非结构网格的并行多重网格算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非结构网格作为计算流体力学的一个重要研究分支,被广泛地应用于复杂外形的实验测试和工程计算中。受几何形体和空间位置的影响,非结构网格中的流体求解需要更多的存储空间和计算时间,对数值算法的有效性和高效性提出了更高的要求。多重网格方法作为非结构网格的高效解算器,其串行和并行实现,在时空上都具有优良的特性,成为近年来备受研究者关注的计算方法。然而,多重网格的应用,对非结构网格计算格式的适应能力存在一定差别。有限体积方法中,单元中心型计算格式的多重网格方法,远远不如在节点中心型计算格式中应用得自然流畅。
     本文的研究工作围绕单元中心型计算格式的多重网格方法展开。首先,对多重网格方法的应用研究进行了简单的回顾,介绍了其高效性的原理、误差校正格式、分类方法及其并行化策略。然后,从流体计算的控制方程出发,使用有限体积方法离散,引入多重网格的计算过程,研究了传统的插值、限制算子的计算公式,分析了经典收敛理论对插值、限制算子的精度要求,为提高相应数值传递算子的精度提供理论依据。接着,针对单元中心型计算格式不能有效地处理各种网格类型,形成质量较好、适合计算的粗网格层次的问题,重点研究开发了三种不同的聚合多重网格方法,分别用于处理高延展性网格单元、提高粗网格质量、改进树结构粗化过程,并通过相关算例验证了各自的有效性和高效性。最后,基于消息传递模型,实现了三种不同多重网格方法的并行化应用,对大规模的流体问题开展了并行计算研究和测试。
     本文取得的主要研究成果包括:
     1.提出了强耦合型网格聚合策略。借鉴代数多重网格能有效处理各向异性矩阵的相关经验,将非结构网格的几何特征转化为数值关系,通过数值大小区分几何网格的各向异性程度,形成单元强弱耦合关系,用于聚合生成粗网格层次,弥补了单元中心型计算格式不能有效处理高延展性网格的缺陷。为减小粗网格层的计算复杂度以及适应不同维度的计算需求,对高延展性网格单元使用多次强耦合聚合,其它网格单元使用单元中心型聚合。通过对不同算例的串行测试,对比了现有几种聚合方法的计算性能,验证了本方法的有效性和高效性。
     2.提出了三种一阶精度的插值算子。根据对经典收敛理论和改进原则的分析,采用几何重构的思想,扩展插值算子的计算节点模板使其具有一阶数值精度,并在此基础上分别以控制体积、控制面积和相对距离为依据,建立了相应的数值平均插值方程。通过对二维粘性流体的数值求解,对比了七种不同的插值算子,对其适用的问题类型及其范围进行了测试和总结。
     3.提出了基于纵横比的组合型网格聚合策略。由于聚合生成的网格质量决定了粗网格层的方程离散以及误差校正精度,对多重网格方法的收敛加速效果具有重要影响,纵横比就是用于衡量网格质量的重要参数之一。通过纵横比标示各向异性几何特征,同时作为单元聚合的判定标准,修改标准的波前聚合队列,使其能够顺利处理不同类型单元的聚合,对具有各向异性特征的网格单元使用基于单元的聚合方式,其它单元使用基于节点的聚合方式。在多个算例的测试中,对比了MGridGen软件的生成结果,验证了本方法生成的粗网格具有较高的质量,提供了比较理想的收敛加速效果。
     4.提出了改进型的树结构网格粗化方法。利用非结构网格的全局划分建立的树形数据结构,具备层次化存储网格单元的能力,为建立粗网格层次提供了另一种思路。针对层次结构的建立受限于单元中心的空间位置,不能准确捕捉网格的各向异性特征,导致粗网格质量低下的问题,采用不同的数据结构处理不同的单元聚合过程,修正了各向异性网格单元的聚合过程,通过对算例数值求解,同时纵向对比了强耦合型聚合算法的计算结果,验证了本方法的有效性。
     5.实现了三种多重网格聚合算法的并行化应用。基于消息传递模型的MPI标准,对三种聚合策略进行了并行化优化实现,发展了适合非结构网格的大规模并行计算方法,在高性能并行计算平台上,对多个算例进行了测试,计算结果表明开发的三种多重网格算法具有较高的计算精度、并行效率性和良好的可扩展性,为工程计算提供重要的实现方法。
As an important branch of research in computational fluid dynamics, unstructuredgrid has been widely applied to the complex shape of the experimental tests andengineering calculations. The numerical solution of the fluid on the unstructured gridrequires more storage space and computing time, which is affected by the geometry andspatial location, and puts forward higher requirements on the effectiveness andefficiency. As an efficient unstructured grid solver, multigrid has excellentcharacteristics both in time and space for serial and parallel implementation, which hasattracted researchers much more attentions for this method in recent years. However,there are some differences in multigrid application for different unstructured gridcomputing format. The application of multigrid in Cell-Centered scheme is far lesssmoothly than in the Vertex-Centered scheme with finite volume method.
     This thesis details our researches on multigrid used in Cell-Centered scheme.Firstly, we conduct a simple review on multigrid application, and then introduce theprinciple of efficiency, error correction format, classification, parallelization strategies.Secondly, starting with discretization of governing equations of fluid, we indtroducehow to use the multigrid for finite volume method on unstructured grid, and study thecalculations of traditional interpolation and restriction operators, then we analyzetheclassical convergence theory on these operators, which will be useful in improving thecorresponding numerical accuracy. Thirdly, we research on the multigrid coarseningproblems for Cell-Centered scheme, which can’t provide suitable complexity and goodquality coarsen grid with variety of grid types. Three different agglomeration multigridmethods have been developed for using to handle the highly stretched grids, improvethe quality of coarse grid and amend the tree-structured coarsening process respectively.The effectiveness and efficiency of the three different agglomeration methods have beenverified by many examples. Finally, the three different multigrid methods have beenparallelized with message passing model, and conducted parallel computing researchand testing on large-scale fluid problems.
     The primarily innovative works in this thesis are as follows.
     1.Strongly coupled agglomeration multigrid is developed. The algebric multigridcan effectively deal with anisotropic matrix compution. We use numerical relationshipform geometric characteristics of unstructured grid to denote degree of anisotropy, andform strong or weak coupling relations between cells for generating coarse grid levels.It is useful to deal with highly stretched grid for Cell-Centered scheme. In order toreduce the computational complexity of coarse grid level and meet the needs ofdifferent dimensions, several times strongly coupled agglomeration are conducted onhighly stretched grid for Cell-Centered scheme. Through serial different examples, comparing the performance of several exiting agglomeration methods, those resultsverify what the method we present with effecitiveness and efficiency.
     2.Three second-order accuracy interpolation operators are developed. Accordingto classic convergence theory and principle, we use geometric reconstruction andextension computing node stencil for interpolation operator, so it has a second-ordernumerical accuracy. On this basis, we apply control volume, the control area and therelative distance for average value interpolation equation respectively. When comparingseven different interpolation operators, it is applicable to the numerical solution fortwo-dimensional viscous fluid.
     3.Aspect ratio based combination agglomeration method is developed. As thequality of coarse grid generated by agglomeration has important effect on multigridconvergence acceleration methods, aspect ratio is one of the most important charactersto measure the quality. We apply aspect ratio as a standard of anisotropic grid andagglomeration, and modify the front queue to enable to deal with different types of gridcells. This method use cell-based agglomeration for anisotropic cells and vertex-basedagglomeration for the others. It is providing the high quality coarse grid and idealconvergence ratio for this method in many testing cases, comparing with MGridGen.
     4.We propose improved tree-based data structure grid coarsening method. Theglobal division of unstructured grid established tree data structure with hierarchicalstorage capacity of the grid cell, which can be used for coarse grid level. It can notaccurately capture the anisotropic characteristics for the space location of cell center,which leads to low-quality coarse grid. We use different data structure to process cellagglomeration process, and verify the effectiveness of the method by comparing withstrongly coupled agglomeration on numerically solving the numerical examples.
     5. We conduct three agglomeration multigrid methods for parallelizationapplication. The parallelization is used for massive unstructured grid based on messagepassing model with MPI standard. The computation results indicate that the threeagglomeration multigrid methods are acceptable, and could be used for followingmassive parallel computation and engineering application.
引文
[1] Anderson J D. Computational Fluid Dynamics:The Basics with Applications[M]. New York: McGraw-Hill, Inc.,1995:3.
    [2]张涵信.计算流体力学:差分方法的原理和应用[M].北京:国防工业出版社,2003.
    [3] Kim K H, Kim C, Rho O-H. Methods for the Accurate Computations ofHypersonic Flows Ii. Shock-Aligned Grid Technique.[J]. Journal ofComputational Physics,2001,174:81~119.
    [4] Papadopoulos P, Venkatapathy E, Prabhu D, et al. Current Grid-GenerationStrategies and Future Requirements in Hypersonic Vehicle Design, Analysis andTesting [J]. Applied Mathematical Modelling,1999,23:705~735.
    [5] Murman S M, Rizk Y M, Schiff L B. Coupled Numerical Simulation of theExternal and Engine Inlet Flow for the F-18at Large Incidence [J]. AircraftDesign,2000,3:65~77.
    [6]张来平.非结构网格、矩形/非结构混合网格复杂无粘流场的数值模拟[D].四川绵阳:中国空气动力研究与发展中心,1996:1~7.
    [7] Mavriplis D J. Unstructured-Mesh Discretizations and Solvers forComputational Aerodynamics [J]. AIAA Journal,2008,46(6):1281~1298.
    [8] Moinier P. Algorithm Developments for an Unstructured Viscous Flow Solver[D]. Oxfordshire: St Hugh's College of Oxford University,1999:5~6.
    [9] Cockburn B, Shu C W. The Runge-Kutta Discontinuous Galerkin Method forConservation Laws V: Multidimensional Systems [J]. Journal of ComputationalPhysics,1998,141(2):199~224.
    [10] Wang Z J. Spectral (Finite) Volume Method for Conservation Laws onUnstructured Grids: Basic Formulation [J]. Journal of Computational Physics,2002,178(1):210~251.
    [11] Liu Y, Vinokur M, Wang Z J. Spectral Difference Method for UnstructuredGrids I: Basic Formulation [J]. Journal of Computational Physics,2006,216(2):780~810.
    [12] Jameson A, Schmidt W, Turkel E. Numerical Solution of the Euler Equations byFinite Volume Methods Using Runge-Kutta Time-Stepping Schemes [C].14thFluid and Plasma Dynamics Conference. AIAA Inc.,1981:41~60.
    [13] Jameson A. Solution of the Euler Equations by a Multigrid Method [J]. AppliedMathematics and Computation,1983,13(2):327~356.
    [14] Venkatakrishnan V, Mavriplis D J. Implicit Solvers for Unstructured Meshes [J].Journal of Computational Physics,1993,105(1):83~91.
    [15] Wang H H. A Parallel Method for Tridiagonal Equations [J]. ACM Transactionson Mathematical Software,1981,7(2):170~183.
    [16] Mavriplis D J. On Convergence Acceleration Techniques for UnstructuredMeshes [R]. Hampton, Virginia: Institute for Computer Applications in Scienceand Engineering,1998:5~9.
    [17] Jameson A, Yoon S. Lower-Upper Implicit Schemes with Multiple Grids for theEuler [J]. AIAA Journal,1987,25:929~935.
    [18] Saad Y, Schultz M H. Gmres: A Generalized Minimal Residual Algorithm forSolving Nonsymmetric Linear Systems [J]. SIAM Journal on Scientific andStatistical Computing,1986,7(3):856~869.
    [19] Rasetarinera P, Hussaini M Y. An Efficient Implicit Discontinuous SpectralGalerkin Method [J]. Journal of Computational Physics,2001,172(2):718~738.
    [20] Bassi F, Rebay S. A High-Order Accurate Discontinuous Finite Element Methodfor the Numerical Solution of the Compressible Navier-Stokes Equations [J].Journal of Computational Physics,1997,131(2):267~279.
    [21] Brandt A. Multi-Level Adaptive Solutions to Boundary Value Problems [J].Mathematics and Computers in Simulation,1977,31:333~390.
    [22] Hülsemann F, Kowarschik M, Mohr M, et al. Parallel Geometric Multigrid [C].Numerical Solution of Partial Differential Equations on Parallel Computers.Springer,2005:165~208.
    [23] Solchenbach K, Trottenberg U. On the Multigrid Acceleration Approach inComputational Fluid Dynamics [C].4th International DFVLR Seminar onFoundations of Engineering Sciences on Parallel Computing in Science andEngineering. Springer-Verlag, Inc.,1988:145~158.
    [24] Yang U M. Parallel Algebraic Multigrid Methods-High PerformancePreconditioners [C]. Numerical Solution of Partial Differential Equations onParallel Computers. Springer,2006:209~236.
    [25] Brandt A, MacCormick S, Ruge J. Algebraic Multigrid (Amg) for AutomaticMultigrid Solution with Application to Geodetic Computations [R]. Fort Collins:Institute for Computational Studies,1983:37~59.
    [26] Prewitt N C, Belk D M, Shyy W. Parallel Computing of Overset Grids forAerodynamics Problems with Moving Objects [J]. Progress in AerospaceSciences,2000,36:117~172.
    [27] Top500[EB/OL]. http://www.top500.org/lists/2012/06, June2012.
    [28] Kogge P. Exascale Computing Study: Technology Challenges in AchievingExascale Systems [R]. DARPA-2008-13,2008.
    [29] Mavriplis D J, Darmofal D, Keyes D, et al. Petaflops Opportunities for the NasaFundamental Aeronautics Program [C].18th AIAA Computational FluidDynamics Conference. AIAA, Inc.,2007:25~61.
    [30] Komatitsch D, Erlebacher G, G oddeke D, et al. High-Order Finite-ElementSeismic Wave Propagation Modeling with Mpi on a Large Gpu Cluster [J].Journal of Computational Physics,2010,229(20):7692~7714.
    [31] T lke J, Krafczyk M. Teraflop Computing on a Desktop Pc with Gpus for3dCfd [J]. Int. J. Comput. Fluid Dyn.,2008,22(7):443~456.
    [32] Fedorenko R P. The Speed of Convergence of One Iterative Process [J]. USSRComputational Mathematics and Methamtical Physics,1964,4:227~235.
    [33] Bakhvalov N S. On the Convergence of a Relaxation Method under NaturalConstraints on an Elliptic Operator [J]. Zhurnal Vychislitel'noj MatemakiiMatematicheskoj Fiziki,1966,6:861~883.
    [34] Ni R H. A Multiple-Grid Scheme for Solving Euler Equations [J]. AIAA Journal,1982,20(11):1565~1571.
    [35] Jameson A, Mavriplis D J. Finite Volume Solution of the Two-DimensionalEuler Equations on a Regular Triangular Mesh [J]. AIAA Journal,1985.
    [36] Mavriplis D J. Solution of the Two-Dimensional Euler Equations onUnstructured Meshes [D]. Princeton, New Jersey: Mechanical and AerospaceEngineering, Princeton University,1987.
    [37] Mavriplis D J. A3d Agglomeration Multigrid Solver for the Reynolds-AveragedNavier-Stokes Solver for Unstructured Meshes [J]. International Journal forNumerical Methods in Fluids,1996,23(1):527~544.
    [38] Mavriplis D J. Multigrid Strategies for Viscous Flow Solvers on AnisotropicUnstructured Meshes [J]. Journal of Computational Physics,1998,145(1):141~165.
    [39] Lassaline J V, Zingg D W. An Investigation of Directional-Coarsening andLine-Implicit Smoothing Applied to Agglomeration Multigrid [J]. AIAA Journal,2003.
    [40] Peraire J, Peir J, Morgan K. A3d Finite Element Multigrid Solver for the EulerEquations [C]. Aerospace Sciences Meeting and Exhibit,30th. Reno, Nevada:AIAA, Inc.,1992.
    [41] Morano E, Dervieux A. Looking for O(N) Navier-Stokes Solutions onNon-Structured Meshes [C]. Sixth Copper Mountain Conference on MultigridMethods. NASA,1993:449~463.
    [42] Riemslagh K, Dick E. A Multigrid Method for Steady Euler Equations onUnstructured Adaptive Grids [C]. Sixth Copper Mountain Conference onMultigrid Methods. NASA,1993:231~247.
    [43] Ollivier-Gooch C F. Multigrid Acceleration of an Upwind Euler Solver onUnstructured Meshes [J]. AIAA Journal,1995,33:1822~1827.
    [44] South J, Jerry C, Brandt A. Application of a Multilevel Grid Method toTransonic Flow Condition [C]. Transonic Flow Conditions in Turbomachinary.Hemisphere Publications,1977.
    [45]刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995:40~42.
    [46] Fidkowski K J, Oliver T A, Lu J, et al. P-Multigrid Solution of High-OrderDiscontinuous Galerkin Discretizations of the Compressible Navier-StokesEquations [J]. Journal of Computational Physics,2005,207(1):92~113.
    [47] Emans M. Performance of Parallel Amg-Preconditioners in Cfd-Codes forWeakly Compressible Flows [J]. Parallel Computing,2010,36(5):326~338.
    [48] Conneu S D, Holmes D G. A3d Unstructured Adaptive Multigrid Scheme forthe Euler Equations [J]. AIAA Journal,1994,32(8):1626~1632.
    [49] Parthasarathy V, Kallinderis U. A New Multigrid Approach for3d Unstructured,Adaptive Grids [J]. AIAA Journal,1994,32(5):956~963.
    [50] Bonhaus D L. An Upwind Multigrid Method for Solving Viscous Flows onUnstructured Triangular Meshes [D]. Ohio: The School of Engineering andApplied Science,1993.
    [51] Burgerscentrum J M. Iterative Solution Methods [J]. Applied NumericalMathematics,2011,51(4):437~450.
    [52] Moinier P, Müller J-D, Giles M B. Edge-Based Multigrid Schemes for HybridGrids [C].4th Numerical Methods for Fluid Dynamics. ICFD,1998:425~432.
    [53] Müller J-D. Coarsening3-D Hybrid Meshes for Multigrid Methods [C].9thCopper Mountain Multigrid Conference.1999.
    [54] Lallemand M H, Steve H, Dervieux A. Unstructured Multigridding by VolumeAgglomeration: Current Status [J]. Computers&Fluids,1992,21(3):397~433.
    [55] Lambropoulos N K, Koubogiannis D G, Giannakoglou K C. Acceleration of aNavier-Stokes Equation Solver for Unstructured Grids Using AgglomerationMultigrid and Parallel Processing [J]. Computer Methods in Applied Mechanicsand Engineering,2004,193:781~803.
    [56] Pandya M J, Frink N T. Agglomeration Multigrid for an Unstructured-Grid FlowSolver [C].42nd AIAA Aerospace Sciences Meeting&Exhibit. Reno, Nevada:AIAA, Inc.,2004.
    [57] Venkatakrishnan V, Mavriplis D J. Agglomeration Multigrid for theThree-Dimensional Euler Equations [J]. AIAA Journal,1995,33(4):633~640.
    [58] Lassaline J V, Zingg D W. Development of an Agglomeration MultigridAlgorithm with Directional Coarsening [C].14th AIAA Computational FluidDynamics Conference. Norfolk, Virginia: AIAA, Inc.,1999.
    [59] Carré G, Lanteri S. Parallel Linear Multigrid by Agglomeration for theAcceleration of3d Compressible Flow Calculations on Unstructured Meshes [J].Numerical Algorithms,2000,24:309~332.
    [60] Farhat C. Automatic Partitioning of Unstructured Meshes for the ParallelSolution of Problems in Computational Mechanics [J]. International Journal forNumerical Methods in Engineering,1993,36:745~764.
    [61] Kernighan B W, Lin S. An Efficient Heuristic Procedure for Partitioning Graphs[J]. The Bell system technical journal,1970,49(1):291~307.
    [62] Pothen A, Simon H D, Liu K P P. Partitioning Sparse Matrices withEigenvectors of Graphs [J]. SIAM J. Matrix Anal. Appl.,1990,11(3):430~452.
    [63] Karypis G, Kumar V. A Fast and High Quality Multilevel Scheme forPartitioning Irregular Graphs [J]. SIAM Journal on Scientific Computing,1998,20(1):359~392.
    [64] Karypis G, Kumar V. Parallel Multilevel K-Way Partitioning Scheme forIrregular Graphs [C]. Proceedings of the1996ACM/IEEE conference onSupercomputing. IEEE Computer Society,1996:35~56.
    [65] Mavriplis D J, Aftosmis M J, Berger M. High Resolution AerospaceApplications Using the Nasa Columbia Supercomputer [C]. Proceedings of the2005ACM/IEEE conference on Supercomputing. IEEE Computer Society,2005.
    [66] Moulitsas I, Karypis G. Multilevel Algorithms for Generating Coarse Grids forMultigrid Methods [C]. Proceedings of the2001ACM/IEEE conference onSupercomputing. ACM,2001:45~55.
    [67] Teresco J D, Devine K D, Flaherty J E. Partitioning and Dynamic LoadBalancing for the Numerical Solution of Partial Differential Equations [C].Numerical Solution of Partial Differential Equations on Parallel Computers.Springer,2006:55~88.
    [68] Chrisochoides N. A Survey of Parallel Mesh Generation Methods [C].Computational Science and Engineering. Springer-Verlag,2006.
    [69] Nastase C R, Mavriplis D J. High-Order Discontinuous Galerkin Methods Usinga Spectral Multigrid Approach [C].43rd AIAA Aerospace Sciences Meeting andExhibit. AIAA Inc.,2005:12~24.
    [70] Luo H, Baum J D, L hner R. A P-Multigrid Discontinuous Galerkin Method forthe Euler Equations on Unstructured Grids [J]. Journal of Computational Physics,2006,211(2):767~783.
    [71] Cleary A J, Falgout R D, Henson V E, et al. Coarse-Grid Selection for ParallelAlgebraic Multigrid [C]. Workshop on Parallel Algorithms for IrregularlyStructured Problems. Springer-Verlag,1998:104~115.
    [72] Sterck H D, Falgout R D, Nolting J W, et al. Distance-Two Interpolation forParallel Algebraic Multigrid [J]. Numerical Linear Algebra with Applications,2008,15:115~139.
    [73] Vaněk P, Mandel J, Brezina M. Algebraic Multigrid by Smoothed Aggregationfor Second and Fourth Order Elliptic Problems [J]. Computing,1996,56(3):179~196.
    [74] Notay Y, Vassilevski P S. Recursive Krylov-Based Multigrid Cycles [J].Numerical Linear Algebra with Applications,2008,15(5):473~487.
    [75] Weiss J M, Maruszewski J P, Smith W A. Implicit Solution of the Navier-StokesEquations on Unstructured Meshes [C].13th AIAA CFD Conference.Snowmass, CO.: AIAA, Inc.,1997.
    [76] Henson V E, Yang U M. Boomeramg: A Parallel Algebraic Multigrid Solverand Preconditioner [J]. Applied Numerical Mathematics,2002,41(2):155~177.
    [77] Sterck H D, Yang U M, Heys J J. Reducing Complexity in Parallel AlgebraicMultigrid Preconditioners [J]. SIAM Journal on Matrix Analysis andApplications,2004,27(4):1019~1039.
    [78] Krechel A, Stüben K. Parallel Algebraic Multigrid Based on SubdomainBlocking [J]. Parallel Computing,2001,27(8):1009~1031.
    [79] Falgout R D, Yang U M. Hypre: A Library of High Performance Preconditioners[C]. International Conference on Computational Science ICCS2002. Springer,2002:632~641.
    [80] Tuminaro R S, Tong C. Parallel Smoothed Aggregation Multigrid:AggregationStrategies on Massively Parallel Machines [C]. Supercomputing, ACM/IEEE2000Conference. IEEE Conference Publications,2000:5~25.
    [81] Notay Y. An Aggregation-Based Algebraic Multigrid Method [J]. ElectronicTransactions on Numerical Analysis,2010,37:123~146.
    [82] Gee M W, Siefert C M, Hu J J, et al. Ml5.0Smoothed Aggregation User'sGuide [R]. Albuquerque, NM: Computational Math&Algorithms SandiaNational Laboratories,2007:3~66.
    [83] Brezina M, Cleary A J, Falgout R D, et al. Algebraic Multigrid Based onElement Interpolation (Amge)[J]. SIAM Journal on Scientific Computing,2000,22(5):1570~1592.
    [84] Chartier T, Falgout R, Henson V E, et al. Spectral Element Agglomerate Amge[C]. Domain Decomposition Methods in Science and Engineering XVI. BerlinHeidelberg: Springer2007:513~521.
    [85] Jones J E, Vassilevski P S. Amge Based on Element Agglomeration [J]. SIAMJournal on Scientific Computing,2001,23(1):109~133.
    [86] Brezina M, Falgout R, MacLachlan S, et al. Adaptive Smoothed Aggregation(Αsa) Multigrid [J]. SIAM Review,2005,47(1):317~346.
    [87] Brezina M, Falgout R, MacLachlan S, et al. Adaptive Algebraic Multigrid [J].SIAM Journal on Scientific Computing,2006,27(4):1261~1286.
    [88] Gee M W, Hu J J, Tuminaro R S. A New Smoothed Aggregation MultigridMethod for Anisotropic Problems [J]. Numerical Linear Algebra withApplications,2009,16(1):19~37.
    [89] Emans M. Amg for Linear Systems in Engine Flow Simulations [C]. ParallelProcessing and Applied Mathematics. Springer,2010:350~359.
    [90] Watanabe K, Igarashi H, Honma T. Comparison of Geometric and AlgebraicMultigrid Methods in Edge-Based Finite-Element Analysis [J]. IEEETransactions on Magnetics2005,41(5):1672~1675.
    [91] Wu C T, Elman H C. Analysis and Comparison of Geometric and AlgebraicMultigrid for Convection-Diffusion Equations [J]. SIAM Journal on Scientificand Statistical Computing,2007,28(41):2208~2228.
    [92] Parsani M, Abeele K V d, Lacor C, et al. Implicit Lu-Sgs Algorithm forHigh-Order Methods on Unstructured Grid with P-Multigrid Strategy forSolving the Steady Navier-Stokes Equations [J]. Journal of ComputationalPhysics,2009,229(3):828~850.
    [93] Falgout R D, Vassilevski P S. On Generalizing the Amg Framework [J]. SIAMJournal on Matrix Analysis and Applications,2004,42(4):1669~1693.
    [94] Tang W P, Wan W L. Sparse Approximate Inverse Smoother for Multigrid [J].SIAM Journal on Matrix Analysis and Applications,2000,21(4):1236~1252.
    [95] Francescatto J, Dervieux A. A Semi-Coarsening Strategy for UnstructuredMultigrid Based on Agglomeraton [J]. International Journal for NumericalMethods in Fluids,1998,26:927~957.
    [96] Nishikawa H, Diskin B. Development and Application of AgglomeratedMultigrid Methods for Complex Geometries [C].40th Fluid DynamicsConference and Exhibit. AIAA Inc.,2010.
    [97] Mavriplis D. Directional Agglomeration Multigrid Techniques forHigh-Reynolds Number Viscous Flows [M]. Institute for Computer Applicationsin Science and Engineering, NASA Langley Research Center,1998.
    [98] Saad Y. Iterative Methods for Sparse Linear Systems [M]. Philadelphia: SIAMPress,2003:205~230.
    [99] Luo H, Sharov D, Baum J D. Parallel Unstructured Grid Gmres Lu-Sgs Methodfor Turbulent Flows [J]. AIAA Journal,2003,23(2):22~37.
    [100] Baker A H, Falgout R D, Kolev T, et al. Multigrid Smoothers for Ultra-ParallelComputing [J]. SIAM Journal on Scientific Computing,2010,33(5):2864~2887.
    [101] Fluent. Fluent6.2User's Guide [Z]. Lebanon, NH,2006.
    [102] Frink N T. Upwind Scheme for Solving the Euler Equations on UnstructuredTetrahedral Meshes [J]. AIAA Journal,1992,30(1):70~77.
    [103] Frink N T. Tetrahedral Unstructured Navier-Stokes Method for Turbulent Flows[J]. AIAA Journal,1998,36(1):1975~1982.
    [104] Anderson W K, Bonhaus D L. An Implicit Upwind Algorithm for ComputingTurbulent Flows on Unstructured Grids [J]. Computers&Fluids,1994,23(1):1~21.
    [105] Nielsen E J. Aerodynamic Design Sensitivities on an Unstructured Mesh Usingthe Navier-Stokes Equations and a Discrete Adjoint Formulation [D].Blacksburg, Virginia: Virginia Polytechnic Institute and State University,1998.
    [106] Mavriplis D J. Third Drag Prediction Workshop Results Using the Nsu3dUnstructured Mesh Solver [J]. AIAA Journal of Aircraft,2008,45(3):750~761.
    [107] Angelini R C, Sahu J. Visualization Techniques of a Cfd++Data Set of aSpinning Smart Munition [R]. U.S. Army Research Laboratory, ARL-TR-3380,2004.
    [108] Gerhold T, Friedrich O, Evans J, et al. Calculation of ComplexThree-Dimensional Configurations Employing the Dlr-Tau-Code [J]. AIAAJournal,1997,16:67~81.
    [109] Frédéric A, Namane M, Marc S. Code Saturne: A Finite Volume Code for theComputation of Turbulent Incompressible Flows-Industrial Applications [J].International Journal on Finite Volumes,2004,1.
    [110] Jasak H, Jemcov A, Tukovic Z. Openfoam: A C++Library for Complex PhysicsSimulations [C]. International Workshop on Coupled Methods in NumericalDynamics. Dubrovnik, Croatia,2007.
    [111] Adfc [EB/OL]. http://adfc.sourceforge.net/index_en.html, July,2012.
    [112] Gpde [EB/OL]. http://www.cfdpack.net/programs.html, June,2012.
    [113] Su2[EB/OL]. http://su2.stanford.edu/, June,2012.
    [114] Turek S, Becker C. Featflow-Finite Element Software for the IncompressibleNavier-Stokes Equations [Z]. University of Heidelberg, Institute for AppliedMathematics,1999.
    [115] Popinet S. Gerris: A Tree-Based Adaptive Solver for the Incompressible EulerEquations in Complex Geometries [J]. Journal of Computational Physics,2003,190(2):572~600.
    [116] Typhon Solver [EB/OL]. http://typhon.sourceforge.net/spip/, July,2012.
    [117]潘沙.高超声速气动热数值模拟方法及大规模并行计算研究[D].湖南长沙:国防科学技术大学,2010:38.
    [118]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [119] Versteeg H K, Malalasekera W. An Introduction to Computational FluidDynamics-the Finite Volume Methods, Second Edition [M]. England: Bell&Bain Limited, Glasgow,2007.
    [120] Zienkiewicz O C, Taylor R L. Finite Element Method-Fluid Dynamics [M].Barcelona, Spain: the International Centre for Numerical Methods inEngineering,2000.
    [121] Harris R, Wang Z J, Liu Y. Efficient Quadrature-Free High-Order SpectralVolume Method on Unstructured Grids: Theory and2d Implementation [J].Journal of Computational Physics,2008,227(3):1620~1642.
    [122] Diskin B, Thomas J L, Nielsen E J, et al. Comparison of Node-Centered andCell-Centered Unstructured Finite-Volume Discretizations. Part I: ViscousFluxes [J]. AIAA Journal,2009,48(6):1326~1338.
    [123] Diskin B, Thomas J L. Comparison of Node-Centered and Cell-CenteredUnstructured Finite-Volume Discretizations: Inviscid Fluxes [C].48th AIAAAerospace Sciences Meeting Including the New Horizons Forum and AerospaceExposition. AIAA. Inc,2010.
    [124] Mavriplis D J. Accurate Multigrid Solution of the Euler Equations onUnstructured and Adaptive Meshes [J]. AIAA Journal,1990,28(2):147~162.
    [125] MacCormack R W. The Effect of Viscosity in Hypervelocity Impact Cratering[R]. AIAA69-354,1969.
    [126] Steger J L, Warming R F. Flux Vector Spliting of the Inviscid GasdynamicEquations with Application on Finite Difference Methods [J]. Journal ofComputational Physics,1981,40:263~293.
    [127] Roe P L. Approximate Riemann Solvers, Parameter Vectors and DifferenceSchemes [J]. Journal of Computational Physics,1981,43:357~372.
    [128] Liou M-S. A New Flux Splitting Scheme [J]. Journal of Computational Physics,1993,107:23~39.
    [129] Van Leer B. Flux Vector Splitting for Euler Equations [J]. Lecture Notes inPhysics,1982,70.
    [130] Anderson W K, Thomas J L, Van Leer B. A Comparison of Finite Volume FluxVector Spliting for the Euler Equations [J]. AIAA Journal,1985.
    [131] Yee H C. Upwind and Symmetric Shock-Capturing Schemes [R].NASA-TM-89464,1987.
    [132] Wang Z J. A Fast Nested Multi-Grid Viscous Flow Solver for AdaptiveCartesian/Quad Grids [J]. International Journal for Numerical Methods in Fluids,2000,33:657~680.
    [133] Haselbacher A, Blazek J. Accurate and Efficient Discretization of Navier-StokesEquations on Mixed Grids [J]. AIAA Journal,2000,38(11):2094~2102.
    [134] Blazek J. Computational Fluid Dynamics: Principles and Applications, SecondEdition [M]. St Augustin, Germany: Elsevier Ltd.,2005.
    [135] Venkatakrishnan V. Convergence to Steady State Solutions of the EulerEquations on Unstructured Grids with Limiters [J]. Journal of ComputationalPhysics,1995,118:120~130.
    [136] Roger P. Handbook of Computational Fluid Mechanics [M]. New York:Acadamic Press Limited,1996.
    [137] Hemker P W. On the Order of Proplongations and Restrictions in MultigridProcedures [J]. Journal of Computational and Applied Mathematics,1990,32:423~429.
    [138] Wesseling P. An Introduction to Multigrid Methods [M]. New York: John Wileyand Sons,1991.
    [139] Pattinson J. A Cut-Cell, Agglomerated-Multigrid Accelerated, Cartesian MeshMethod for Compreseeible and Incompressible Flow [D]. Department ofMechanical and Aeronatical Engineering,2006:49~51.
    [140] Spalart P R, Allmaras S R. A One-Equation Turbulence Transport Model forAeridynamics Flows [R]. AIAA1992-0439,1992.
    [141] Launder B E, Spalding D B. The Numerical Computation of Turbulent Flows [J].Computer Methods in Applied Mechanics and Engineering,1974,103:456~460.
    [142] Yakhot V, Orzag S A. Renormalization Group Analysis of Turbulence: BasicTheroy [J]. Journal of Scientific Computing,1986,1:3~11.
    [143] Shih T H, liou W M, Shabbir Z G, et al. A New K-E Eddy Viscosity Model forHigh Reynolds Number Turbulent Flows [J]. Computers&Fluids,1995,24(3):227~238.
    [144]徐小文,莫则尧,刘旭.基于局部松弛和粗化策略的代数多重网格方法[J].数值计算与计算机应用,2009,30(2):81~91.
    [145] Allmaras S R. Analysis of Semi-Implict Preconditioners for Multigrid Solutionof the2d Compressible Navier-Stokes Equations [C]. Proceeding of the12thAIAA CFD Conference. AIAA, Inc.,1995.
    [146] Nishikawa H, Diskin B. Development and Application of Parallel AgglomeratedMultigrid Methods for Complex Geometries [C].20th AIAA ComputationalFluid Dynamics Conference. AIAA, Inc.,2011.
    [147] Notay Y. Aggregation-Based Algebraic Multilevel Preconditioning [J]. SIAMJournal on Matrix Analysis and Applications,2006,27(4):998~1018.
    [148] Napov A, Notay Y. Algebraic Analysis of Aggregation-Based Multigrid [R].Brussels, Belgium: Report GANMN09-04,2009.
    [149] Koubogiannis D G, Giannakoglou K C. Implementation and Assessment ofLow-Reynolds Turbulence Models for Airfoil Flows on Unstructured Grids [C].Proceeding European Congress on Computaional Methods in Applied Sciencesand Engineering. Barcelona, September2000.
    [150] Tsourakis G I, Koubogiannis D G, Giannakoglou K C. Transition and HeatTransfer Predictions in a Turbine Cascade at Various Free-Stream TurbulenceIntensities through a One-Equation Turbulence Model [J]. International Journalfor Numerical Methods in Fluids,2002,38:1091~1110.
    [151] Hannemann V. Structured Multigrid Agglomeration on a Data Structure forUnstructured Meshes [J]. International Journal for Numerical Methods in Fluids,2002,40(3):361~368.
    [152] Mavriplis D J, Venkatakrishnan V. Agglomeration Multigrid for TwoDimensional Viscous Flows [J]. Computers&Fluids,1995,24(5):553~570.
    [153] Haselbacher A C. A Grid-Transparent Numerical Method for CompressibleViscous Flows on Mixed Unstructured Grids [D]. England: LoughboroughUniversity,1999.
    [154] Guillard H, Marco N. Some Aspects of Multigrid on Non-Structured Meshes [C].7th Copper Mountain Conference on Multigrid Methods. NASA CP3339,1996:347~362.
    [155] S rensen K A, Hassan O, Morgan K, et al. Agglomerated Multigrid on HybridUnstructured Meshes for Compressible Flow [J]. International Journal forNumerical Methods in Fluids,2002,40(3-4):593~603.
    [156] Mahmutyazicio lu E. Development of an Octree Based Grid Coarsening andMultigrid Flow Solution [D]. Ankara, Turkey: Mechanical EngineeringDepartment, Middle East Technical University,2010.
    [157] Ahlawat S, Johnson R, Vanka. S P. Object Based Library for3d UnstructuredGrid Representation and Volume Based Agglomeration [C].44th AIAAAerospace Sciences Meeting and Exhibit. AIAA, Inc.,2006.
    [158] Okamoto N, Nakahshi K, Obayashi S. A Coarse Grid Generation Algorithm forAgglomeration Multigrid Method on Unstructured Grids [J]. AIAA Journal,1998,6(15):1121~1128.
    [159] Strauss D, Azevedo J L F. On the Development of an Agglomeration MultigridSolver for Turbulent Flows [J]. Journal of Brazilian Society of MechanicalScience and Engineering,2003,25:315~324.
    [160] Ramezani A, Mazaheri K. Multigrid Convergence Acceleration for Implicit andExplicit Solution of Euler Equations on Unstructured Grids [J]. InternationalJournal for Numerical Methods in Fluids,2010,62(9):994~1012.
    [161] Pan D, Chao M-J. Hybrid Octree/Advance-Front Mesh Generation and ImplicitAgglomeration Multigrid Euler Solver [C].37th AIAA Aerospace SciencesMeeting and Exhibit. Reno, Nevada: AIAA, Inc.,1999.
    [162] Mahmutyazicio lu E, Tuncer I H, Aksel H. Development of a Quadtree BasedAgglomeration Method for a Multigrid Viscous Flow Solver on UnstructuredGrids [C].48th AIAA Aerospace Sciences Meeting Including the New HorizonsForum and Aerospace Exposition. Orlando, Florida: AIAA, Inc.,2010.
    [163] Mahmutyazicio lu E, Tuncer I H, Aksel H. Octree Based3-D Unstructured GridCoarsening and Multigrid Viscous Flow Solutions [C].49th AIAA AerospaceSciences Meeting including the New Horizons Forum and Aerospace Exposition.Orlando, Florida: AIAA, Inc.,2011.
    [164] Mahmutyazicio lu E, Tuncer I H, Aksel H. Octree Based Unstructured GridCoarsening Method for3d Multigrid Applications [C]. V European Conferenceon Computational Fluid Dynamics. Lisbon, Portugal,2010.
    [165] Samet H. The Quadtree and Related Hierarchical Data Structures [J]. ComputingSurveys,1984,16(2):187~260.
    [166]肖涵山.自适应笛卡尔网格在三维复杂外形流场及机弹分离数值模拟中的应用[D].四川绵阳:中国空气动力研究与发展中心,2003.
    [167] Richardson H. High Performance Fortran: History, Overview and CurrentDevelopment [R]. Bedford, MA: Thinking Machines Corporation, TMC-261,1996:1~25.
    [168] Chorley M J, Walker D W. Performance Analysis of a Hybrid Mpi/OpenmpApplication on Multi-Core Clusters [J]. Journal of Computational Science,2010,1:168~174.
    [169] Amdahl G M. Validity of the Single-Processor Approach to Achieving LargeScale Computing Capabilities [C]. Proceedings of American Federation ofInformation Processing Societies Conference. AFIPS Press,1967:483~485.
    [170] Gustafson J L. Reevaluating Amdahl's Law [J]. Communications of the ACM,1998,31(5):532~533.
    [171] Sun X H, Ni L. Scalable Problems and Memory-Bounded Speedup [J]. Journalof Parallel and Distributed Computing,1993,19:27~37.
    [172] Grama A Y, Gupta A, Kumar V. Isoefficiency: Measuring the Scalability ofParallel Algorithms and Architectures [J]. IEEE Parallel&DistributedTechnology,1993,1(3):12~21.
    [173] Sun X H, Rover D T. Scalability of Parallel Algorithm-Machine Combinations[J]. IEEE Transactions on Parallel and Distributed systems,1994,5(6):599~613.
    [174] Wu X F, Li W. Performance Models for Scalable Cluster Computing [J]. Journalof Systems Architecture,1998,44:189~205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700