HSP90和chk1在肝癌中的表达及在肝癌细胞凋亡中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)初步了解HSP90和chk1在肝癌组织、配对癌旁组织、正常肝组织中的蛋白表达和mRNA表达的差异,分析HSP90和chk1表达水平与肝癌临床病理的关系及两者的相关性。(2)研究HSP90抑制剂GA对人肝癌细胞株BEL7404的增殖抑制、凋亡及周期阻滞作用,分析HSP90在肝癌细胞凋亡中的作用。(3)研究HSP90抑制剂GA作用前后chk1在mRNA水平和蛋白水平的变化情况,探讨HSP90在肝癌细胞凋亡中的作用机制,为肝癌治疗提供新的靶点。
     方法:(1)采用免疫组织化学(IHC)技术从蛋白质水平检测41例肝癌组织、41例肝癌旁组织、9例正常肝组织中HSP90和chk1的表达情况。(2)应用逆转录PCR(RT-PCR)方法从mRNA水平检测46例肝癌组织、46例肝癌旁组织、9例正常肝组织中HSP90和chk1的表达情况。(3)体外培养人肝癌细胞株BEL7404,用MTT法研究HSP90抑制剂GA对人肝癌细胞株BEL7404生长的影响;用透射电镜、吖啶橙荧光染色法及Annexin V-EGFP/PI双染法流式细胞仪检测GA对人肝癌细胞株BEL7404细胞凋亡的影响(。4)用流式细胞仪检测HSP90抑制剂GA对人肝癌细胞株BEL7404细胞周期的影响。(5)用RT-PCR方法和Western-blot技术检测HSP90抑制剂GA作用前后,chk1 mRNA含量和蛋白表达的变化情况。
     结果:
     (1)免疫组织化学(IHC)结果:HSP90蛋白在肝癌、肝癌旁以及正常肝组织中的阳性表达率分别为85.37 %(35/41)、56.1 %(23/41)、22.22 %(2/9), HSP90在肝癌组织中阳性表达率明显高于癌旁组织和正常肝组织。HSP90阳性表达与肝癌TNM分期、病理分级、有无复发有关(P<0.05),而与性别、年龄、肿瘤大小、肿瘤结节、门脉癌栓、血清AFP含量、有无乙肝、丙肝、及是否合并肝硬化、腹水等无关(P >0.05)。chk1蛋白在上述组织中的阳性表达率分别为80.49 %(33/41)、70.73 %(29/41)、11.13 %(1/9), chk1在肝癌组织中阳性表达率高于癌旁组织,明显高于正常肝组织。chk1阳性表达与肝癌病理分级有关(P<0.05),而与TNM分期、有无复发及性别、年龄、肿瘤大小、肿瘤结节、门脉癌栓、血清AFP含量、有无乙肝、丙肝、及是否合并肝硬化、腹水等无关(P >0.05)。等级相关性分析表明,HSP90和chk1在肝癌组织中的表达呈正相关(P<0.01)。
     (2)逆转录PCR(RT-PCR)结果:HSP90基因在肝癌组织、肝癌旁组织及正常肝组织中的mRNA相对表达量分别为0.718±0.372、0.437±0.207、0.136±0.104,差异有统计学意义(P<0.01)。HSP90的mRNA表达与肝癌TNM分期、病理分级、有无复发密切相关(P<0.05)。chk1基因在肝癌组织、肝癌旁组织及正常肝组织中的mRNA相对表达量分别为0.320±0.146、0.193±0.071、0.098±0.000,差异有统计学意义(P<0.01)。chk1的mRNA表达与肝癌病理分级密切相关(P<0.05)。
     (3)增殖抑制实验:MTT法结果显示HSP90抑制剂GA在1~20 umol/L的浓度范围内对人肝癌细胞株BEL7404均有不同程度的增殖抑制作用,生长抑制率在10.1 %~76.7 %之间。GA分别作用24 h、48 h、72 h后,对BEL7404细胞株的生长抑制率逐渐增高,GA对人肝癌细胞株BEL7404的增殖抑制作用呈时间剂量依赖性。
     (4)流式细胞仪结果显示:GA各剂量组(5 umol/L、10 umol/L、15 umol/L)能引起BEL7404细胞株G0/G1期细胞增加,G2/M期细胞减少,对细胞周期的影响表现为G0/G1期阻滞,并呈时间剂量依赖性。
     (5)Annexin V-EGFP/PI双染法,用流式细胞仪检测可见BEL7404细胞株在GA各剂量组作用24h后的凋亡率分别为(10.2±1.35)%、(21.3±1.30)%、(38.7±1.43)%,明显高于对照(NS)组(6.31±0.82)%,说明GA可诱导BEL7404细胞株发生凋亡。
     (6)吖啶橙(AO)荧光染色结果可见随着GA浓度的增加,呈亮绿色的凋亡细胞的比率逐渐增加,GA给药组明显高于对照(NS)组(P < 0.01)。电镜下可见GA给药各剂量组肿瘤细胞核染色质浓缩并边缘化,核碎裂,胞浆空泡化明显,有的细胞可见凋亡小体,表明GA可诱导肿瘤细胞凋亡。以上结果提示GA抑制肿瘤细胞增殖可能与细胞周期阻滞和诱导细胞凋亡有关。
     (7)10 umol/L GA处理BEL7404细胞不同时间点后chk1的mRNA水平无明显降低。Western blot检测GA作用24h后chk1蛋白表达较GA作用前明显减弱。以上结果表明抑制HSP90的功能可降低chk1蛋白表达量而不影响chk1 mRNA水平的合成。
     结论:HSP90及其客户蛋白chk1在肝癌组织中的蛋白水平和mRNA水平的表达均高于配对癌旁组织及正常肝组织,并且与肝癌临床病理有关。HSP90抑制剂GA可抑制体外培养的肝癌细胞生长,引起肝癌细胞凋亡和周期阻滞。抑制HSP90的功能可减少chk1蛋白表达量,而不影响chk1 mRNA水平的合成。HSP90抑制剂GA的抗肿瘤作用机制可能与抑制chk1通路有关。HSP90和chk1有望成为肝癌治疗的新靶点。
Objective: (1) To investigate the differences of mRNA and protein expressions of HSP90 and chk1 among normal liver, hepatocellular carcinoma and paired adjacent cancerous liver tissues, analyze the correlation of the level of expressions of HSP90 and chk1 and the clinicopathological parameters in liver cancer. (2) To observe the effects of geldanamycin (GA) on cell proliferation inhibition and apoptosis of human hepatoma cell line BEL7404. (3) To observe the changes of the mRNA and protein expression of chk1 before and after treatment with HSP90 inhibitor geldanamycin (GA), discuss the mechanism of HSP90 in apoptosis of human hepatoma cell line BEL7404 and provide new therapeutic targets for hepatocarcinoma.
     Methods: (1) The levels of protein expression of HSP90 and chk1 were assayed by immunohistochemistry (IHC) in 41 hepatocellular carcinoma, 41 paired adjacent cancerous liver tissues and 9 normal livers. (2) The levels of mRNA expression of HSP90 and chk1 were assayed by reverse transcription PCR (RT-PCR) among 46 hepatocellular carcinoma, 46 paired adjacent cancerous liver tissues and 9 normal livers. (3) Cultured human hepatoma cell line Bel-7404 in vitro and observed the impacts of HSP90 inhibitor geldanamycin (GA) on the growth of human hepatoma cell line Bel-7404 by methyl thiazolyl tetrazolium (MTT) method. Studied the influence of HSP90 inhibitor geldanamycin (GA) on apoptosis of human hepatoma cell line BEL7404 by electron microscope, acridine orange fluorescent staining and Annexin V-EGFP/PI double staining FCM assay. (4) The influence of HSP90 inhibitor geldanamycin (GA) on cell cycle of human hepatoma cell line Bel-7404 was assayed by FCM. (5) The changes of the mRNA and protein expression of chk1 before and after treatment with HSP90 inhibitor geldanamycin (GA) were assayed by RT-PCR and Western-blot.
     Results: (1) The positive protein expression rates of HSP90 were 85.37% (35/41)、56.1% (23/41)、22.22% (2/9) in hepatocellular carcinoma, paired adjacent cancerous liver tissues and normal liver respectively. The rate in hepatocellular was significantly higher than the other two groups. The positive expression of HSP90 was associated with clinical stages, differentiation degree of cancer cells and recurrence (P<0.05), and was irrelevant with age, gender, tumor size, tumor nodus, serum level of AFP and portal vein embolus(P>0.05). The positive protein expression rates of chk1 were 80.49 % (33/41)、70.73 % (29/41)、11.13 % (1/9) in three tissues respectively. The rate in hepatocellular was higher than that in paired adjacent cancerous liver tissues, and significantly higher than that in normal liver tissues. The positive expression of chk1 was associated with pathological classification (P<0.05), and was irrelevant with age, gender, tumor size, tumor nodus, portal vein embolus, serum level of AFP, hepatic cirrhosis and ascites (P>0.05). Rank correlation analysis showed the expression between HSP90 and chk1 in hepatocellular carcinoma had a positive relationship.
     (2) The mRNA expression level of HSP90 was 0.718±0.372, 0.437±0.207 and 0.136±0.104 in hepatocellular carcinoma, paired adjacent cancerous liver tissues and normal liver respectively, there are significantly differences among groups (P<0.01). The mRNA expression of HSP90 was associated with TNM stages,differentiation degree of cancer cells and recurrence (P<0.05). The mRNA expression level of chk1 was 0.320±0.146, 0.193±0.071 and 0.098±0.000 in three tissues respectively, and there are significant differences among groups (P<0.01). The mRNA expression of chk1 was associated with pathological classification (P<0.05).
     (3) HSP90 inhibitor geldanamycin (GA) inhibited BEL7404 cell line at the concentration of 1-20 umol/L with 10.1 %~76.7 % inhibitory ratio. The growth inhibition ratio increased gradually after treatment with GA to BEL7404 cells 24h, 48h, and 72h respectively. And this inhibitory effect showed remarkable time and dose dependence.
     (4) G0/G1 period cells increased while G2/M period cells decreased either with treatment of 5 umol/L GA , or 10 umol/L GA, or 15 umol/LGA.GA arrested cell cycle at phase G0/G1,which showed time and dose dependency.
     (5) GA induced apoptosis of BEL7404 cells with the apoptosis rate of 10.2±1.35 %, 21.3±1.30 %, and 38.70±1.43 %, while the rate in the control group was 6.31±0.82 % by Annexin V-EGFP/PI double staining FCM assay. This suggested that GA could induce apoptosis of hepatoma cells.
     (6) The proportion of apoptosis cells increased gradually along with the different concentration of GA by acridine orange fluorescent staining. Condensation of chromatin at margins of nuclei, disintegration of nucleolus, vacuoles in cytoplasm, even apoptotic body were observed in the GA group under transmission electron microscope (TEM). This suggested that the inhibitory effect of GA on the growth of tumor cells was probably related to its arresting cell cycle at G0/G1 phase and induced apoptosis of tumor cells.
     (7) After BEL7404 cells were treated with 10 uM GA for various time intervals, chk1 mRNA expression showed no significant difference before and after GA treatment by a semi-quantitative RT-PCR analysis. Chk1 protein showed an obviously decrease after 24h treatment with GA assayed with western blot. These results indicated that the inhibitory effect of GA was due to degradation of chk1 protein but not decreased synthesis.
     Conclusions: The mRNA and protein expressions of HSP90 and chk1 in hepatocellular carcinoma are higher than paired adjacent cancerous liver tissues and normal liver tissues, and are associated with clinicopathological classification. HSP90 inhibitor geldanamycin (GA) inhibits the growth of hepatoma cells in vitro, induces apoptosis and blocks cell cycle of hepatoma cells. The inhibition of HSP90 can decrease the expression of chk1 in human hepatoma cell line Bel-7404, without affecting the synthesis of mRNA of chk1. The mechanism of anti-tumor activity of HSP90 inhibitor GA may be related to the effect of blocking the chk1 pathway. HSP90 and chk1 are hopeful new therapeutic targets for hepatocarcinoma.
引文
1. Stenner-Liewen F, Luo G, Sahin U, et al. Definition of tumor-associated antigens in hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev. 2000; 9(3): 285-290..
    2. Neckers L, Ivv SP. Heat shock protein 90. Curr Opin Oncol. 2003 Nov;15(6):419-424.
    3. Shi Y, Zhao M, Xu X. Comparative study of expression levels of the major human heat shock proeins in cancer and normal tissues. Zhonghua Zhong liu Za zhi. 1998; 20(4):277-279.
    4. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med. 2003; 228: 111-133.
    5. Young JC, Moarefi I, Hartl FU.Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 2001 Jul 23; 154(2): 267-273.
    6. Arlander S H, Felts S J, Wagner J M. Chaperoning checkpoint kinase 1(chk1),an hsp90 client, with purified chaperones. Bilo Chem. 2006; 281(5): 2989-2998.
    7.冯作化,药立波,周春燕.医学分子生物学,人民卫生出版社, 2005年第1版.
    8. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of hsp90 confers tumour selectivity on hsp90 inhibitors. Nature. 2003, 425 : 407-410.
    9. Whitesell L, Shifrin SD, Schwab G, et al. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res. 1992;52(7): 1721-1728.
    10.陈奕,丁健.热休克蛋白90-癌症治疗的新靶点.癌症, 2004, 23(8): 968-974.
    11.崔云,刘璐.热休克蛋白90抑制剂研究进展.国外医学肿瘤学分册, 2005,32(2):86-89.
    12. Rutherford S, Knapp JR, Csermely P. Hsp90 and developmental networks. Adv Exp Med Biol. 2007;594:190-197.
    13. Al-Khodairy F, Fotou E, Sheldrick KS, et al. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell .1994; 5: 147-160.
    14.吴胜利,潘承恩,牛新捷等.原发性肝癌中HSP90α的表达及意义.中华肝胆外科杂志, 2003, 9(2): 88-90.
    15. Xu W, Neckers L. Targeting the Molecular Chaperone Heat Shock Protein 90 Provides a Multifaceted Effect on Diverse Cell Signaling Pathways of Cancer Cells. Clin Cancer Res . 2007;13(6) :1625-1629.
    16. Helmbrecht K,Zeise E,Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction. Cell Prolif. 2000;33:341-365.
    17. Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci. 2007 Oct;98(10):1536-1539.
    18.周剑锋,黄伟,张瑶珍等.细胞周期检测点激酶Chk1和Chk2在急性白血病骨髓单个核细胞中表达的研究.华中科技大学学报,2004 33(2):161-164.
    19.林章雅,康德智,江常震.热休克蛋白90在人脑恶性胶质瘤的表达及其作用.福建医科大学学报, 2005 , 39(2): 162-163.
    20.陈怡,冉志华,陈翔等. HSP70, HSP90在结肠癌中表达及其和生物学行为的相关性.世界华人消化杂志, 2006, 14(33): 3201-3205.
    21. Elpek GO, Karaveli S, Simsek T, et al. Expression of heat shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries. APMIS. 2003; 111: 523-530.
    22. Beliakoff J, Whitesell L. Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs 2004; 15: 651-662.
    23. Lim SO, Park SG, Yoo JH, et al. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol. 2005 Apr 14;11(14):2072-2079.
    24. Hu J, Seeger C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci USA. 1996 Feb 6; 93(3): 1060-1064.
    25. Wang XM, Li J, Feng XC,et al. Involvement of the role of Chk1 in lithium-induced G2/M phase cell cycle arrest in hepatocellular carcinoma cells. J Cell Biochem. 2008; 104(4):1181-91.
    26. Zhao F, Hou NB, Song T,et al. Cellular DNA repair cofactors affecting hepatitis B virus infection and replication. World J Gastroenterol. 2008; 14(32): 5059-5065.
    27. Walworth N, Davey S, Beach D. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature. 1993;363:368-371.
    28. Takai H, Tominaga K, Motoyama N, et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1-/- mice. Genes Dev. 1993; 14:1439–1447.
    29. Calderwood SK, Khaleque MA, Sawyer DB, et al. Heat shock proteins in cancer:chaperones of tumorigenesis. Trends Biochem Sci .2006; 31: 164-172.
    30. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst .2000; 92: 1564-1572.
    31. Chiosis G. Targeting chaperones in transformed systems-a focus on hsp90 and cancer. Expert Opin Ther Targets. 2006;10(1):37-50.
    32.刘毅,王颖,刘晓丹等.热休克蛋白90抑制剂17-AAG诱导K562细胞凋亡作用的研究.中华血液学杂志, 2006, 27(12): 809-812.
    33.于晓妉.热休克蛋白对细胞凋亡的调控作用.细胞生物学杂志, 2005, 27: 1-4.
    34. Neri LM, Borgatti P, Capitani S, et al. The nuclear phosphoinostitide 3-kinase/AKT pathway:a new second messenger system. Biochim Biophys Acta. 2002;1584:73-80.
    35. Basso AD, Solit DB, Munster PN, et al. Ansamycin antibiotics inhibit Akt activation and cyclinD expression in breast cancer cells that overexpress HER2. Oncogene. 2002;21: 1159-1166.
    36. Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction. Cell Prolif. 2000; 33: 341-365.
    37. Georgakis GV,Li Y,Rassidakis GZ,et al. Inhibition of heat shock protein 90 function by 17-allylamio-17-demethoxygeldanamycin in Hodgkin’s lymphoma cells down-regulates Akt kinase,dephosphorylat extracellular signal-regulated kinase,and induces cell cycle arrest and cell death[J].Clin Cancer Res,2006,12(2):584-590.
    38. Munster PN, Strethapakdi M, Moasser MM, et al. Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res. 2001; 61: 2945-2952.
    39. Workman P. Combinatorial attack on multistep oncogenesis by inhibitingthe Hsp90 molecular chaperone. Cancer Lett. 2004; 206 (2) : 149-157.
    40.颜士岩,张东生,郑杰.热休克蛋白在肿瘤治疗领域中的研究进展.医学研究生学报, 2005;18(1):59-62.
    41. Tsujimoto Y. Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep. 2002; 22: 47-58.
    42. Drysdale MJ, Brough PA, Massey A, et al. Targeting Hsp90 for the treatment of cancer. Curr Opin Drug Discov Devel. 2006; 9(4):483-495.
    43. Nomura M, Nomura N, Yamashita J. Geldanamycin induced degradation of Chk1 is mediated by proteasome. Biochemical and Biophysical Research Communications . 2005; 335: 900-905.
    44.张敏,王海艳,黎纬明等. CHK1 shRNA对HeLa细胞凋亡和细胞周期的影响.华中科技大学学报, 2008; 37(3):351-353.
    45.高庆蕾,叶飞,谢大兴等.灭活细胞周期检测点激酶增强乳腺癌细胞放疗敏感性.中国妇幼保健, 2008; 23: 4026-4028.
    46. Kim WY, Oh SH, Woo JK,et al.Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res, 2009, 69(4): 1624-1632.
    47.臧晋,严春寅. HSP70、HSP90在肾细胞癌中的表达及其临床意义.苏州大学学报(医学版) , 2008;28(6): 977-978.
    48.唐伟,李家兵. HSP70和HSP90α在人膀胱癌中的表达及意义.第三军医大学学报, 2005; 27(6) :560-562.
    49.黄晓园,高庆蕾,庄亮等. Chk1/2和Plk1蛋白在宫颈良恶性病变组织中的表达及其意义.中国癌症杂志, 2007; 17(6): 429-432.
    50.马全富,黄晓园,高庆蕾等. Chk1/2和Plk1蛋白在子宫内膜癌中的表达.肿瘤防治研究, 2008; 35(6): 424-426.
    [1] Shi Y, Zhao M, Xu X. Comparative study of expression levels of the major human heat shock proeins in cancer and normal tissues. Zhonghua Zhong liu Za zhi.1998;20(4):277-279.
    [2] Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005 Oct;5(10):761-772.
    [3] Barginear MF, Van Poznak C, Rosen N.The heat shock protein 90 chaperone complex: an evolving therapeutic target. Curr Cancer Drug Targets. 2008 Sep;8(6):522-532.
    [4] Amolins MW, Blagg BS.Natural product inhibitors of hsp90: potential leads for drug discovery.Mini Rev Med Chem. 2009 Feb;9(2):140-152.
    [5] Hickey E,Brandon SE,Sadis S,et al. Molecular cloning of sequences encoding the human heat-shock proteins and their expression during hyperthermia. Gene. 1986;43:147-154.
    [6] Solit DB, Rtsen N. Hsp90: a novel target for cancer therapy. Curr Top Med Chem. 2006;6(11):1205-1214.
    [7]陈奕,丁健.热休克蛋白90-癌症治疗的新靶点.癌症. 2004,23(8):968-974.
    [8] Garrido C, Gurbuxani S, Ravagnan L, et al. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun. 2001;286(3):433-442.
    [9] Yang Y, Li Z. Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol Cells. 2005 Oct 31;20(2):173-182.
    [10] Vander Straten A, Rommel C, Dickson B, et al. The heat shock protein 83(HSP83) is required for Raf-mediated signaling in Drosophila. EMBOJ.1997;16:1961-1969.
    [11] Wearsch PA, Nicchitta CV. Endoplasmic reticulum chaperone GRP94subunit assembly is regulated through a defined oligomerization domain. Biochemistry. 1996; 35 (51):16760-16769.
    [12] Passarino G,Cavalleri GL,Stecconi R,et al.Molecular variation of human HSP90 alpha and HSP90 beta genes in Caucasians.Hum Mutat. 2003; 21(5):554-555.
    [13] Mooer S, Kozka C, Ribinson E. Murine 86-and 84-KDa heat shock proteins, CDNA seqence, chromosome assignments, and evolutionary origins. J Biol Chem. 1989; 264: 5343-5351.
    [14] Sreedhar AS, Kalmár E, Csermely P. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 2004;562(1-3):11-15.
    [15] Cortés-González CC, Ramírez-González V, Ariza AC, et al.Functional significance of heat shock protein 90.Rev Invest Clin. 2008;60(4):311-320.
    [16] Chiosis G, Vilenchik M, Kim J, Solit D.Hsp90: the vulnerable chaperone. Drug Discov Today. 2004 Oct 15;9(20):881-888.
    [17] Neckers L. Heat shock protein 90: the cancer chaperone. J. Biosci. 2007;32(3): 517-530.
    [18] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295:1852-1858.
    [19] Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 2001 Jul 23;154(2):267-273.
    [20] Dezwaan DC, Freeman BC. HSP90: the Rosetta stone for cellular protein dynamics? Cell Cycle. 2008 Apr 15;7(8):1006-12.
    [21] Zhao R, Houry WA. Hsp90: a chaperone for protein folding and gene regulation. Biochem Cell Biol. 2005 Dec;83(6):703-710.
    [22] Tomala K, Korona R. Molecular chaperones and selection against mutations. Biol Direct. 2008 Feb 26;3:5.
    [23] Peng C, Li D, Li S, er al. Heat Shock Protein 90. Cell Cycle. 2007;6(18): 2227-2231.
    [24] Pearl LH, Prodromou C, Workman P.The Hsp90 molecular chaperone: an open and shut case for treatment.Biochem J. 2008 Mar 15;410(3):439-453.
    [25] Goetz MP, Toft DO, Ames MM, et al. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol, 2003;14 (8):1169-1176.
    [26] Powers MV, Workman P. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocrine-Related Cancer. 2006;13: 125-135.
    [27] Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007 (407):cm8.
    [28] Kim HL, Cassone M, Otvos L Jr, HIF-1alpha and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther. 2008 Jan;7(1):10-14.
    [29] Kim WY, Oh SH, Woo JK,et al.Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res. 2009 Feb 15;69(4):1624-1632.
    [30] Citri A, Kochupurakkal BS, Yarden Y. The Achilles Heel of ErbB-2/HER2 .Cell Cycle. 2004;3(2): 51-60.
    [31] Widakowich C, Dinh P, de Azambuja E. HER-2 positive breast cancer: what else beyond trastuzumab-based therapy? Anticancer Agents Med Chem. 2008 Jun;8(5):488-496.
    [32] Xu W, Mimnaugh E, Rosser MF, et al. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein hsp90. J Biol Chem, 2001, 276 (5) : 3702-3708.normal induced by benzoquinonoid ansamycins accompanies inactivation of P60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol. 1986;6(6):2198-2206.
    [34] An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. 2000 ;11: 355–360.
    [35] Stepanova L, Leng X, Parker SB, et al. Mammalian P50Cdc37 is a Protein kinase-targeting subunit of hsp90 that binds and stabilizes Cdk4. Genes Dev.1996;10(12): 1491-1502.
    [36] Pearl LH. Hsp90 and Cdc37-a chaperone cancer conspiracy. Curr Opin Genet Dev. 2005;15(1):55-61.
    [37]于晓妉.热休克蛋白对细胞凋亡的调控作用.细胞生物学杂志, 2005, 27: 1-4.
    [38] Schulte TW, Blagosklonny MV, Romanova L, et al. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen- activated Protein kinase singalling Pathway. Mol Cell Biol. 1996; 16: 5839-5845.
    [39] Tsan MF, Gao B. Heat shock protein and innate immunity. Cell Mol Immunol. 2004 Aug;1(4):274-279.
    [40] Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol. 2004 Apr;286(4): 739-744.
    [41] Jones B, Heldwein K, Means T, et al. Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann Rheum Dis. 2001;60(3): 6-12.
    [42] Muzio M, Natoli G, Saccani S, et al. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med. 1998;187: 2097–2101.
    [43] Xu W, Neckers L. Targeting the Molecular Chaperone Heat Shock Protein 90 Provides a Multifaceted Effect on Diverse Cell Signaling Pathways of Cancer Cells. Clin Cancer Res . 2007;13(6) :1625-1629.
    [44] Workman P, Burrows F, Neckers L, et al. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 2007 Oct;1113:202-216.
    [45] Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000;19 (16):4310-4322.
    [46] Neri LM, Borgatti P, Capitani S, et al. The nuclear phosphoinostitide 3-kinase/AKT pathway:a new second messenger system. Biochim Biophys Acta. 2002;1584:73-80.
    [47] Basso AD, Solit DB, Munster PN, et al. Ansamycin antibiotics inhibit Akt activation and cyclinD expression in breast cancer cells that overexpress HER2. Oncogene. 2002;21: 1159-1166.
    [48] Giustiniani J, Daire V, Cantaloube I. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal. 2009 Apr;21(4):529-539.
    [49] Tiwari RK, Borgen PI, Wong GY,et al. HER-2/neu amplification and overexpression in primary human breast cancer is associated with early metastasis. Anticancer Res. 1992 Mar-Apr;12(2):419-425.
    [50] Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation ofrelapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177-182.
    [51] Ochel HJ, Schulte TW, Nguyen P,et al. The benzoquinonoid ansamycins geldanamycin stimulates proteolytic degradation of focal adhesion kinase. Mol Genet Metab. 1999;66(1):24-30.
    [52] Sidera K, Samiotaki M, Yfanti E, et al. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem. 2004; 279: 45379-45388.
    [53] Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci. 2007 Oct;98(10):1536-1539.
    [54] Helmbrecht K,Zeise E,Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction. Cell Prolif. 2000;33:341-365.
    [55] Hostein I, Robertson D, DiStefano F, et al. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino- 17-demeth- oxygeldanamycin results in cytostasis and apoptosis. Cancer Res, 2001, 61 (10) : 4003-4009.
    [56] Burrows F, Zhang H, Kamal A. Hsp90 activation and cell cycle regulation. Cell cycle. 2004;3(12):1530-1536.
    [57]崔云,刘璐.热休克蛋白90抑制剂研究进展.国外医学肿瘤学分册, 2005,32(2):86-89.
    [58] Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of hsp90 confers tumour selectivity on hsp90 inhibitors. Nature. 2003, 425 (6956) : 407-410.
    [59] Li Y, Zhang T, Schwartz SJ,et al.New developments in Hsp90 inhibitors as anti-cancer therapeutics: Mechanisms, clinical perspective and more potential.Drug Resist Updat. 2009 Jan 27.
    [60] Ciocca DR, Fuqua SA, Lock-Lim S, et al. Response of human breast cancer cells to heat shock and chemotherapeutic drugs.Cancer Res. 1992 Jul 1;52(13):3648-3654.
    [61]颜士岩,张东生,郑杰.热休克蛋白在肿瘤治疗领域中的研究进展.医学研究生学报, 2005;18(1):59-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700