽新.基于详细化学反应机理的燃烧室燃烧流场计算[D].南京航空航天大学硕士学位论文,2007
    [104]https://www-pls.llnl.gov/
    [105]CHEMKIN-Tutorials Manual. Reaction design
    [106]CHEMKIN-Theory Manual. Reaction design

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700