复方肾华片对肾缺血再灌注损伤大鼠肾脏保护作用及对Toll样受体信号通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:缺血再灌注损伤(ischemia-reperfusion injury, IRI)是指组织或器官在缺血的基础上恢复血流后,细胞功能代谢发生障碍及结构损伤反而加重的现象。急性肾损伤(Acute kidney injury, AKI)是临床的常见疾病,其患病率逐年攀升,AKI的定义为48h内血肌酐(Serum creatinine, Scr)升高≥26.5umol/L;或者Scr增加≥基线值的1.5倍;或持续6h尿量<0.5ml/kg·h。其发病机制尚未完全清楚。肾IRI是导致缺血性AKI的主要原因之一。研究表明,免疫炎症反应是IRI的重要机制之一,其中炎性受体发挥着重要作用。Toll样受体(Toll-like receptors,TLRs)是近年来发现的I型跨膜蛋白受体。它可以针对不同病原相关分子模式或损伤相关分子模式进行识别、结合,引发一系列细胞内信号传导,进而导致炎性介质的释放,最终导致免疫炎症反应的发生。
     有证据表明TLRs是参与激发缺血后免疫炎症反应的主因,是组织损害的关键性传感器。大量的实验数据支持TLRs作为炎症和自身免疫性疾病的一个新靶点。阻断或抑制TLRs信号通路节点药物研究已成为医学领域的热点。但目前西药对肾IRI的防治尚无有效的方法。千百年来中药在辨证治疗方面发挥了不可或缺的作用,中药方剂的功效研究正吸引世界各地学者越来越多的关注。
     本文通过建立大鼠肾IRI模型,探讨中药复方制剂复方肾华片(Fufang ShenhuaTablet, SHT)高、低两种剂量对IRI模型大鼠发生的AKI的肾脏保护作用,同时观察IRI术后1周内Toll样受体2(Toll-like receptor2, TLR2)和Toll样受体4(Toll-likereceptor4, TLR4)及相关的炎症细胞因子的蛋白及mRNA表达,以及TLRs信号传导通路中髓样细胞分化因子(myeloid differentiation factor88, MyD88)的蛋白及mRNA表达。从TLRs信号传导通路改变上来揭示SHT对IRI大鼠的肾脏保护作用及其可能的机制。
     方法:(1)首先通过采用无创动脉夹夹闭大鼠的双侧肾蒂方式来建立Wistar大鼠肾IRI模型,根据肾脏缺血的时间不同,大鼠随机分成假手术组(Sham组)、20min组、30min组、40min组及50min组,缺血再灌注1d后用全自动生化测定仪检测大鼠血肌酐(Serum creatinine, Scr)、尿素氮(blood urea nitrogen, BUN);大鼠肾脏组织制作石蜡切片,PAS染色后光学显微镜下观察肾小管的损伤程度。用显微图像采集分析系统对大鼠肾脏病理组织形态学的变化和肾小管损伤程度进行评分,比较不同的缺血时间对肾脏的上述指标的影响;同时进行大鼠肾缺血50min组的术后1周生存率观察。在确定理想的大鼠肾缺血时间后,将Wistar大鼠随机分成两组,一组将右侧肾切除,左侧肾蒂夹闭;另一组行双侧肾蒂夹闭。观察术后1d、3d、5d、7d血肌酐、尿素氮变化以及术后1周大鼠生存率,绘制生存率曲线。筛选出理想的大鼠IRI模型所需的术式和肾蒂缺血夹闭时间。
     (2)将大鼠随机分为4组:假手术组(Sham)、模型对照组(Model)、复方肾华片低剂量组(SHT-L)和复方肾华片高剂量组(SHT-H)。给予治疗药物每天灌胃1次,7天后采用双侧肾蒂夹闭40min方法建立肾IRI模型,观察大鼠术后24h和72h生命体征;用全自动生化测定仪检测血BUN、Scr;光学显微镜下观察大鼠肾组织的肾小管损伤程度,并用计算机显微图像采集分析系统对肾小管损伤程度进行评分。观察和评估复方肾华片(SHT)的肾脏保护作用。
     (3)将大鼠随机分为5组:假手术组(Sham)、模型对照组(Model)、黄芪甲苷组(Astragaloside)、复方肾华片低剂量组(SHT-L)和复方肾华片高剂量组(SHT-H)。给予相应药物每天灌胃1次,7天后采用右肾切除,左侧肾蒂夹闭40min方法建立肾IRI模型,观察术后24h和72h大鼠的生命体征;用全自动生化测定仪检测血BUN、Scr;光学显微镜下观察大鼠肾组织的肾小管损伤程度,并用显微图像采集分析系统对肾小管损伤程度进行评分;JEM-1400型电子显微镜观察肾小管上皮细胞超微结构变化,并作量化分析。
     (4)将大鼠随机分为5组:假手术组(Sham)、模型对照组(Model)、黄芪甲苷组(Astragaloside)、复方肾华片低剂量组(SHT-L)和复方肾华片高剂量组(SHT-H),分别给予相应药物灌胃7天后,采用右侧肾切除,左侧肾蒂夹闭40min法建立缺血再灌注模型,通过石蜡切片免疫组织化学ABC法(Immunohistochemistry,IHC-P)、蛋白印迹法(Western blot,WB)和ABI7900HT实时荧光定量核酸扩增检测系统(Real-time quantitative PCR detecting system,qPCR)检测大鼠术后1d、3d、5d、7d肾组织Toll样受体2(Toll-like receptors2, TLR2)、Toll样受体4(Toll-like receptors4,TLR4)、髓样分化因子88(myeloid differentiation factor88, MyD88)、白细胞介素-6(interleukin6, IL-6)和白细胞介素-12(interleukin12, IL-12)蛋白分子及其mRNA水平表达,白细胞介素-8(interleukin8, IL-8)和干扰素-γ (IFN-gamma,IFN-γ)的蛋白表达情况。
     结果:(1)实验中手术造模成功率达97.6%,与Sham组相比,双侧肾蒂夹闭30min组,再灌注1d后血尿素氮、肌酐及肾脏病理损害评分均升高(P<0.05),而20min组上述指标均无显著性差异(P>0.05)。与Sham组相比,双侧肾蒂夹闭40min组和50min组,再灌注1d后血尿素氮、肌酐和肾脏病理损害评分均显著异常(P<0.01)。右侧肾切除,左侧肾蒂夹闭组与双侧肾蒂夹闭组比较,术后1周两组间血肌酐和生存率无显著差异(P>0.05)。肾缺血50min组的生存率下降显著,仅为50%。
     (2)与Sham组相比,术后24h和72h,Model组大鼠的肾功及肾脏病理均显著异常(P<0.01)。与Model组相比,术后24h和72h,SHT-L组大鼠的肾功及肾组织病理损害均减轻(P<0.05),SHT-H组肾功及肾组织病理损害减轻更明显(P<0.01);SHT-H组大鼠的肾功及肾组织病理损害均轻于SHT-L组(P<0.05)。
     (3)IRI术后24h,肾功、肾脏光镜和电镜病理损害达峰值,术后72h上述指标均得到部分恢复。术后24h和72h,Astragaloside组和SHT-L组肾功、肾脏光镜和电镜病理损害均较Model组显著改善(P<0.05),SHT-H组改善更显著(P<0.01);Astragaloside组和SHT-L组上述指标结果相似(P>0.05),SHT-H组上述指标改善程度优于Astragaloside组和SHT-L组(P<0.05)。
     (4)与Model组相比,大鼠IRI术后1d、3d、5d、7d,Astragaloside组和SHT-L组TLR2和TLR4蛋白分子及mRNA表达均降低(P<0.05),SHT-H组TLR2和TLR4蛋白分子及mRNA表达下降最显著(P<0.01)。各组大鼠IRI术后5d TLR2和TLR4蛋白分子及mRNA表达均达峰值;与Astragaloside组和SHT-L组比较,IRI术后1d、3d、5d、7d,SHT-H组TLR2和TLR4蛋白分子及mRNA表达均明显下降(P<0.05);Astragaloside组和SHT-L组TLR2和TLR4蛋白分子及mRNA表达无差异(P>0.05)。与Model组相比,大鼠IRI术后1d、3d、5d、7d,Astragaloside组、SHT-L组和SHT-H组IL-6、IL-12和MyD88蛋白分子及mRNA表达均显著降低(P<0.05)。术后1d IL-8和TNF-γ蛋白表达水平最高,术后3d IL-6、IL-12蛋白分子及mRNA表达水平达峰值,术后5d各组MyD88蛋白分子及mRNA表达水平达峰值。术后1d、3d、5d、7d,与Astragaloside组和SHT-L组比较,SHT-H组MyD88蛋白分子及mRNA表达,以及IL-8和IFN-γ蛋白表达均明显下降(P<0.05);Astragaloside组和SHT-L组比较,无论MyD88蛋白分子和mRNA表达,还是IL-8和TNF-γ蛋白表达,两组均无显著差异(P>0.05)。
     结论:(1)采用无创动脉夹夹闭大鼠肾蒂的方法可以制备稳定的肾IRI模型,大鼠造模较为理想的肾缺血时间是40min,右侧肾切除,左侧肾蒂夹闭法与双侧肾蒂夹闭法造模均可行,术后生存率较高,所得模型效果满意。(2)无论是中药复方(SHT)还是单味中药(Astragaloside)均可明显改善肾IRI大鼠的生存质量,保护肾脏功能,减轻肾脏病理损害,其中低剂量SHT与Astragaloside疗效相似,但高剂量SHT疗效优于Astragaloside,提示中药复方优于单味中药。(3)SHT可抑制肾IRI大鼠免疫炎症受体TLR2和TLR4的蛋白分子及mRNA表达,SHT-H组抑制TLR2和TLR4蛋白分子及mRNA表达程度优于Astragaloside组和SHT-L组,提示SHT对免疫炎症受体TLR2和TLR4的作用也呈现出良好的剂量效应,(4)SHT可能通过调控MyD88依赖的TLRs信号传导通路,抑制了炎症细胞因子的释放,最终减轻和部分修复了IRI诱导的大鼠AKI,且疗效呈现良好的剂量效应。本研究提供了SHT防治缺血性AKI可能的TLRs信号传导通路机制。
Objective:Ischemia-reperfusion injury(IRI) is refers to the tissues or organsrestoration of blood flow in the ischemic basis, leading to the aggravated damagephenomenons of cell metabolism and structure. Acute kidney injury (AKI) is a commonclinical disease, its prevalence is rising year by year, AKI is defined as increased serumcreatinine(Scr)≥26.5umol/l within48h; or serum creatinine increase(BUN)≥1.5timesthe baseline value; or the last6h urine output <0.5ml/kg.h. Its pathogenesis is not yetfully understood. Renal IRI is one of the leading causes of ischemic AKI.
     Research shows that the immune inflammatory reaction is one of the importantmechanisms of IRI, in which inflammatory receptor plays an important role.Toll-likereceptors(TLRs) is a type I transmembrane protein receptor discovered in recent years.First,it can identify and bind the type of pathogen-associated molecular patterns ordamage-associated molecular patterns.Second,it can trigger a series of intracellularsignal transduction, resulting in the release of inflammatory mediators and eventuallyleading to the occurrence of immune inflammatory reaction.
     There is evidence that TLRs is involved in the cause of immune inflammatoryresponses triggered by ischemia.Also TLRs is the key sensor of tissue damage. A largenumber of experimental data in support of TLRs act as a new target for inflammatoryand autoimmune diseases.Drug research on blocking or inhibiting TLRs signalingpathway node has become a hotspot in the field of medicine. Currently, however, thereis no effective method of western medicine on prevention and treatment of renal IRI.Traditional Chinese medicine for thousands of years has played an indispensable role indifferentiation therapy.Traditional Chinese medicine formulas studies are now attractingmore and more attention around the world.
     In this paper, through the establishment of a rat model of renal IRI,we explored therenoprotective effect on AKI induced by IRI between low-dose and high-dose compound traditional Chinese medicine-Fufang Shenhua Tablet(SHT).At the same time,protein and mRNA expression of toll-like receptor2(TLR2) and toll-like receptor4(TLR4) was observed within1week postoperative IRI,as well as myeloiddifferentiation factor88(MyD88) and inflammatory cytokines associated to TLRs signaltransduction pathway.From the perspective of TLRs signal transduction pathway,toreveal the renoprotective effect and its possible mechanism of SHT on renal IRI in rats.Methods:(1)To established the renal IRI model through occlusion bilateral renal pediclein Wistar rats by the use of non-invasive arterial clip.Depending on the time of renalischemia, rats were randomly divided into sham operation group (Sham),20min group,30min,40min group and50min group. Scr, blood urea nitrogen (BUN) were measuredby automatic biochemical analyzer after ischemia-reperfusion24h.Renal tissue wasconventional processed by ethanol dehydration,paraffin embedding to4μm tissuesections.Damage of renal tubules was observed under optical microscope after PASstaining to compare the effects of different ischemic time on the above renal indexes. Atthe same time,the survival rate of the renal ischemia50min group was postoperativeobserved for one week.
     (2)After the ideal renal ischemia time was determined,Wistar rats were randomlydivided into two groups, one group of unilateral nephrectomy, unilateral renal pedicleclamping,another group underwent bilateral renal pedicle clamping.Scr and BUN aswell as one week postoperative survival rate of rats were observed after reperfusion for1d,3d,5d,7d.The survival curve was plotted.Screening out the ideal surgical mode andthe renal pedicle clamping time required for rat IRI model.
     (3) The rats were randomly divided into four groups: sham operation group (Sham),model group (Model), low-dose Fufang Shenhua Tablet group (SHT-L) and high-doseFufang Shenhua Tablet group (SHT-H).Gavage given drugs one time a day to establishthe renal IRI model with bilateral renal pedicle clamping40min method seven dayslater.Vital signs of rats was observed postoperative24h and72h.Scr and BUN weremeasured by automatic biochemical analyzer;Renal tubular injury of the rat kidney wasobserved under optical microscope and was rated the degree of renal tubular injury with computer microscopic image acquisition and analysis system to evaluate and assess therenoprotective effect of various drugs.
     (4) The rats were randomly divided into five groups: Sham group, Model group,Astragaloside group,SHT-L group and SHT-H group.Various drugs were given bygavage once daily,establishing the renal IRI model with the right nephrectomy, the leftrenal pedicle clamping40min method seven days later.Rats vital signs was observedpostoperative24h and72h.Using automatic biochemical analyzer to measure BUN andScr,and observation under the microscope the degree of tubular injury of the ratkidney;Using microscopic image acquisition and analysis system to score the degree ofinjury;Using JEM-1400electron microscope to observe the ultrastructural changes ofrenal tubular epithelial cells,on which quantitative analysis was done.
     (5) The rats were randomly divided into five groups: Sham group, Model group,Astragaloside group,SHT-L group and SHT-H group.Various drugs were gavage givenseven days, then the renal ischemia-reperfusion rat model was established. Toll-likereceptors2(TLR2),Toll-like receptors4(TLR4),myeloid differentiation factor88(MyD88),interleukin6(IL-6),interleukin12(IL-12) protein and mRNA expression aswell as protein expression of interleukin8(IL-8) and IFN-gamma (IFN-γ) on the renaltissue were detected by the means of immunohistochemical ABC method (IHC-P) andWestern blot (WB) and real-time quantitative nucleic acid amplified detection system(qPCR) postoperative1d,3d,5d,7d.Results:(1) The success rate of experimental operation model was97.6%, comparedwith Sham group,30min group,40min group and50min group,BUN and Scr and renalhistopathological scores were all increased1d after reperfusion.Compared with theSham group, the differences were statistically significant(P<0.05), especially in thegroups of40min and50min(P<0.01); however, there was no significant differencebetween20min group and Sham group(P>0.05). Comparison Scr and survival ratebetween Unilateral nephrectomy with renal pedicle clamping group and bilateral renalpedicle clamping group for one week, there was no significant difference between thetwo groups(P>0.05). The survival rate decreased significantly in50min group to50%.
     (2) Comparison between Sham group and Model group postoperative24h and72h,renal function and renal pathological damage in rats were significantly abnormal(P<0.01). Renal function and renal pathological damage in SHT-L group were reducedsignificantly(P<0.05),and which were reduced more significantly in SHT-Hgroup(P<0.01) compared with the Model group postoperative24h and72h.Renalfunction and renal pathological damage in rats of SHT-H group was lower than that ofin SHT-L group (P<0.05).
     (3)Both renal function and pathological damage were reached the peak after IRI24h detected by renal light microscopy and electron microscopy.The above indicatorsare partial restoration after IRI72h.The quality of rats life,Renal function and renalpathological lesion were improved significantly in SHT-L group(P<0.05).And whichwere improved more significantly in SHT-H group(P<0.01) compared with the Modelgroup postoperative24h and72h.These indicators were similar between Astragalosidegroup and SHT-L group (P>0.05), while the above parameters in SHT-H group werebetter than that of in Astragaloside group and SHT-L group (P <0.05).
     (4)Compared with Model group,both TLR2and TLR4protein and mRNAexpression in Astragaloside group and in SHT-L group were decreased postoperative1d,3d,5d,7d(P<0.05),which were decreased even more significantly in SHT-H group(P<0.01). Both TLR2and TLR4protein and mRNA expression in various groupsreached the peak after IRI5d.Compared with Astragaloside group and SHT-Lgroup,TLR2and TLR4protein and mRNA expression in SHT-H group were decreasedsignificantly(P<0.05) postoperative1d,3d,5d and7d.While TLR2and TLR4protein andmRNA expression had no significant difference between Astragaloside group andSHT-L group (P>0.05).Compared with Model group,IL-6,IL-12and MyD88proteinand mRNA expression in Astragaloside group,SHT-L group and SHT-H group weredecreased significantly postoperative1d,3d,5d,7d (P<0.05). IL-8and TNF-γ proteinexpression in various groups reached the peak one day after IRI.IL-6and IL-12proteinand mRNA expression in various groups reached the peak three days after IRI.MyD88protein and mRNA expression in various groups reached the peak five days after IRI.Compared with Astragaloside group and SHT-L group,MyD88protein and mRNAexpression as well as IL-8and TNF-γ protein expression were decreased significantlypostoperative1d,3d,5d,7d in SHT-H group(P<0.05).While MyD88protein and mRNAexpression as well as IL-8and TNF-γ protein expression had no significant differencebetween Astragaloside group and SHT-L group (P>0.05).
     Conclusion:(1) Stable renal IRI model in rats can be built on renal pedicleclamping by the means of non-invasive artery clip.Ideal ischemic time to build on renalmodel was40min in rat. Both unilateral nephrectomy with unilateral renal pedicleclamping method and bilateral renal pedicle clamping method were feasible.The modelwas satisfactory and its postoperative survival rate was high.
     (2) Both Chinese herbal compound (SHT) and single herb (Astragaloside) cansignificantly improved the quality life of IRI rats, protected their renal function andalleviated their pathological lesion of renal tissue,resulting in a good protective effect onthe kidney of IRI rats.Similar efficacy can be seen between low-dose SHT andAstragaloside, whereas the efficacy of high-dose SHT showed a good dose effect andwas obviously superior to Astragaloside.
     (3)SHT can inhibit immune inflammatory receptors-TLR2and TLR4protein andmRNA expression in rats.Inhibition of TLR2and TLR4protein and mRNA expressionin SHT-H group was superior to that of in Astragaloside group and SHT-L group,suggesting a role for SHT with good dose effect on the inflammatory immunereceptor-TLR2and TLR4.
     (4)SHT may possibly through the regulation of MyD88-dependent TLRs signaltransduction pathways to inhibit the release of inflammatory cytokines,and to relieveand partly to repair IRI-induecd AKI in rats with a good dose-dependent effect.Thisstudy demonstrated that TLRs signal pathway mechanism maybe involed in the SHTprevention and treatment of ischemic AKI.
引文
1. Singh, A.P., A. Junemann, A. Muthuraman, et al., Animal models of acute renalfailure. Pharmacol Rep,2012.64(1): p.31-44.
    2. Lameire, N., W. Van Biesen,R. Vanholder, The changing epidemiology of acuterenal failure. Nat Clin Pract Nephrol,2006.2(7): p.364-77.
    3. Chertow, G.M., E.M. Levy, K.E. Hammermeister, et al., Independentassociation between acute renal failure and mortality following cardiac surgery.Am J Med,1998.104(4): p.343-8.
    4. Yatsu, T., Y. Arai, K. Takizawa, et al., Effect of YM435, a dopamine DA1receptor agonist, in a canine model of ischemic acute renal failure. GenPharmacol,1998.31(5): p.803-7.
    5. Bhalodia, Y., N. Kanzariya, R. Patel, et al., Renoprotective activity of benincasacerifera fruit extract on ischemia/reperfusion-induced renal damage in rat. Iran JKidney Dis,2009.3(2): p.80-5.
    6. Lieberthal, W.,J.S. Levine, Mechanisms of apoptosis and its potential role inrenal tubular epithelial cell injury. Am J Physiol,1996.271(3Pt2): p. F477-88.
    7. Foglieni, C., A. Fulgenzi, P. Ticozzi, et al., Protective effect of EDTApreadministration on renal ischemia. BMC Nephrol,2006.7: p.5.
    8. Baker, R.C., M.A. Armstrong, I.S. Young, et al., Methylprednisolone increasesurinary nitrate concentrations and reduces subclinical renal injury duringinfrarenal aortic ischemia reperfusion. Ann Surg,2006.244(5): p.821-6.
    9. Matthijsen, R.A., D. Huugen, N.T. Hoebers, et al., Myeloperoxidase is criticallyinvolved in the induction of organ damage after renal ischemia reperfusion. AmJ Pathol,2007.171(6): p.1743-52.
    10. Susa, D., J.R. Mitchell, M. Verweij, et al., Congenital DNA repair deficiencyresults in protection against renal ischemia reperfusion injury in mice. AgingCell,2009.8(2): p.192-200.
    11. Jayle, C., S. Milinkevitch, F. Favreau, et al., Protective role of selectin ligandinhibition in a large animal model of kidney ischemia-reperfusion injury. KidneyInt,2006.69(10): p.1749-55.
    12. Hauet, T., J.M. Goujon, A. Vandewalle, et al., Trimetazidine reduces renaldysfunction by limiting the cold ischemia/reperfusion injury in autotransplantedpig kidneys. J Am Soc Nephrol,2000.11(1): p.138-48.
    13. Choi, D.E., J.Y. Jeong, B.J. Lim, et al., Pretreatment of sildenafil attenuatesischemia-reperfusion renal injury in rats. Am J Physiol Renal Physiol,2009.297(2): p. F362-70.
    14. Kennedy, S.E.,J.H. Erlich, Murine renal ischaemia-reperfusion injury.Nephrology (Carlton),2008.13(5): p.390-6.
    15. Hu, H., G. Wang, F. Batteux, et al., Gender differences in the susceptibility torenal ischemia-reperfusion injury in BALB/c mice. Tohoku J Exp Med,2009.218(4): p.325-9.
    1. Snoeijs, M.G., L.W. van Heurn,W.A. Buurman, Biological modulation of renalischemia-reperfusion injury. Curr Opin Organ Transplant,2010.15(2): p.190-9.
    2. Chertow, G.M., E. Burdick, M. Honour, et al., Acute kidney injury, mortality,length of stay, and costs in hospitalized patients. J Am Soc Nephrol,2005.16(11): p.3365-70.
    3. Kinsey, G.R., L. Li,M.D. Okusa, Inflammation in acute kidney injury. NephronExp Nephrol,2008.109(4): p. e102-7.
    4. Muhlberger, I., P. Perco, R. Fechete, et al., Biomarkers in renal transplantationischemia reperfusion injury. Transplantation,2009.88(3Suppl): p. S14-9.
    5. Lam, W., S. Bussom, F. Guan, et al., The four-herb Chinese medicine PHY906reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med,2010.2(45): p.45ra59.
    6. Shi, X., X.G. Lu, L.B. Zhan, et al., The effects of the Chinese medicine ZiBuPiYin recipe on the hippocampus in a rat model of diabetes-associatedcognitive decline: a proteomic analysis. Diabetologia,2011.54(7): p.1888-99.
    7.陈香美,陈以平,李平, et al.,肾华片治疗IgA肾病(气阴两虚证)多中心随机对照临床观察.中国中西医结合杂志,2007.27(2): p.101-105.
    8.李建军,陈香美,顾.明, et al.,复方肾华片对5/6肾切除大鼠肾组织巨噬细胞移行抑制因子的影响.中国中西医结合杂志,2005.25(2): p.150-153.
    9. Yamada, K., T. Miwa, J. Liu, et al., Critical protection from renal ischemiareperfusion injury by CD55and CD59. J Immunol,2004.172(6): p.3869-75.
    10. Wu, H., G. Chen, K.R. Wyburn, et al., TLR4activation mediates kidneyischemia/reperfusion injury. J Clin Invest,2007.117(10): p.2847-59.
    11. Eltzschig, H.K.,T. Eckle, Ischemia and reperfusion--from mechanism totranslation. Nat Med,2011.17(11): p.1391-401.
    12. Lameire, N., W. Van Biesen,R. Vanholder, The changing epidemiology ofacute renal failure. Nat Clin Pract Nephrol,2006.2(7): p.364-77.
    13. Palevsky, P.M., K.D. Liu, P.D. Brophy, et al., KDOQI US Commentary on the2012KDIGO Clinical Practice Guideline for Acute Kidney Injury. Am JKidney Dis,2013.
    14. Lameire, N.,R. Vanholder, Pathophysiologic features and prevention of humanand experimental acute tubular necrosis. J Am Soc Nephrol,2001.12Suppl17:p. S20-32.
    15. Bonventre, J.V.,J.M. Weinberg, Recent advances in the pathophysiology ofischemic acute renal failure. J Am Soc Nephrol,2003.14(8): p.2199-210.
    16. Padanilam, B.J., Cell death induced by acute renal injury: a perspective on thecontributions of apoptosis and necrosis. Am J Physiol Renal Physiol,2003.284(4): p. F608-27.
    17. Devarajan, P., Update on mechanisms of ischemic acute kidney injury. J AmSoc Nephrol,2006.17(6): p.1503-20.
    18.费洁.,陶富盛.,解珂,肾缺血再灌注损伤发生机制的中西医认识进展.黑龙江医药,2008.21(2): p.45-47.
    19.李均,李莹莹,虎杖及其有效成分虎杖苷对肾缺血再灌注损伤的保护作用.环球中医药,2010.3(4): p.249-252.
    20.夏康,李家兵,吴建伟等,丹红注射液对大鼠移植肾缺血再灌注损伤后ICAM-1表达的影响.重庆医科大学学报,2010.35(2): p.199-201.
    21.李建军,陈香美,复方肾华片对5/6肾切除大鼠的疗效观察.中国中药杂志,
    2005.30(5): p.377-380.
    22.张五星,陈香美,魏日胞, et al.,复方肾华治疗大鼠改良慢性血清病肾炎的实验研究.北京中医药大学学报,2003.26(2): p.32-35.
    23.张五星,陈香美,魏日胞, et al.,中药肾华对慢性肾炎大鼠肾组织Stat3表达及活化的影响.中国中西医结合杂志,2005.25: p.66-70.
    1. Singbartl, K.,J.A. Kellum, AKI in the ICU: definition, epidemiology, riskstratification, and outcomes. Kidney Int,2012.81(9): p.819-25.
    2. Bajwa, A., S.K. Jo, H. Ye, et al., Activation of sphingosine-1-phosphate1receptor in the proximal tubule protects against ischemia-reperfusion injury. JAm Soc Nephrol,2010.21(6): p.955-65.
    3.李均,胡绍进,中药防治肾缺血再灌注损伤的研究进展.环球中医药,2009.2(3): p.223-225.
    4.廖秀清,熊平,肖晓山,黄芪甲甙对大鼠肺缺血再灌注损伤的保护作用.广东医学,2009.30(12): p.1778-1780.
    5.陈建,吴卫真,余毅等,黄芪对肾缺血再灌注损伤的保护作用.中华泌尿外科杂志,2000.21(4): p.211.
    6.蒋晓峰,吴毅泰,李江涛等,黄芪对大鼠缺血再灌注肾组织一氧化氮及超氧化物歧化酶的影响.浙江医学,2004.26(12): p.900.
    7.苏南湘,祖雄兵,黄芪对肾缺血再灌注损伤保护作用机制研究.中国现代医学杂志,2004.14(8): p.142.
    8.王建新,梅广林,胡卫东,黄芪在肝脏缺血-再灌注损伤中保护作用的研究.南通大学学报(医学版),2005.25(3): p.161-163.
    9.严彬,王建华,王旭东等,补气活血中药对肾缺血再灌注损伤模型大鼠的保护作用研究.中国药房,2005.16(9): p.658-660.
    10.于芹超,朱同玉,张永康,黄芪甲甙对大鼠肾缺血再灌注损伤的保护作用.中华实验外科杂志,2004.21(3): p.379.
    11.原春辉,刘永峰,程颖等,黄芪注射液对犬离体肾低温灌注与保存影响的实验研究.中国中西医结合杂志,2003.23(4): p.291.
    12. Yamada, K., T. Miwa, J. Liu, et al., Critical protection from renal ischemiareperfusion injury by CD55and CD59. J Immunol,2004.172(6): p.3869-75.
    13. Wu, H., G. Chen, K.R. Wyburn, et al., TLR4activation mediates kidneyischemia/reperfusion injury. J Clin Invest,2007.117(10): p.2847-59.
    14.陈光磊,王汉民,刘广厚等,缺血后处理对大鼠肾脏缺血再灌注后肾小管上皮细胞超微结构的影响.第四军医大学学报,2007.28(23): p.2135-2137.
    15. Chertow, G.M., E. Burdick, M. Honour, et al., Acute kidney injury, mortality,length of stay, and costs in hospitalized patients. J Am Soc Nephrol,2005.16(11): p.3365-70.
    16. Srisawat, N., E.E. Hoste,J.A. Kellum, Modern classification of acute kidneyinjury. Blood Purif,2010.29(3): p.300-7.
    17. Hoste, E.A., J.A. Kellum, N.M. Katz, et al., Epidemiology of acute kidneyinjury. Contrib Nephrol,2010.165: p.1-8.
    18. Kellum, J.A.,E.A. Hoste, Acute kidney injury: epidemiology and assessment.Scand J Clin Lab Invest Suppl,2008.241: p.6-11.
    19. Hoste, E.A.,J.A. Kellum, Incidence, classification, and outcomes of acutekidney injury. Contrib Nephrol,2007.156: p.32-8.
    20. Jones, D.R.,H.T. Lee, Perioperative renal protection. Best Pract Res ClinAnaesthesiol,2008.22(1): p.193-208.
    21. Yap, S.C.,H.T. Lee, Adenosine and protection from acute kidney injury. CurrOpin Nephrol Hypertens,2012.21(1): p.24-32.
    22.张春燕,冯志强,补气活血中药抗肾缺血再灌注损伤研究进展.现代医药卫生,2009.25(3): p.412-413.
    1. Bajwa, A., S.K. Jo, H. Ye, et al., Activation of sphingosine-1-phosphate1receptor in the proximal tubule protects against ischemia-reperfusion injury. JAm Soc Nephrol,2010.21(6): p.955-65.
    2. Wei, Q., K. Bhatt, H.Z. He, et al., Targeted deletion of Dicer from proximaltubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol,
    2010.21(5): p.756-61.
    3. Arumugam, T.V., E. Okun, S.C. Tang, et al., Toll-like receptors inischemia-reperfusion injury. Shock,2009.32(1): p.4-16.
    4. MacLeod, H.,L.M. Wetzler, T cell activation by TLRs: a role for TLRs in theadaptive immune response. Sci STKE,2007.2007(402): p. pe48.
    5. Fukata, M., A.S. Vamadevan,M.T. Abreu, Toll-like receptors (TLRs) andNod-like receptors (NLRs) in inflammatory disorders. Semin Immunol,2009.21(4): p.242-53.
    6.廖秀清,熊平,肖晓山,黄芪甲甙对大鼠肺缺血再灌注损伤的保护作用.广东医学,2009.30(12): p.1778-1780.
    7.陈建,吴卫真,余毅等,黄芪对肾缺血再灌注损伤的保护作用.中华泌尿外科杂志,2000.21(4): p.211.
    8.蒋晓峰,吴毅泰,李江涛等,黄芪对大鼠缺血再灌注肾组织一氧化氮及超氧化物歧化酶的影响.浙江医学,2004.26(12): p.900.
    9.苏南湘,祖雄兵,黄芪对肾缺血再灌注损伤保护作用机制研究.中国现代医学杂志,2004.14(8): p.142.
    10.严彬,王建华,王旭东等,补气活血中药对肾缺血再灌注损伤模型大鼠的保护作用研究.中国药房,2005.16(9): p.658-660.
    11.于芹超,朱同玉,张永康,黄芪甲甙对大鼠肾缺血再灌注损伤的保护作用.中华实验外科杂志,2004.21(3): p.379.
    12.原春辉,刘永峰,程颖等,黄芪注射液对犬离体肾低温灌注与保存影响的实验研究.中国中西医结合杂志,2003.23(4): p.291.
    13.陈香美,陈以平,李平, et al.,肾华片治疗IgA肾病(气阴两虚证)多中心随机对照临床观察.中国中西医结合杂志,2007.27(2): p.101-105.
    14.李建军,陈香美,顾.明, et al.,复方肾华片对5/6肾切除大鼠肾组织巨噬细胞移行抑制因子的影响.中国中西医结合杂志,2005.25(2): p.150-153.
    15. Livak, K.J.,T.D. Schmittgen, Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(T)) Method. Methods,2001.25(4): p.402-8.
    16. Zhang, B., G. Ramesh, S. Uematsu, et al., TLR4signaling mediatesinflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol,2008.19(5): p.923-32.
    17. Chong, A.J., A. Shimamoto, C.R. Hampton, et al., Toll-like receptor4mediatesischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg,2004.128(2):p.170-9.
    18. Kim, B.S., S.W. Lim, C. Li, et al., Ischemia-reperfusion injury activates innateimmunity in rat kidneys. Transplantation,2005.79(10): p.1370-7.
    19. Tsung, A., R.A. Hoffman, K. Izuishi, et al., Hepatic ischemia/reperfusion injuryinvolves functional TLR4signaling in nonparenchymal cells. J Immunol,2005.175(11): p.7661-8.
    20. Wolfs, T.G., W.A. Buurman, A. van Schadewijk, et al., In vivo expression ofToll-like receptor2and4by renal epithelial cells: IFN-gamma and TNF-alphamediated up-regulation during inflammation. J Immunol,2002.168(3): p.1286-93.
    21. Leemans, J.C., G. Stokman, N. Claessen, et al., Renal-associated TLR2mediatesischemia/reperfusion injury in the kidney. J Clin Invest,2005.115(10): p.2894-903.
    22. Wu, H., G. Chen, K.R. Wyburn, et al., TLR4activation mediates kidneyischemia/reperfusion injury. J Clin Invest,2007.117(10): p.2847-59.
    23. Shigeoka, A.A., T.D. Holscher, A.J. King, et al., TLR2is constitutivelyexpressed within the kidney and participates in ischemic renal injury throughboth MyD88-dependent and-independent pathways. J Immunol,2007.178(10):p.6252-8.
    24.李净,王键,益气活血法改善气虚血瘀证局灶性脑缺血再灌注模型鼠生物学特征的有效性评价.中国中医基础医学杂志,2003.9(4): p.22-26.
    1. Jennings, R.B., H.M. Sommers, G.A. Smyth, et al., Myocardial necrosis inducedby temporary occlusion of a coronary artery in the dog. Arch Pathol,1960.70: p.68-78.
    2. Thurman, J.M., Triggers of inflammation after renal ischemia/reperfusion. ClinImmunol,2007.123(1): p.7-13.
    3. Leemans, J.C., G. Stokman, N. Claessen, et al., Renal-associated TLR2mediatesischemia/reperfusion injury in the kidney. J Clin Invest,2005.115(10): p.2894-903.
    4. Zager, R.A., A.C. Johnson, S. Lund, et al., Toll-like receptor (TLR4) sheddingand depletion: acute proximal tubular cell responses to hypoxic and toxic injury.Am J Physiol Renal Physiol,2007.292(1): p. F304-12.
    5. Kawai, T.,S. Akira, TLR signaling. Semin Immunol,2007.19(1): p.24-32.
    6. Kaushal, V.,L.C. Schlichter, Mechanisms of microglia-mediated neurotoxicity ina new model of the stroke penumbra. J Neurosci,2008.28(9): p.2221-30.
    7. Kwiatkowski, A., M. Wszola, A. Perkowska-Ptasinska, et al., Influence ofpreservation method on histopathological lesions of kidney allografts. AnnTransplant,2009.14(1): p.10-3.
    8. Pulskens, W.P., G.J. Teske, L.M. Butter, et al., Toll-like receptor-4coordinatesthe innate immune response of the kidney to renal ischemia/reperfusion injury.PLoS One,2008.3(10): p. e3596.
    9. Feng, Y., H. Zhao, X. Xu, et al., Innate immune adaptor MyD88mediatesneutrophil recruitment and myocardial injury after ischemia-reperfusion in mice.Am J Physiol Heart Circ Physiol,2008.295(3): p. H1311-H1318.
    10. Chong, A.J., A. Shimamoto, C.R. Hampton, et al., Toll-like receptor4mediatesischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg,2004.128(2):p.170-9.
    11. Wu, H., G. Chen, K.R. Wyburn, et al., TLR4activation mediates kidneyischemia/reperfusion injury. J Clin Invest,2007.117(10): p.2847-59.
    12. Chao, W., Toll-like receptor signaling: a critical modulator of cell survival andischemic injury in the heart. Am J Physiol Heart Circ Physiol,2009.296(1): p.H1-12.
    13. Verstrepen, L., T. Bekaert, T.L. Chau, et al., TLR-4, IL-1R and TNF-R signalingto NF-kappaB: variations on a common theme. Cell Mol Life Sci,2008.65(19):p.2964-78.
    14. Group, E.A.I.S., Effect of a novel free radical scavenger, edaravone (MCI-186),on acute brain infarction. Randomized, placebo-controlled, double-blind study atmulticenters. Cerebrovasc Dis,2003.15(3): p.222-9.
    15. Zhang, N., M. Komine-Kobayashi, R. Tanaka, et al., Edaravone reduces earlyaccumulation of oxidative products and sequential inflammatory responses aftertransient focal ischemia in mice brain. Stroke,2005.36(10): p.2220-5.
    16. Weight, S.C., P.R. Bell,M.L. Nicholson, Renal ischaemia--reperfusion injury. BrJ Surg,1996.83(2): p.162-70.
    17. Tahara, M., M. Nakayama, M.B. Jin, et al., A radical scavenger, edaravone,protects canine kidneys from ischemia-reperfusion injury after72hours of coldpreservation and autotransplantation. Transplantation,2005.80(2): p.213-21.
    18.李均,胡绍进,中药防治肾缺血再灌注损伤的研究进展.环球中医药,2009.2(3): p.223-225.
    19. Zheng, X.Y., R.B. Wei, S.Z. Shi, et al., Effects of Fufang Shenhua Tablet on theexpression of toll-like receptors during acute kidney injury induced byischemia-reperfusion in rats. Chin J Integr Med,2012.18(12): p.918-24.
    20. Daemen, M.A., M.W. van de Ven, E. Heineman, et al., Involvement ofendogenous interleukin-10and tumor necrosis factor-alpha in renalischemia-reperfusion injury. Transplantation,1999.67(6): p.792-800.
    21. Daemen, M.A., C. van't Veer, T.G. Wolfs, et al., Ischemia/reperfusion-inducedIFN-gamma up-regulation: involvement of IL-12and IL-18. J Immunol,1999.162(9): p.5506-10.
    22. Livak, K.J.,T.D. Schmittgen, Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(T)) Method. Methods,2001.25(4): p.402-8.
    23. Hsu, C.Y., C.E. McCulloch, D. Fan, et al., Community-based incidence of acuterenal failure. Kidney Int,2007.72(2): p.208-12.
    24. Waikar, S.S., G.C. Curhan, R. Wald, et al., Declining mortality in patients withacute renal failure,1988to2002. J Am Soc Nephrol,2006.17(4): p.1143-50.
    25. Legrand, M., E.G. Mik, T. Johannes, et al., Renal hypoxia and dysoxia afterreperfusion of the ischemic kidney. Mol Med,2008.14(7-8): p.502-16.
    26. Lameire, N., W. Van Biesen,R. Vanholder, Acute renal failure. Lancet,2005.365(9457): p.417-30.
    27. Saenz-Morales, D., E. Conde, M.M. Escribese, et al., ERK1/2mediatescytoskeleton and focal adhesion impairment in proximal epithelial cells afterrenal ischemia. Cell Physiol Biochem,2009.23(4-6): p.285-94.
    28. Zhang, B., G. Ramesh, S. Uematsu, et al., TLR4signaling mediatesinflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol,2008.19(5): p.923-32.
    29. Kim, B.S., S.W. Lim, C. Li, et al., Ischemia-reperfusion injury activates innateimmunity in rat kidneys. Transplantation,2005.79(10): p.1370-7.
    30. Wolfs, T.G., W.A. Buurman, A. van Schadewijk, et al., In vivo expression ofToll-like receptor2and4by renal epithelial cells: IFN-gamma and TNF-alphamediated up-regulation during inflammation. J Immunol,2002.168(3): p.1286-93.
    1. Eltzschig, H.K.,T. Eckle, Ischemia and reperfusion--from mechanism totranslation. Nat Med,2011.17(11): p.1391-401.
    2. Arslan, F., B. Keogh, P. McGuirk, et al., TLR2and TLR4in ischemiareperfusion injury. Mediators Inflamm,2010.2010: p.704202.
    3.张艳霞, TLR4信号转导途径在肾脏缺血再灌注免疫损伤中的作用.国际泌尿系统杂志,2010.30(1): p.100-102.
    4. Fukata, M., A.S. Vamadevan,M.T. Abreu, Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol,2009.21(4):p.242-53.
    5. Damman, J., M.R. Daha, W.J. van Son, et al., Crosstalk between complementand Toll-like receptor activation in relation to donor brain death and renalischemia-reperfusion injury. Am J Transplant,2011.11(4): p.660-9.
    6. Yamamoto, M.,K. Takeda, Current views of toll-like receptor signalingpathways. Gastroenterol Res Pract,2010.2010: p.240365.
    7. Goncalves, G.M., A. Castoldi, T.T. Braga, et al., New roles for innate immuneresponse in acute and chronic kidney injuries. Scand J Immunol,2011.73(5): p.428-35.
    8. Yu, L., L. Wang,S. Chen, Endogenous toll-like receptor ligands and theirbiological significance. J Cell Mol Med,2010.14(11): p.2592-603.
    9. Snoeijs, M.G., L.W. van Heurn,W.A. Buurman, Biological modulation of renalischemia-reperfusion injury. Curr Opin Organ Transplant,2010.15(2): p.190-9.
    10. Chertow, G.M., E. Burdick, M. Honour, et al., Acute kidney injury, mortality,length of stay, and costs in hospitalized patients. J Am Soc Nephrol,2005.16(11): p.3365-70.
    11. Bajwa, A., S.K. Jo, H. Ye, et al., Activation of sphingosine-1-phosphate1receptor in the proximal tubule protects against ischemia-reperfusion injury. JAm Soc Nephrol,2010.21(6): p.955-65.
    12. Kawai, T.,S. Akira, The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol,2010.11(5): p.373-84.
    13. O'Neill, L.A., The interleukin-1receptor/Toll-like receptor superfamily:10years of progress. Immunol Rev,2008.226: p.10-8.
    14. Bowie, A.G.,I.R. Haga, The role of Toll-like receptors in the host response toviruses. Mol Immunol,2005.42(8): p.859-67.
    15. Kawai, T.,S. Akira, TLR signaling. Cell Death Differ,2006.13(5): p.816-25.
    16. Arumugam, T.V., E. Okun, S.C. Tang, et al., Toll-like receptors inischemia-reperfusion injury. Shock,2009.32(1): p.4-16.
    17. Yang, H., H.S. Hreggvidsdottir, K. Palmblad, et al., A critical cysteine isrequired for HMGB1binding to Toll-like receptor4and activation ofmacrophage cytokine release. Proc Natl Acad Sci U S A,2010.107(26): p.11942-7.
    18. Tsan, M.F.,B. Gao, Pathogen-associated molecular pattern contamination asputative endogenous ligands of Toll-like receptors. J Endotoxin Res,2007.13(1):p.6-14.
    19. Kruger, B., S. Krick, N. Dhillon, et al., Donor Toll-like receptor4contributes toischemia and reperfusion injury following human kidney transplantation. ProcNatl Acad Sci U S A,2009.106(9): p.3390-5.
    20. Wu, H., J. Ma, P. Wang, et al., HMGB1contributes to kidney ischemiareperfusion injury. J Am Soc Nephrol,2010.21(11): p.1878-90.
    21. Wu, H., G. Chen, K.R. Wyburn, et al., TLR4activation mediates kidneyischemia/reperfusion injury. J Clin Invest,2007.117(10): p.2847-59.
    22. Chen, J., R. John, J.A. Richardson, et al., Toll-like receptor4regulates earlyendothelial activation during ischemic acute kidney injury. Kidney Int,2011.79(3): p.288-99.
    23. Zhang, B., G. Ramesh, S. Uematsu, et al., TLR4signaling mediatesinflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol,2008.19(5): p.923-32.
    24. El-Achkar, T.M., X.R. Wu, M. Rauchman, et al., Tamm-Horsfall proteinprotects the kidney from ischemic injury by decreasing inflammation andaltering TLR4expression. Am J Physiol Renal Physiol,2008.295(2): p.F534-44.
    25. Banas, M.C., B. Banas, K.L. Hudkins, et al., TLR4links podocytes with theinnate immune system to mediate glomerular injury. J Am Soc Nephrol,2008.19(4): p.704-13.
    26. Wolfs, T.G., W.A. Buurman, A. van Schadewijk, et al., In vivo expression ofToll-like receptor2and4by renal epithelial cells: IFN-gamma and TNF-alphamediated up-regulation during inflammation. J Immunol,2002.168(3): p.1286-93.
    27. Leemans, J.C., G. Stokman, N. Claessen, et al., Renal-associated TLR2mediatesischemia/reperfusion injury in the kidney. J Clin Invest,2005.115(10): p.2894-903.
    28. Pulskens, W.P., G.J. Teske, L.M. Butter, et al., Toll-like receptor-4coordinatesthe innate immune response of the kidney to renal ischemia/reperfusion injury.PLoS One,2008.3(10): p. e3596.
    29. Shigeoka, A.A., T.D. Holscher, A.J. King, et al., TLR2is constitutivelyexpressed within the kidney and participates in ischemic renal injury throughboth MyD88-dependent and-independent pathways. J Immunol,2007.178(10):p.6252-8.
    30. Rusai, K., D. Sollinger, M. Baumann, et al., Toll-like receptors2and4in renalischemia/reperfusion injury. Pediatr Nephrol,2010.25(5): p.853-60.
    31. Mkaddem, S.B., C. Werts, J.M. Goujon, et al., Heat shock protein gp96interactswith protein phosphatase5and controls toll-like receptor2(TLR2)-mediatedactivation of extracellular signal-regulated kinase (ERK)1/2in post-hypoxickidney cells. J Biol Chem,2009.284(18): p.12541-9.
    32. Arumugam, T.V., I.A. Shiels, T.M. Woodruff, et al., The role of the complementsystem in ischemia-reperfusion injury. Shock,2004.21(5): p.401-9.
    33. Okuda, M., A multidisciplinary overview of cardiogenic shock. Shock,2006.25(6): p.557-70.
    34. Baue, A.E., MOF, MODS, and SIRS: what is in a name or an acronym? Shock,
    2006.26(5): p.438-49.
    35. Levonen, A.L., E. Vahakangas, J.K. Koponen, et al., Antioxidant gene therapyfor cardiovascular disease: current status and future perspectives. Circulation,
    2008.117(16): p.2142-50.
    36. Thurman, J.M., Triggers of inflammation after renal ischemia/reperfusion. ClinImmunol,2007.123(1): p.7-13.
    37. Arumugam, T.V., T. Magnus, T.M. Woodruff, et al., Complement mediators inischemia-reperfusion injury. Clin Chim Acta,2006.374(1-2): p.33-45.
    38. Zingarelli, B., P.W. Hake, P. Mangeshkar, et al., Diverse cardioprotectivesignaling mechanisms of peroxisome proliferator-activated receptor-gammaligands,15-deoxy-Delta12,14-prostaglandin J2and ciglitazone, in reperfusioninjury: role of nuclear factor-kappaB, heat shock factor1, and Akt. Shock,2007.28(5): p.554-63.
    39. Huk, I., V. Brovkovych, J. Nanobashvili, et al., Prostaglandin E1reducesischemia/reperfusion injury by normalizing nitric oxide and superoxide release.Shock,2000.14(2): p.234-42.
    40. Arumugam, T.V., D.N. Granger,M.P. Mattson, Stroke and T-cells.Neuromolecular Med,2005.7(3): p.229-42.
    41. Yilmaz, G., T.V. Arumugam, K.Y. Stokes, et al., Role of T lymphocytes andinterferon-gamma in ischemic stroke. Circulation,2006.113(17): p.2105-12.
    42. Chen, C.H., K. Liu,J.Y. Chan, Anesthetic preconditioning confers acutecardioprotection via up-regulation of manganese superoxide dismutase andpreservation of mitochondrial respiratory enzyme activity. Shock,2008.29(2): p.300-8.
    43. Rivo, J., E. Zeira, E. Galun, et al., Attenuation of reperfusion lung injury andapoptosis by A2A adenosine receptor activation is associated with modulation ofBcl-2and Bax expression and activation of extracellular signal-regulated kinases.Shock,2007.27(3): p.266-73.
    44. Yeh, C.H., T.P. Chen, C.H. Lee, et al., Cardiomyocytic apoptosis followingglobal cardiac ischemia and reperfusion can be attenuated by peroxisomeproliferator-activated receptor alpha but not gamma activators. Shock,2006.26(3): p.262-70.
    45. Hsu, S.F., K.C. Niu, C.L. Lin, et al., Brain cooling causes attenuation of cerebraloxidative stress, systemic inflammation, activated coagulation, and tissueischemia/injury during heatstroke. Shock,2006.26(2): p.210-20.
    46. Barut, I., O.R. Tarhan, N. Kapucuoglu, et al., Lamotrigine reduces intestinal I/Rinjury in the rat. Shock,2007.28(2): p.202-6.
    47. Lee, W.Y.,S.M. Lee, Ischemic preconditioning protects post-ischemic oxidativedamage to mitochondria in rat liver. Shock,2005.24(4): p.370-5.
    48. Vanlangenakker, N., T. Vanden Berghe, D.V. Krysko, et al., Molecularmechanisms and pathophysiology of necrotic cell death. Curr Mol Med,2008.8(3): p.207-20.
    49. Arumugam, T.V., P.K. Selvaraj, T.M. Woodruff, et al., Targeting ischemic braininjury with intravenous immunoglobulin. Expert Opin Ther Targets,2008.12(1):p.19-29.
    50. Johnson, G.B., G.J. Brunn,J.L. Platt, Cutting edge: an endogenous pathway tosystemic inflammatory response syndrome (SIRS)-like reactions throughToll-like receptor4. J Immunol,2004.172(1): p.20-4.
    51. Scheibner, K.A., M.A. Lutz, S. Boodoo, et al., Hyaluronan fragments act as anendogenous danger signal by engaging TLR2. J Immunol,2006.177(2): p.1272-81.
    52. Jiang, D., J. Liang, J. Fan, et al., Regulation of lung injury and repair byToll-like receptors and hyaluronan. Nat Med,2005.11(11): p.1173-9.
    53. Cohen-Sfady, M., G. Nussbaum, M. Pevsner-Fischer, et al., Heat shock protein60activates B cells via the TLR4-MyD88pathway. J Immunol,2005.175(6): p.3594-602.
    54. Tsan, M.F.,B. Gao, Endogenous ligands of Toll-like receptors. J Leukoc Biol,
    2004.76(3): p.514-9.
    55. Arumugam, T.V., S.L. Chan, D.G. Jo, et al., Gamma secretase-mediated Notchsignaling worsens brain damage and functional outcome in ischemic stroke. NatMed,2006.12(6): p.621-3.
    56. Liu, P., B. Xu, T.A. Cavalieri, et al., Pifithrin-alpha attenuates p53-mediatedapoptosis and improves cardiac function in response to myocardialischemia/reperfusion in aged rats. Shock,2006.26(6): p.608-14.
    57. Nakano, H., A. Nakajima, S. Sakon-Komazawa, et al., Reactive oxygen speciesmediate crosstalk between NF-kappaB and JNK. Cell Death Differ,2006.13(5):p.730-7.
    58. Lopez-Neblina, F.,L.H. Toledo-Pereyra, Phosphoregulation of signaltransduction pathways in ischemia and reperfusion. J Surg Res,2006.134(2): p.292-9.
    59. Bonventre, J.V., Pathophysiology of acute kidney injury: roles of potentialinhibitors of inflammation. Contrib Nephrol,2007.156: p.39-46.
    60. Suleiman, M., P.M. Cury, J.O. Pestana, et al., FTY720prevents renal T-cellinfiltration after ischemia/reperfusion injury. Transplant Proc,2005.37(1): p.373-4.
    61. Arumugam, T.V., I.A. Shiels, A.J. Strachan, et al., A small molecule C5areceptor antagonist protects kidneys from ischemia/reperfusion injury in rats.Kidney Int,2003.63(1): p.134-42.
    62. Xia, Y.,N.G. Frangogiannis, MCP-1/CCL2as a therapeutic target in myocardialinfarction and ischemic cardiomyopathy. Inflamm Allergy Drug Targets,2007.6(2): p.101-7.
    63. Frangogiannis, N.G., Chemokines in ischemia and reperfusion. ThrombHaemost,2007.97(5): p.738-47.
    64. Bojakowski, K., P. Abramczyk, M. Bojakowska, et al., Fucoidan improves therenal blood flow in the early stage of renal ischemia/reperfusion injury in the rat.J Physiol Pharmacol,2001.52(1): p.137-43.
    65. Zahmatkesh, M., M. Kadkhodaee, S.M. Moosavi, et al., Beneficial effects ofMnTBAP, a broad-spectrum reactive species scavenger, in rat renal ischemia/reperfusion injury. Clin Exp Nephrol,2005.9(3): p.212-8.
    66. Takasaki, J., Y. Kawauchi, T. Urasaki, et al., Antibodies against type IIphospholipase A2prevent renal injury due to ischemia and reperfusion in rats.FEBS Lett,1998.440(3): p.377-81.
    67. Raafat, A.M., M.T. Murray, T. McGuire, et al., Calcium blockade reduces renalapoptosis during ischemia reperfusion. Shock,1997.8(3): p.186-92.
    68. Zager, R.A., A.C. Johnson, S. Lund, et al., Toll-like receptor (TLR4) sheddingand depletion: acute proximal tubular cell responses to hypoxic and toxic injury.Am J Physiol Renal Physiol,2007.292(1): p. F304-12.
    69. M ller-Kristensen M, Wang W, Ruseva M, et al., Mannan-binding lectinrecognizes structures on ischaemic reperfused mouse kidneys and is implicatedin tissue injury. Scand J Immunol,2005.61(5): p.426-434.
    70. Patole, P.S., H.J. Grone, S. Segerer, et al., Viral double-stranded RNAaggravates lupus nephritis through Toll-like receptor3on glomerular mesangialcells and antigen-presenting cells. J Am Soc Nephrol,2005.16(5): p.1326-38.
    71. Anders, H.J., B. Banas,D. Schlondorff, Signaling danger: toll-like receptors andtheir potential roles in kidney disease. J Am Soc Nephrol,2004.15(4): p.854-67.
    72. Tim G. A. M. Wolfs, Wim A. Buurman, B.d.V. Annemarie van Schadewijk, etal., In Vivo Expression of Toll-Like Receptor2and4by Renal Epithelial CellsIFN and TNF-a Mediated Up-Regulation During Inflammation. The Journal ofImmunology,2002.168(3): p.1286-1293.
    73. Samuelsson, P., L. Hang, B. Wullt, et al., Toll-like receptor4expression andcytokine responses in the human urinary tract mucosa. Infect Immun,2004.72(6): p.3179-86.
    74. Arslan, F., M.B. Smeets, L.A. O'Neill, et al., Myocardial ischemia/reperfusioninjury is mediated by leukocytic toll-like receptor-2and reduced by systemicadministration of a novel anti-toll-like receptor-2antibody. Circulation,2010.121(1): p.80-90.
    75. Wang, S., C. Schmaderer, E. Kiss, et al., Recipient Toll-like receptors contributeto chronic graft dysfunction by both MyD88-and TRIF-dependent signaling.Dis Model Mech,2010.3(1-2): p.92-103.
    76. Berger SP, Roos A, Mallat MJ, et al., Association between mannose-bindinglectin levels and graft survival in kidney transplantation. Am J Transplant,2005.5: p.1361-1366.
    77. Berger SP, Roos A, Mallat MJ, et al., Low pretransplantation mannose-bindinglectin levels predict superior patient and graft survival after simultaneouspancreas-kidney transplantation. J Am Soc Nephrol,2007.18(8): p.2416-2422.
    78. Thurman, J.M., D. Ljubanovic, C.L. Edelstein, et al., Lack of a functionalalternative complement pathway ameliorates ischemic acute renal failure in mice.J Immunol,2003.170(3): p.1517-23.
    79. Lewis, A.G., G. Kohl, Q. Ma, et al., Pharmacological targeting of C5a receptorsduring organ preservation improves kidney graft survival. Clin Exp Immunol,
    2008.153(1): p.117-26.
    80. Gueler, F., S. Rong, W. Gwinner, et al., Complement5a receptor inhibitionimproves renal allograft survival. J Am Soc Nephrol,2008.19(12): p.2302-12.
    81. Zheng, X., B. Feng, G. Chen, et al., Preventing renal ischemia-reperfusion injuryusing small interfering RNA by targeting complement3gene. Am J Transplant,
    2006.6(9): p.2099-108.
    82. Kanzler, H., F.J. Barrat, E.M. Hessel, et al., Therapeutic targeting of innateimmunity with Toll-like receptor agonists and antagonists. Nat Med,2007.13(5):p.552-9.
    83. Fenhammar, J., M. Rundgren, J. Forestier, et al., Toll-like receptor4inhibitorTAK-242attenuates acute kidney injury in endotoxemic sheep. Anesthesiology,
    2011.114(5): p.1130-7.
    84. Matzinger, P., The danger model: a renewed sense of self. Science,2002.296(5566): p.301-5.
    85. Matzinger, P., Friendly and dangerous signals: is the tissue in control? NatImmunol,2007.8(1): p.11-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700