裂缝性潜山油藏注气提高采收率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂缝性潜山油藏属于典型的双重介质油藏,其主要的储渗空间是裂缝系统和基质岩块系统。由于这两个系统在储集和渗流能力上的差异,导致衰竭式开发和注水开发都难以获得理想的采收率。近年来,注气提高采收率技术的应用逐年增加,针对裂缝性油藏,目前国外已有许多较成功的现场应用。随着勘探技术的不断进行,我国裂缝性潜山油藏发现的比例逐年增加,正确认识这类油藏的地质和开发特征,积极开展注气提高采收率研究,对合理开发此类油藏具有极其的意义。
     本文在总结分析此类油藏的主要地质、开发特征和注气驱油机理的基础上,以兴古7潜山油藏为实例,对其展开注气可行性分析,并借助于油藏数值模拟技术对其进行注气潜力评价。
     该油藏为块状裂缝性潜山油藏,主要储集空间类型为构造缝和破碎粒间孔;单井递减分析表明单井产量递减中等偏快,油藏天然能量不足,注水试验未见效;油藏特征参数符合注气筛选标准;细管实验得到注CO2驱为混相驱,注干气驱为非混相驱;长岩心实验结果表明注气驱油效率最高。
     连续注气影响因素分析表明:CO2的合理注入速度为200-300t/d,注干气的采出程度对注入速度不太敏感;注CO2优于注干气。
     气水交替影响因素分析表明:注入速度对采出程度影响最大,其次为交替周期、注入井组、注气注水时间比。
     注气潜力评价结果为:连续注气和气水交替开发10年,整个油藏采收率分别提高2.9%和3.3%,主力生产层段-第Ⅱ层段采收率分别提高6.4%和9.3%,气水交替采收率提高程度优于连续注气,注气波及区域(第Ⅱ层段)受效明显,气水交替开发潜力较好。
Fractured buried hill reservoir belongs to the typical dual porosity reservoir. The main storage and permeable media are the fissure system and matrix system. Fractured buried hill reservoir has the properties of serious heterogeneity due to the big discrepancy between fissure system and matrix system in storage and permeable capacity. It's really difficult to get a ideal recovery factor in both primary recovery and waterflooding development. The application of gas injection EOR technologies keep on the trend of fast increasing and good application results have been achieved in recent years. Many successful field applications in overseas fracture buried hill reservoir has been reported. Plenty of fractured buried hill reservoirs are discovered in China as the advancement of exploration technology in recent years. Based on the good knowledge of the geological properties and development characteristic, it's significantly important for conducting gas injection EOR technologies and numerical simulation study.
     The main geological properties, development features as well as gas injection displacement mechanism have been summarized for naturally fractured buried hill reservoirs by literatures review. The feasibility study for gas injection has been conducted in XingGu 7 (XG7) naturally fractured buried hill reservoir. Moreover, numerical simulation was conducted to evaluate the feasibility of consecutive gas injection and water alternate gas (WAG) injection in XG7 reservoir.
     The main storage media are structural fractures and fragmented interparticle pores. The decline curve analysis for single well shows moderate decline rate due to lack of natural energy. Moreover, the waterflooding pilot test doesn't give us any encouraging results for water injection development. According to the screening criterion for gas injection EOR technologies, the reservoir properties of XG7 reservoir comply with this criterion. CO2 injection belongs to miscible flooding and dry gas injection is immiscible flooding. The long core experiment study shows gas injection displacement efficiency is the highest one. XG7 reservoir has good potential for gas injection study.
     The numerical simulation results for consecutive gas injection have shown the following observation. First, the optimized gas injection rate for CO2 is 200-300t/d. Second, the oil displacement efficiency is higher than that of dry gas. Third, the result of CO2 injection is much better than that of dry gas.
     The numerical simulation for WAG injection shows the following findings. Gas injection rate has the biggest impact on the final recovery factor. Then the weight factors from high to low are alternating time, injection pattern as well as gas/water injection duration ratio.
     The result of the gas injection evaluation in XG7 reservoir is as follows. The incremental recovery factors for consecutive gas injection and WAG are 2.9% and 3.3% respectively after 10 years injection, while for the main production zones are 6.5% and 9.3% respectively. WAG injection is much better than that of consecutive gas injection. The incremental recovery factor is bigger than that of the whole reservoir. Thus, the producers have good response to WAG injection in the swept area. Gas injection has good potential in XG 7 reservoir.
引文
[1]柏松章,唐飞.裂缝性潜山基岩油藏开发模式[M].北京:石油工业出版社,1997.
    [2]文玉莲.裂缝性油藏注气开发分子扩散行为研究及数值模拟[D].四川成都:西南石油学院,2005.
    [3]李士伦,周守信.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002,9(2):1-5.
    [4]李士伦,孙雷,郭平等.再论我国发展注气提高采收率技术[J].天然气工业,2006,26(16):31-34.
    [5]B.H.迈杰鲍尔.黄希陶等译.裂缝型油田开发特征[M].北京:石油工业出版社,1986.
    [6]L.K. Thomas,T.N. Dixon,R.G. Pierson, et al. Ekofisk Nitrogen Injection[J]. SPE-19839,1991.
    [7]L. Denoyelle, C.Bardon, E. Couve de Murville. Interpretation of a CO2/N2 Injection Field Test in a Moderately Fractured Carbonate Reservoir[J]. SPE-14942,1988.
    [8]Secaeddin Sahin, Ulker Kalfa, and Demet Celebioglu. Bati Raman Field Immiscible CO2 Application-Status Quo and Future Plans[J]. Paper SPE 106575,2008.
    [9]J. Glantschnig and E. Kroell. Injection of Nitrogen for Improved Oil Reservoir:A Successful History[J]. Paper SPE-29190,1997.
    [10]Steve Olenick, F.A Schroeder, H.K. Haines. Cyclic CO2 Injection for Heavy-Oil Recovery in Halfmoon Field:Laboratory Evaluation and Pilot Performance[J]. Paper SPE-24645,1992.
    [11]郭平,苑志旺,廖广志.注气驱油技术发展现状与启示[J].天然气工业,2009,29(8):92-96.
    [12]Jerry Casteel. DOE research helps put CO2 EOR oil production on verge of explosive growth in U.S[M]. E&P Focus 2Q2005.
    [13]郭平,李士伦.裂缝性特低渗碳酸盐岩油藏注烃类气驱油室内实验研究[J].石油勘探与开发,2001,28(2):76-78.
    [14]郭平,莫正科.采用脉冲注烃方式提高低渗透裂缝性灰岩油藏采收率实验研究[J].油气地质与采收率,2004,11(1):48-49.
    [15]白凤瀚,申友青,孟庆春等.雁翎油田注氮气提高采收率现场试验[J].石油学报,1998,19(4):61-68.
    [16]华北石油勘探开发设计研究院.华北碳酸盐岩潜山油藏开发[M].北京:石油工业出版社,1985.
    [17]薛大力,张建英,王毕霞等.大民屯凹陷边台古潜山构造及储层研究[J].特种油气藏,2002,9(增刊):10-13.
    [18]N.Chenboonthai and W.GHazlett. Analysis of Steamflood Oil Recovery in a Light-Oil Naturall y Fractured Reservoir[J]. Paper SPE-38300,1997.
    [19]王建栋,刘雄飞,时际明等.深层裂缝性碳酸盐岩储层混氮酸压技术[J].新疆石油学院学报,2002,14(1):15-18.
    [20]王学军,陈钢花,张家震.古潜山油藏裂缝性储层的测井评价[J].石油大学学报,2003,27(5):24-27.
    [21]宋惠珍.裂缝性储集层研究理论与方法:塔里木盆地碳酸盐岩储集层裂缝预测[M].北京:石油工业出版社,2001.
    [22]李晓平,张烈辉,刘启国.试井分析方法[M].北京:石油工业出版社,2009.
    [23]李炼民,杜志敏,贾英.缝洞型碳酸盐岩潜山油藏研究现状及技术展望[J].油气地质与采收率,2004,11(1):12-16.
    [24]Jack Allan, S. Qing Sun. Controls on Recovery Factor in Fractured Reservoirs:Lessons Learn ed from 100 Fractured Fields[J]. Paper SPE-84590,2003.
    [25]文玉莲,杜志敏等.裂缝性油藏注气提高采收率技术进展[J].西南石油学院学报,2005,27(6):48-52.
    [26]N.M. Jakobsson, T.M. Christian. Historical Performance of Gas Injection of Ekofisk[J]. Paper SPE-28933,1994.
    [27]Ali M. Saidi. Twenty years of gas injection history into well-fractured Haft Kel Field[J]. Pape r SPE-5309,1996
    [28]Sayyed Ahmad Alavian, Curtis H. Whitson. CO2 EOR Potential in Naturally-Fractured Haft K el Field[J], Iran. SPE-139528,2010.
    [29]D. Beliveau, D.A. Payne. Analysis of a Tertiary CO2 Flood Pilot in a Naturally Fractured Re servoir[J]. Paper SPE-22947,1991.
    [30]Dennis Beliveau, David A. Payne, Martin Mundry. Water-flood and CO2 Flood of the Fractur ed Midale Field[J], Paper SPE-22946,1993.
    [31]Kayhan Issever, A. Necdet Pamir Performance of a Heavy-Oil Field Under CO2 Injection, Bat i Raman[J]. Paper SPE 20883,1993
    [32]J.L.Thompson and N. Mungan. A Laboratory Study of Gravity Drainage in Fractured Systems Under Miscible Conditions[J]. Paper SPE-2232,1969.
    [33]庞进.顶部注气重力稳定驱提高采收率机理研究[D].四川成都:西南石油大学,2006.
    [34]金佩强.增强气油重力泄油的EOR方法[J].国外油田工程,2008,24(11):1-4.
    [35]叶仲斌.提高采收率原理[M].北京:石油工业出版社,2000.
    [36]H.M.Sebastian, R.S. Wenger and T. A. Renner. Correlation of Minimum MiscibilityPressure fo r Impure CO2 Stream[J]. JPT 1985,2076-2082.
    [37]杨承志,岳清山,沈平平.混相驱提高石油采收率[M].北京:石油工业出版社,1993.
    [38]F.L小斯托卡.混相驱开发油田[M].北京:石油工业出版社,1989.
    [39]高振环,刘中春,杜兴家.油田注气开采技术[M].北京:石油工业出版社,1994.
    [40]郭万奎.注气提高采收率技术[M].北京:石油工业出版社,2003.
    [41]A.Spivak, D.Karaoguz, K.Issever, J.S.Nolen. Simulation of Immiscible CO2 Injection in a Frac tured Carbonate Reservoir, Bati Raman Field, Turkey[J]. Paper SPE-18765,1989.
    [42]F.V da Silva and P.Belery. Molecular Diffusion in Naturally Fractured Reservoirs:A Decisive Recovery Mechanism[J]. Paper SPE-19672,1989.
    [43]D.D.Morel, B.Bourbiaux, M.Latil and B.Thiebot. Diffusion Effects in Gas-Flooded Light Oil F ractured Reservoirs[J]. Paper SPE-20516,1990.
    [44]J.FX.Le Romancer, D.F.Defives and Gerard Fernandes. Mechanism of Oil Recovery by Gas D iffusion in Fractured Reservoir in Presence of Water[J]. Paper SPE-27746,1994.
    [45]B.M.Thiebot and S.S.Sakthikumar. Cycling Fractured Reservoirs Containing Volatile Oil:Labor atory Investigation of the Performance of Lean Gas or Nitrogen Injection[J]. Paper SPE-21427, 1991.
    [46]李传亮.油藏工程原理[M].北京:石油工业出版社,2005.
    [47]M.Trujillo, D.Mercado, GMaya, R.Castro. Selection Methodology for Screening Evaluation of Enhanced-Oil-Recovery Methods[J]. Paper SPE-139222,2010.
    [48]T. Babadagli. Selection of Proper EOR Method for Efficient Matrix Recovery in Naturally Fra ctured Reservoirs[J]. Paper SPE 69564,2001.
    [49]J.J. Taber, F.D.Martin, R.S. Seright. EOR Screening Critetia Revisited-Partl:Introduction to Sc reening Critetia and Enhanced Recovery Field Projects[J]. Paper SPE-35385,1997.
    [50]刘中春,高振环,夏惠芬.油藏注气开发的基本条件[J].大庆石油学院院报,1997,21(1):38-41.
    [51]杜建芬,李家燕,郭平.变质岩裂缝性潜山油藏注气提高采收率研究[J],石油实验地质,2010,32(5):509-512.
    [52]M.J.Darvishnezhad, B.Moradi and G. Zargar. Study of Various Water Alternating Gas Injection Methods in 4-and 5-Spot Injection Patterns in an Iranian Fractured Reservoir[J]. Paper SPE-1 32847,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700