元胞自动机交通流模型中的相变现象和解析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通运输能力对一个国家经济的发展起着重要的支撑作用。较高的交通运输能力可以减少人们的旅行时间,提高工作效率,促进资源更好更快捷的流通。一个国家或城市的交通运输状况已经成为衡量该地区增长潜力的重要标志。
     当前经济的迅速发展与交通建设的相对滞后,已构成非常突出的世界性难题。虽然一直以来各国政府对交通的改善投入了巨资,但是交通拥堵现象还未从根本上得以解决。此外在世界范围内,每年因交通堵塞和尾气过量排放造成的污染环境等问题,造成了巨大的经济损失。
     如何充分地利用现有的交通资源,采用科学的理论来指导交通的规划、设计、管理和控制,成为急需解决的问题。交通流研究作为一门新兴的交叉性学科便由此诞生。
     交通流研究除了具有上述工程价值,还具有非常重要的科学意义。因为交通系统是由大量存在相互作用的车辆(非牛顿力)组成。可以将其看做一种远离平衡态的系统。交通流研究可以帮助我们进一步认识人类社会中具有复杂相互作用的系统在远离平衡态时的演化规律。促进统计物理、非线性力学、流体力学、应用数学和交通工程等学科的交叉发展。
     全文的工作和主要创新如下:
     1.采用元胞自动机方法,研究了信号灯控制的单个T形交叉口的交通流。我们采用具有三个相的信号灯来解决交叉口的车辆冲突。首先,我们采用现实中经常使用的固定的信号灯切换顺序和信号灯周期策略。通过计算机数值模拟得到了系统的相图和总流量。并且与没有信号灯控制的模型的结果进行了比较。发现在某些情况下,固定的信号灯切换顺序策略在控制交叉口时效果并不好。
     2.因此,我们接着又提出了一种新的信号灯控制策略:自适应的信号灯切换顺序策略。通过数值模拟,得到了新策略下系统的相图、流量和平均行驶时间。并和固定的切换顺序策略的结果进行了比较。模拟结果显示自适应信号灯策略好于固定切换顺序控制策略。
     3.以往的二维元胞自动机模型中的车辆都是按照并行更新规则行驶。而我们将二维元胞自动机模型Biham-Middleton-Levine(BML)模型改为随机更新。在周期性边界条件下,系统从自由流相到堵塞相的相变为一阶相变。BML模型中的中间态由于随机更新而消失。在开放边界条件下,我们发现了自由流相和堵塞相共存的现象。共存相中的自由流区域的面积不随系统尺寸的变化。我们对自由流相进行了平均场分析。这个平均场方法成功地考虑了相关性并和模拟结果符合的很好。
     4.我们基于BML模型研究了随机慢化对城市交通动力学的影响。在周期性边界条件下,从自由流相到堵塞相的相变是一阶相变。原先BML模型中的中间态由于随机慢化的引入而消失。自由流相的平均速度和临界密度随着随机慢化概率的增加而减小。尽管并行更新模型中的相关性很强,我们还是发展了一种新的解析方法。这种解析方法成功地得到了自由流相的平均速度。在开放边界条件下,系统只存在两个相,不存在最大流量相。我们同样采用平均场方法得到了自由流相的平均速度、密度、流量和入口概率之间的关系。
     5.我们还基于BML模型研究了驾驶员闯红灯行为对城市交通动力学的影响。根据闯红灯者身份是否是固定的,我们分别研究了两个模型。模型Ⅰ中的驾闯红灯车辆不是固定的,在每个时间步是随机选择的。模型Ⅱ中的闯红灯车辆是在初始时刻随机选择的,并在以后的时间步中一直固定不变。虽然两个模型相似,但它们的结果却并不相同。模型Ⅰ在各种闯红灯者的比例下都会出现中间态。由于闯红灯者的出现,自由流相的平均速度增加了,但是临界密度阈值降低了。但是临界密度阈值随闯红灯者比例不是单调变化的。自由流相下车辆分布比较随机和均匀。因此可以通过忽略相关性得到自由流相平均速度的表达式。在模型Ⅱ中,只有在闯红灯者的比例为pv=1时才会出现中间态。这是由于堵塞前沿的头车一直被另外一个方向的车辆阻挡。系统的临界阈值随着pv的增加而减小。然而在pv=1时,它又突然增加。这是由于在自由流条带中出现很长的尾巴。一旦尾巴和上游的条带接触并相互作用,很有可能导致堵塞。我们在自由流相中发现了一种新的位形。新位形中条带的斜率不同于BML模型的自组织条带的斜率。我们同样对自由流相的平均速度进行了平均场解析,并和模拟结果符合的很好。
     6. BML模型是建立在周期性的规则网格上,其中每个格点表示一个十字路口。而在实际的城市网络中,两个交叉口之间是由一条道路组成的。因此我们提出了一个接近真实的、类似于曼哈顿城市系统的元胞自动机交通流模型。数值模拟发现这个系统存在三个状态:自由流态,饱和态和全局堵塞态。系统从饱和态到全局堵塞态的相变区域是亚稳定的。我们采用网格粗粒化方法得到了自由态和饱和态的车辆分布。发现了一些有趣的车辆分布结构:风车形,T恤衫形和Y形。我们还研究了先进的旅行者信息系统(ATIS),交通灯周期和交通灯切换策略对系统的影响。
Traffic transport capacity plays an important role for the development of national economy. The higher transport capacity could improve efficiency, reduce the travel time and promote the circulation of materials. The transportation situation has been an important index to judge the growth potential of a country.
     The inharmony between the rapid development of the social economy and the slow speed of transportation constrcution has become a serious problem all over the world. Although governments around the world have invested heavily on transportation, the traffic jam phenomena have not been solved fundamentally. The traffic congestion and environment pollution created by gas emission have caused a huge economic loss.
     How to utilize the current traffic resources adequately, how to use the scientific theory to guide the traffic planning, designing, management and controlling, all of these have become urgent problems now. Thus, the traffic flow theory is emerging as an interdiscipline.
     Besides the engineering application, the research of traffic flow theory also has the important scientific significance. The transportation system is composed of a huge number of interacting vehicles. The traffic system is a system which is far from equilibrium. The research of traffic flow will help us to understand the laws of complex systems which are far from quilibrium better and promote the cross of the subjects such as statistical physics, nonlinear dynamics, fluid mechanics, applied mathematics, traffic engeering.
     The contents of the paper are as follows:
     1. Traffic flow at a signal controlled T-shaped intersection has been investigated by the cellular automata model. The three phase traffic signal is used to control the conflicts of vehicles. Firstly, traffic signal with fixed period and signal phase order is used. The phase diagram and capacity of the system are investigated and compared with that of previous unsignalized model. Simulation results shows that fixed signal phase order strategy does not perform better in some special cases.
     2. Thus, we introduced another type of signal controlling strategy, i.e., adaptive signal phase order strategy. The phase diagram, the capacity and the average travel time of the system are investigated and compared with that of fixed signal phase order strategy. The simulation results show that the traffic adaptive signal strategy is better than the fixed signal phase order strategy.
     3. The state of car is updated in parallel in previous two-dimensional cellular automata models. A stochastic version of the Biham-Middleton-Levine (BML) model with random update rule is studied. It is shown that under periodic boundary condition, the system exhibits a sharp transition from moving phase to jamming phase. The intermediate stable phase observed in the original deterministic BML model disappears due to the random update rule. Under open boundary condition, the coexistence of moving phase and jamming phase can be observed. The size of the moving phase is roughly the same under different system sizes. We have presented a mean-field analysis for the moving phase, which successfully takes into account the correlation and produces good agreement with simulation results.
     4. Effects of randomization on urban traffic dynamics are studied based on the BML model. It is found that the average velocity exhibits a first-order phase transition from moving phase to jamming phase under periodic boundary conditions. The intermediate stable phase identified in the original deterministic BML model disappears with the introduction of randomization. The average velocity in the moving phase and the critical car density decrease as the randomization probability increases. We have developed a mean-field theory which successfully predicts the average velocity in the moving phase. Under open boundary conditions, there are only two phases and the maximum current phase does not occur. The dependence of the average velocity, the density and the flow rate on the injection probability in the moving phase have also been obtained through the mean-field theory.
     5. Effects of violating traffic light rule on urban traffic dynamics are studied based on the BML model. There are two models according to wether the violators are fixed or not. In model Ⅱ, the violators are selected randomly at each time step. In model Ⅱ, some drivers play the role of violator until the end of simulation after choosing as violator randomly at the beginning of simulation. Although the two models are similar, the results are different.
     In model I, the intermediate phase could be found at any violator's ratio pv Simulation results show that the violator increases the average velocity of free flowing phase while decreases the threshold from free flowing phase to jam. However, the threshold does not decrease monotonously with pv. In the free flowing phase, the cars are distributed randomly and homogeneously. Thus the velocity of free flowing phase could be obtained by ignoring the correlation.
     In model Ⅱ, the intermediate phase could only be found when pv=1. Because the leading car in the jam front is always hindered by cars of other direction. Simulation results show that the threshold decreases with the increase of pv. However, at pv=1, it suddenly increases. Because there are long tails stretching in the upstream direction of the stripes. Once the tails reach and interact with the upstream stripes, jam might be induced. A new kind of configuration with stripe slope different from that of BML model has been found in the free flowing phase. We have developed an analytical investigation which successfully predicts the average velocity in the free flowing phase.
     6. The BML model is defined on the periodic regular lattice and each lattice site represents a crossing. However, there is a road between two successive crossings in the real city network. Thus a cellular automaton model of vehicular traffic in a Manhattan-like urban system is proposed.
     The system exhibits three diffierent states, i.e. moving state, saturation state and global deadlock state. A metastability of the system is observed in the transition from the saturation state to the global deadlock state. With a grid coarsening method, vehicle distribution in the moving state and the saturation state has been studied. Interesting structures (e.g. windmill-like ones, T-shirt-like ones, Y-like ones) have been revealed. The effect of an advanced traveller information system (ATIS), the traffic light period and the traffic light switch strategy have also been investigated.
引文
戴世强,冯苏苇,顾国庆.1997.交通动力学:它的内容、方法和意义[J].自然杂志,11:196-201.
    杜文,李宗平.1999.城市交通发展及其对策研究[M]//上海市交通工程学会主编.’99上海国际城市交通学术研讨会论文选.上海:同济大学出版社,62-65.
    凤凰网.2012北京机动车数量[EB/OL]. http://news.ifeng.com/gundong/detail_2012_01/30/121 88876_0.shtml.
    高坤.2008.从基本图方法到三相交通流理论--交通流元胞自动机模型理论研究[D]:[博士].合肥:中国科学技术大学.
    葛红霞.2006.基于诱导信息的交通流动力学特性与非线性密度波研究[D]:[博士].上海:上海大学.
    韩正,1999.以公共交通为主导推进上海城市交通建设[M]//上海市交通工程学会主编.’99上海国际城市交通学术研讨会论文选.上海:同济大学出版社,1-3.
    贾斌,高自友,李克平,李新刚.2007.基于元胞自动机的交通系统建模与模拟[M].北京:科学出版社.
    姜锐.2002.交通流复杂动态特性的微观和宏观模式研究[D]:[博士].合肥:中国科学技术大学.
    姜锐,吴清松,朱祚金.2000.一种新的交通流动力学模型[J].科学通报,45(17):1895-1899.
    李力,姜锐,贾斌,赵小梅.2011.现代交通流理论与应用[M].北京:清华大学出版社.
    李瑞敏.2005.城市交通信号控制系统相关理论模型研究及软件开发[D]:[博士].北京:清华大学.
    上海市交通工程学会主编.1999.’99上海国际城市交通学术研讨会论文选[M].上海:同济大学出版社.
    孙晓燕.2010.交通流复杂动态特性的元胞自动机模型研究[D]:[博士].合肥:中国科学技术大学.
    谭跃进,高世楫,周曼殊.1996.系统科学原理[M].长沙:国防科学大学出版社.
    唐孝威,张训生,陆坤权.2004.交通流与颗粒流[M].杭州:浙江大学出版社.
    汪光焘.1999.畅通城市交通实现城市的可持续发展[M]//上海市交通工程学会主编.’99上海国际城市交通学术研讨会论文选.上海:同济大学出版社,4-5.
    王雷.2000.一维交通流元胞自动机模型中自组织临界性及相变行为的研究[D]:[博士].合肥:中国科学技术大学.
    新华网.2012.中国机动车保有量达2.25亿驾驶员2.36亿[EB/OL].2012. http://auto.people.com. cn/GB/16846465.html.
    徐东云,张雷,兰荣娟.2009.城市交通拥堵的背景变换分析[J].城市问题,164:46-49.
    薛郁.2002.交通流的建模、数值模拟及其临界相变行为的研究[D]:[博士].上海:上海大学.
    Aktuell. Das Lexion der Gegenwart, Harenberg Lexikon-Verlag, Dormund (1992).
    Aw A, Rascle M.2000. Resurrection of "second order" models of traffic flow[J]. SIAM Journal on Applied Mathematics,60(3):916-938.
    Ban do M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y.1995. Dynamical model of traffic congestion and numerical simulation[J]. Phys RevE,51:1035-1042.
    Bar-Gera H.2007. Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times:A case study from Israel[J]. Transp Res C,15(6):380-391.
    Barlovic R, Santen L, Schadschneider A, Schreckenberg M.1998. Metastable states in cellular automata for traffic flow[J]. Eur Phys J B,5:793-800.
    Benjamin SC, Johnson NF, Hui PM.1996. Cellular automata models of traffic flow along a highway containing a junction[J]. J Phys A,29:3119-3127.
    Benyoussef A, Chakib H, Ez-Zahraouy H.2003. Anisotropy effect on two-dimensional cellular-automaton traffic flow with periodic and open boundaries[J], Phys Rev E,68:026129.
    Benzi R, Succi S, Vergassola M.1992. The lattice Boltzmann equation:theory and applications [J]. Phys Rep,222(3):145-197.
    Berlekamp ER, Conway JH, Guy RK.1982. Winning ways for your mathmatical plays[M], New York:Academic Press.
    Biham O. Middleton AA, Levine D.1992. Self-organization and a dynamical transition in traffic flow models[J]. Phys Rev A,46:R6124-R6127.
    Blythe RA, Evans MR.2007. Nonequilibrium steady states of matrix-product form:a solver's guide[J]. J Phys A,40:R333-R441.
    Brockfeld E, Barlovic R, Schadschneider A, Schreckenberg M.2001. Optimizing traffic lights in a cellular automaton model for city traffic[J]. Phys Rev E,64:056132.
    Ceder A, Eldar K.2002. Optimal distance between two branches of uncontrolled split intersection[J]. Transp Res A,36:699-724.
    Chau HF, Hui PM, Woo YF.1995. Upper bounds for the critical car densities in traffic flow problems[J]. JPhys Soc Japan,64:3570-3572.
    Chau HF, Wan KY, Yan KK.1998. An improved upper bound for the critical car density of the two-dimensional Biham-Middleton-Levine traffic model[J]. Physica A,254:117-121.
    Chen H, Chen S, Matthaeus WH.1992. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method[J]. Phys Rev A,45:R5339-R5342.
    Chen SY, Doolen GD.1998. Lattice Boltzmann method for fluid flows[J]. Ann Rev Fluid Mech, 30:329-364.
    Chen Y, Ohashi H, Akiyama M.1995. Heat transfer in lattice BGK modeled fluid[J]. J Stat Phys, 81:71-85.
    Chopard B, Luthi PO, Queloz PA.1996. Cellular automata model of car traffic in a two-dimensional street network[J]. J Phys A,29:2325-2336.
    Chopard B, Droz M.1998. Cellular Automata Modelling of Physical Systems[M]. Cambrige: Cambridge University Press.
    Chowdhury D, Wolf DE, Schreckenberg M.1997. Particle hopping models for two-lanetraffic with two kinds of vehicles:Effects of lane-changingrules[J]. Physica A,235:417-439.
    Chowdhury D, Schadschneider A.1999. Self-organization of traffic jams in cities:Effects of stochastic dynamics and signal periods[J]. Phys RevE,59:R1311-R1314.
    Chowdhury D, Santen L, Schadschneider A.2000. Statistical physics of vehicular traffic and some related systems[J]. Phys Rep 329:199-329.
    Chowhury D, Guttal V, Nishinari K, et al.2002. A cellular-automata model of flow in ant trails: non-monotonic variation of speed with density[J]. J. Phys.A,35.L573-L577.
    Chung KH, Hui PM.1994. Traffic Flow problems in one-dimensional Inhomogeneous Media[J]. J Phys Soc Jpn,63:4338-4341.
    Codd EF.1968. Cellular Automata[M]. New York:Academic Press.
    Cremer M, Ludwig J.1986. A fast simulation model for traffic flow on the basis of boolean operations [J]. Math Comp Simul,28:297-303.
    Cuesta JA, Martines FC, Molera JM.1993. Phase transitions in two-dimensional traffic-flow models [J]. Phys RevE,48:R4175-R4178.
    Daganzo CF.1995. Requiem for second-order fluid approximations of trafficflow[J], Transp Res B,29:277-286.
    Daganzo CF.1997. Fundamentals of transportation and traffic operations[M].Oxford:Elsevier.
    Danila B, Sun YD, Bassler KE.2009. Collectively optimal routing for congested traffic limited by link capacity[J]. Phys Rev E,80:066116.
    Derrida B.1998. An exactly soluble non-equilibrium system:The asymmetric simple exclusion process[J]. Phys Rep,301:65-83.
    Dillon DS, Hall FL,1987. Freeway operations and the cusp catastrophe:an empirical analysis[J]. Transp Res Rec,1132:66-76.
    Ding ZJ, Jiang R, Wang BH.2011. Traffic flow in the Biham-Middleton-Levine model with random update rule[J]. Phys Rev E,83:047101.
    D'Souza RM.2005. Coexisting phases and lattice dependence of a cellular automaton model for traffic flow[J]. Phys Rev E,71:066112.
    D'Souza RM.2006. BML revisited:Statistical physics, computer simulation, and probability[J]. COMPLEXITY,12:30-39.
    Echenique P, Gomez-Gardenes J, Moreno Y.2004. Improved routing strategies for Internet traffic delivery[J]. Phys Rev E,70:056105.
    Echenique P, Gomez-Gardenes J, Moreno Y.2005. Dynamics of jamming transitions in complex networks[J]. Eur Phys Lett,71:325-331.
    Eggels JGM, Somers JA.1995. Numerical simulation of free convective flow using the lattice-Boltzmann scheme[J]. Int J Heat and Fluid Flow,16:357-364.
    Emmerich H, Rank E.1995. Investigating traffic flow in the presence of hindrance by cellular automata[J]. Physica A,216:435-444.
    Ermentrout GB, Edelstein-Keshet L.1993. Cellular automata approaches to biological modeling[J]. J Theor Biol,160:97-133.
    Fukui M, Ishibashi Y.1993. Evolution of traffic jam in traffic flow model[J]. J Phys Soc Jpn,62: 3841-3844.
    Fukui M, Ishibashi Y.1996. Traffic flow in 1D cellular automaton model including cars moving with high speed[J]. J Phys Soc Jpn,65:1868-1870.
    Gardner M.1970. Mathematical Games:The fantastic combinations of John Conway's new solitaire game "life"[J]. Sci Am,223:120-123.
    Gardner M.1983. Wheels, Life and Other Mathmatical Amusements[M]. New York:Freeman.
    Gerlough DL, Huber MJ.1975. Traffic flow theory[R]. Washington, DC:Transportation Research Board.
    Hall FL.1987. An interpretation of speed-flow-concentration relationships using catastrophe-theory[J]. Transp Res Part A,21(3):191-201.
    Hall FL, Allen BL, Gunter MA.1986. Empirical analysis of freeway flow-density relationships [J]. Transp Res A,20:197-210.
    Helbing D.1996. Derivation and empirical validation of a refined traffic flow model[J]. Physica A,233:253-282.
    Helbing D.2001a. Traffic and related self-driven many particle systems [J]. Rev Mod Phys, 73:1067-1141.
    Helbing D.2009a. Derivation of a fundamental diagram for urban traffic flow[J]. European Phys J B,70:229-241.
    Helbing D, Greiner A.1997. Modeling and simulation of multilane traffic flow[J]. Phys Rev E, 55:5498-5508.
    Helbing D, Tilch B.1998. Generalized force model of traffic dynamics [J]. Phys Rev E, 58:133-138.
    Helbing D, Farkas IJ, Vicsek T.2000. Simulating dynamical features of escape panic[J]. Nature, 407:487-490.
    Helbing D, Hennecke A, Shvetsov V, et al.2001b. MASTER:macroscopic traffic simulation based on a gas-kinetic, non-local traffic model[J]. Transp Res B,35:183-211.
    Helbing D, Farkas IJ, Molnar P, Vicsek T.2001c. Simulation of pedestrain crowds in normal and evacuation situations[M]//International Conference on Pedestrain and Evacuation Dynamics. Berlin:Springer-verlag.21-58.
    Helbing D, Batic D, Schonhof M, Treiber M.2002. Modelling widely scattered states in 'synchronized'traffic flow and possible relevance for stock market dynamics[J]. Physica A,303: 251-260.
    Helbing D. Mazloumian A.2009b. Operation regimes and slower-is-faster effect in the control of traffic intersections[J]. European Phys J B,70:257-274.
    Hoogendoorn SP, Bovy PHL.2000. Continuum modeling of multiclass traffic flow[J], Transp Res B,34:123-146.
    Hoogendoorn SP, Bovy PHL.2001. Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow, Transp res B,35:317-336.
    Horiguchi T, Sakakibara T.1998. Numerical simulations for traffic-flow models on a decorated square lattice[J]. Physica A,252:388-404.
    Ishibashi Y, Fukui M.1994. Temporal variations of traffic flow in the Biham-Middleton-Levine model [J]. J Phys Soc Japan,63:2882-2885.
    Jiang R, Wu QS, Zhu ZJ.2001a. Full velocity difference model for car-following theory[J]. Phys RevE,64:017101.
    Jiang R, Wu QS, Zhu ZJ.2001b. A new dynamics model for traffic flow[J]. Chinese Science Bulletin,46(4):345-348.
    Jiang R, Wu QS, Zhu ZJ.2002. A new continuum model for traffic flow and numerical tests[J]. Transp Res B,36(5):405-419.
    Kastrinaki V, Zervakis M, Kalaitzakis K.2003. A survey of video processing techniques for traffic applications[J]. Image Vision Computing,21(4):359-381.
    Kerner BS.1998. Traffic Flow:Experiment and Theory[M]//Schreckenberg M, Wolf DE. Traffic and Granular Flow'97. Singapore. Springer,239-268.
    Kerner BS.1999. Congested Traffic Flow:Observations and Theory[J]. Transp Res Rec, 1678:160-167.
    Kerner BS.2000a. Theory of Breakdown Phenomenon at Highway Bottlenecks[J]. Transp Res Rec,1710:136-144.
    Kerner BS.2000b. Phase transitons in traffic flow[M]//Helbing D, Herrmann HJ, Schreckenberg M, Wolf DE. Traffic and Granular Flow'99:Social, Traffic, and Granular Dynamics. Berlin: Springer,2000:253-283.
    Kerner BS.2002a. Synchronized flow as a new traffic phase and related problems for traffic flow modelling[J]. Mathematical and Computer Modelling,35:481-508.
    Kerner BS.2002b. Empirical macroscopic features of spatial-temporal traffic patterns at highway bottlenecks[J]. Phys Rev E,65:046138.
    Kerner BS, Konhauser P.1993. Cluster effect in initially homogeneous traffic flow[J]. Phys Rev E, 48:R2335-R2338.
    Kerner BS, Konhauser P.1994. Structure and parameters of clusters in traffic flow[J]. Phys Rev E, 50:54-83.
    Kerner BS, Rehborn H.1996a. Experimental features and characteristics of traffic jams[J]. Phys RevE,53:R1297-R1300.
    Kerner BS, Rehborn H.1996b. Experimental properties of complexity in traffic flow[J]. Phys Rev E,53:R4275-R4278.
    Kerner BS, Klenov S, Wolf D.2002c. Cellular automata approach to three-phase traffic theory[J]. J Phys A,35:9971-10013.
    Kerner BS, Klenov SL.2002d. A microscopic model for phase transitions in traffic flow[J]. J Phys A,35:L31-L43.
    Knospe W, Santen L, Schadschneider A, et al.1999. Disorder effects in a cellular automata for two-lane traffic[J]. Physica A,265:614-633.
    Knospe W, Santen L, Schadschneider A, et al.2002a. A realistic two-lane traffic model for highway traffic[J]. J Phys A,35:3369-3388.
    Knospe W, Santen L, Schadschneider A, Schreckenberg M.2002b. Single-vehicle data of highway traffic:Microscopic description of traffic phases[J]. Phys Rev E,65:056133.
    Koshi M, Iwasaki M, Ohkura I.1983. Improvement of Congestion Detection on Expressways[M]. Proceedings of the 8th International Symposium on Transportation and traffic flow theory. Toronto:University of Toronto,403-415.
    Krauss S, Wagner P, Gawron C.1997. Metastable states in a microscopic model of traffic flow[J]. Phys RevE,55:5597-5602.
    Kuhne RD.1984. Macroscopic freeway model for dense traffic stop-start waves and incident detection[M]//Proceedings of the Ninth International Symposium on Transportation and Traffic Theory.20-42.
    Lammer S, Donner R, Helbing D.2008a. Anticipative control of switched queueing systems[J]. European Phys J B,63:341-347.
    Lammer S, Helbing D.2008b. Self-control of traffic lights and vehicle flows in urban road networks[J]. J Statistical Mechanics, P04019.
    Lee HY, Lee HW, Kim D.1998. Origin of synchronized traffic flow on highways and its dynamic phase transitions [J]. Phys Rev Lett,81:1130-1133.
    Lee HY, Lee HW, Kim D,1999. Dynamic states of a continuum traffic equation with on-ramp[J]. Phys Rev E,59:5101-5111.
    Lee HY, Lee HW, Kim D.2000. Phase diagram of congested traffic flow:An empirical srudy[J]. Phys Rev E,62:4737-4741.
    Lee K, Hui PM, Wang BH, et al.2001. Effects of announcing global information in a two-route traffic flow model[J]. J Phys Soc Japan,70:3507-3510.
    Lenz H.1999. Multi-anticipative car-following model[J]. Eur Phys J B,7:331-335.
    Li F, Gao ZY, Jia B.2007. Traffic behavior in the on-ramp system with signal controlling[J]. Physica A,385:333-342.
    Li XB, Wu QS, Jiang R.2001. Cellular automaton model considering the velocity effect of a car on the successive car[J]. Phys Rev E,64:066128.
    Li XB, Jiang R, Wu QS.2004.Cellular automaton model simulating traffic flow at an uncontrolled T-shaped intersection[J]. Int J Mod Phys B,18:2703-2707.
    Li XG, Gao ZY, Jia B, Zhao XM.2009. Cellular automata model for unsignalized T-shaped intersection[J]. Int J Mod Phys C,20:501-512.
    Lighthill MJ, Whitham GB.1955. On kinematic waves. II. a theory of traffic flow on long crowded roads [J]. Proc R Soc Lond A,229:317-345.
    Ling X, Hu MB, Jiang R, Wu QS.2010. Global dynamic routing for scale-free networks [J]. Phys Rev E,81:016113.
    Los Alamos National Laboratory.1995. TRANSIMS:Transportation Analysis and Simulation System. Los Alamos, http://transims.tsasa.lanl.gov.
    May AD.1990. Traffic Flow Fundamentals[M]. New Jersey:Prentice Hall.
    Michalopoulos PG, Yi P, Lyrintzis AS.1993. Continuum modelling of traffic dynamics for congested freeways[J]. Transp Res B,27:315-332.
    Nagatani T.1993a. Anisotropic effect on jamming transition in traffic flow model[J], J Phys Soc Japan,62:2656-2662.
    Nagatani T.1993b. Jamming transition in the traffic-flow model with two-level crossings[J]. Phys Rev E,48:3290-3294.
    Nagatani T.1997. Kinetic segregation in a multilane highway traffic flow[J]. Physica A, 237:67-74.
    Nagatani T.1999. Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction[J]. Phys Rev E,60:6395-6401.
    Nagatani T.2007. Clustering and maximal flow in vehicular traffic through a sequence of traffic lights[J]. Physica A,377:651-660.
    Nagatani T, Seno T.1994. Traffic jam induced by a crosscut road in a traffic flow model[J]. Physica A,207:574-583.
    Nagayama A, Sugiyama Y, Hasebe K.2002. Effect of looking at the car that follows in an optimal velocity model of traffic flow[J]. Phys Rev E,65:016112.
    Nagel K, Schreckenberg M.1992. A cellular automaton model for freeway traffic[J]. J. Phys. Ⅰ France,2:2221-2229.
    Nagel K, Paczuski M.1995. Emergent traffic jams[J]. Phys Rev E,51:2909-2918.
    Nagel K, Wolf DE, Wagner P, Simon P.1998. Two-lane traffic rules for cellular automata:A systematic approach[J]. Phys Rev E,58:1425-1437.
    Nagel K, Rickert M.2001. Parallel implementation of the TRANSIMS micro-simulation[J]. Paralle Comput,27:1611-1639.
    Nagel K, Wagner P, Woesler R.2003. Still flowing:Approaches to traffic flow and traffic jam modeling[J]. Oper Res,51:681-710.
    Neubert L, Santen L, Schadschneider A, Schreckenberg M.1999. Single-vehicle data of highway traffic:A statistical analysis[J]. Phys Rev E,60:6480-6490.
    Newell GF.1961. Nonlinear effects in the dynamics of car following [J]. Oper Res,9:209-229.
    Papageorgiou M, Blosseville J, Hadj-Salem H.1989. Macroscopic modelling of traffic flow on the Boulevard Peripherique in Paris[J]. Transp Res B,23:29-47.
    Paveri-Fontana SL.1975. On Boltzmann-like treatments for traffic flow:A critical review of the basic model and an alternative proposal for dilute traffic analysis[J]. Tranpn Res,9:225-235.
    Payne HJ.1971. Models of freeway traffic and control[M]//Bekey GA. Mathematical Models of Public Systems. La Jolla:Simulation Council.51-61.
    Payne HJ.1979. FREFLO:a macroscopic simulation model for freeway traffic[J]. Transp Res Rec, 722:68-77.
    Pipes LA.1953. An operational analysis of traffic dynamics[J]. J Appl Phys,24:274-281.
    Pottmeier A, Barlovica R, Knospea W, et al.2002. Localized defects in a cellular automaton model for traffic flow with phase separation[J]. Physica A,308:471-482.
    Prigogine I, Herman R.1971. Kinetic theory of vehicular traffic[M]. New York:Elsevier.
    Ramasco JJ, deLaLama MS, Lopez E, et al.2010. Optimization of transport protocols with path-length constraints in complex networks[J]. Phys Rev E,82:036119.
    Reuschel A.1950. Vehicle movements in a platoon[J]. Oesterreichisches Ingenieur-Archir,4: 193-215.
    Richards PI.1956. Shock waves on the highway[J]. Oper Res,4:42-51.
    Rickert M, Nagel K, Schreckenberg M, et al.1996. Two lane traffic simulations using cellular automata[J]. Physica A,231:534-550.
    Rickert M, Nagel K.1997. Experiences with a simplified microsimulation for the Dallas/Fort-Worth area[J]. Int J Mod Phys C,8:483-503.
    Ross P.1988. Traffic.dynamics[J]. Transp Res B,22:421-435.
    Rothman DH, Zaleski S.1994. Lattice-gas models of phase separation:interfaces, phase transitions, and multiphase flow[J]. Rev Mod Phys,66:1417-1479.
    Sasaki M, Nagatani T.2003. Transition and saturation of traffic flow controlled by traffic lights[J]. Physica A,325:531-546.
    Sasoh A.2002. Impact of unsteady disturbance on multi-lane traffic flow[J]. J Phys Soc Jpn, 71:989-996.
    Scellato S, Fortuna L, Frasca M, et al.2010. Traffic optimization in transport networks based on local routing [J]. Eur Phys J B,73:303-308.
    Schadschneider A, Schreckenberg M.1993. Cellular-automaton models and traffic flow[J]. J Phy A,26:L679-L683.
    Schadschneider A, Schreckenberg M.1997. Car-oriented mean-field theory for traffic flow models[J]. J Phy A,30:L69-L75.
    Schoenhof M, Helbing D.2007. Empirical features of congested traffic states and their implications for traffic modeling[J]. Transportation Science,41:135-166.
    Schreckenberg M, Schadschneider A, Nagel K, Ito N.1995. Discrete stochastic models for traffic flow[J]. Phys Rev E,51:2939-2949.
    Schutz GM.2001. Exactly Solvable Models for Many-Body Systems Far from Equilibrium[M]// Domb C, Lebowitz JL. Phase Transitions and Critical Phenomena. San Diego:Academic Press,1-251.
    Shvetsov V, Helbing D.1999. Macroscopic dynamics of multilane traffic[J], Phys Rev E,59: 6328-6339.
    Sieburg HB, Mccutchan JA, Clay OK, et al.1990. Simulation of HIV infection in artifical immune system[J]. Physica D,45:208-227.
    Sun D, Jiang R, Wang BH.2010. Timing of traffic lights and phase separation in two-dimensional traffic flow[J]. Computer Physics Communications,181:301-304.
    Stauffer D.1991. Computer-simulations of cellular automata[J]. J Phys A,24:909-927.
    Tadaki S, Kikuchi M.1994. Jam phases in a two-dimensional cellular-automaton model of traffic flow[J]. Phys Rev E,50:4564-4570.
    Tadaki S, Kikuchi M.1995. Self-organization in a two-dimensional cellular automaton model of traffic flow[J]. J Phys Soc Jpn,64:4504-4508.
    Tadaki S, Kikuchi M, Sugiyama Y, Yukawa S.1998. Coupled map traffic flow simulator based on optimal velocity functions[J]. J Phys Soc Jpn,67:2270-2276.
    Takayasu M, Takayasu H.1993.1/f noise in a traffic model [J]. Fractals,1:860-866.
    Tang M, Liu ZH, Liang XM, Hui PM.2009. Self-adjusting routing schemes for time-varying traffic in scale-free networks[J]. Phys Rev E,80:026114.
    Tang M, Zhou T.2011. Efficient routing strategies in scale-free networks with limited bandwidth[J]. Phys Rev E,84:026116.
    Tang TQ, Huang HJ, Xu G, et al.2008. Traffic flow model considering signal light influence and its numerical simulation[J]. Acta Physica Sinica,57:56-60.
    Tilch B, Helbing D.2000. Evaluation of single vehicle data in dependence of the vehicle-type, lane,and site[M]//Helbing D, Herrmann HJ, Schreckenberg M, Wolf DE. Traffic and Granular Flow'99. Berlin:Springer.
    Toledo BA, Munoz V, Rogan J, Tenreiro C, Valdivia JA.2004. Modeling traffic through a sequence of traffic lights[J]. Phys Rev E,70:016107.
    Treiterer J.1975. Investigation of Traffic Dynamics by Aerial Photogrammetry Techniques[R]. Columbus:Ohio State University.
    Treiber M, Hennecke A, Helbing D.1999. Derivation, properties and simulation of a gas-kinetic-based, nonlocal traffic model[J]. Phys Rev E,59:239-253.
    Treiber M, Hennecke A, Helbing D.2000. Congested traffic states in empirical observations and microscopic simulations[J]. Phys Rev E,62:1805-1824.
    US Department of Transportation, Federal Highway Administration.2003. Freeway Management and Operations Handbook, Final Report[M/OL].http://ops.fhwa.dot.gov/freewaymgmt/publicat ions/frwy_mgmt_handbook/index.htm.
    US Department of Transportation, Federal Highway Administration.2006. Traffic Detector Handbook[M/OL]. http://www.tfhrc.gov/its/pubs/06108/index.htm. http://www.tfhrc.gov/its/pu bs/06139/index.htm.
    Victor JD.1990. What can automaton theory tell us about the brain?[J]. Physica D,45:205-207.
    Wagner P, Nagel K, Wolf DE.1997. Realistic multi-lane traffic rules for cellular automata[J]. Physica A,234:687-698.
    Wahle J, Neubert L, Esser J, et al.2001, A cellular automaton traffic flow model for online simulation of traffic[J]. Paralle Comput,27:719-735.
    Wang BH, Woo YF, Hui PM.1996. Improved mean-field theory of two-dimensional traffic flow models[J]. J Phys A,29:L31-L35.
    Wang BH, Wang L, Hui PM, et al.1998. Analytical results for the steady state of traffic flow models with stochastic delay[J]. Phys Rev E,58:2876-2882.
    Wang WX, Wang BH, Zheng WC, et al.2005. Advanced information feedback in intelligent traffic systems[J]. Phys Rev E,72:066702.
    Wolfram S.1983. Statistical mechanics of cellular automata[J]. Rev Mod Phys,55:601-644.
    Wolfram S.1986a.Cellular automata fluids 1:basic theory[J]. J Stat Phys,45:471-526.
    Wolfram S.1986b. Theory and Application of Cellular Automata[M]. Singapore:World Scientific.
    Wolfram S.1994. Cellular Automata and Complexity[M]. Boston:Addison-Wesley.
    Wu QS, Li XB, Hu MB, Jiang R.2005. Study of traffic flow at an unsignalized T-shaped intersection by cellular automata model[J]. European Phys J B,48:265-269.
    Xue Y, Dai SQ.2003. Continuum traffic model with the consideration of two delay time scales[J]. Physical Review E,68:066123.
    Yan G, Zhou T, Hu B, et al.2006. Efficient routing on complex networks[J]. Phys Rev E, 73:046108.
    Yan GW, Yuan L.2001. Lattice Bhatnagar-Gross-Krookmodel for the Lorenzattractor[J]. Physica D,154:43-50.
    Yang R, Wang WX, Lai YC, Chen GR.2009. Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks[J]. Phys Rev E,79:026112.
    Yim YB.2003. The state of cellular probe[R]. Berkeley:University of California.
    Yukawa S, Kikuchi M, Tadaki S.1994. Dynamical phase transition in one dimensional traffic flow model with blockage[J]. J Phys Soc Jpn,63:3609-3618.
    Zhang HM.2002. A non-equilibrium traffic model devoid of gas-like behavior[J]. Transp Res B, 36(3):275-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700