浮法玻璃成型过程中硫的形态变化及扩散机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫酸钠是浮法玻璃生产过程中常用的澄清剂,但其很难完全分解,进入锡槽后,玻璃中残余的硫酸盐在还原气氛下还原为硫化物,可能造成玻璃缺陷和锡耗的产生。为解决硫污染的危害,提高我们对浮法玻璃成型过程中多相体系氧化还原反应的认识,需要研究硫在成型过程中价态变化和其扩散机理。本文利用X射线吸收近边结构(XANES)光谱研究玻璃中硫价态的变化,利用二次离子质谱仪(SIMS)研究硫以及其他离子在玻璃中含量的分布,分析硫在成型过程中的扩散机制。
     研究发现,熔化过程中玻璃中硫的主要存在形式为S6+,残余的S4+可以忽略不计;进入锡槽后,由于氢气和锡液的还原作用,玻璃表面的硫发生还原反应,生成少量S~(2-),但主要还是以S6+的形式存在;S~(2-)在锡槽温度650℃时开始出现,750℃含量最大,在硫的K边XANES光谱上表现为2476.3eV左右的宽峰和2473.7eV处较尖锐的峰,随着温度的增加,玻璃中的S~(2-)含量开始降低,硫化物开始变得不稳定,逐渐离开玻璃。
     通过实验和理论分析,首次确定了锡槽中的玻璃表面存在Sn-S键(2468.8eV与2473.1eV之间的肩峰)和Si-S键(2473.7eV处的尖峰),当玻璃中存在一定量的铁(镍)时玻璃表面会出现Fe-S键(Ni-S键),吸收峰位于2469.5eV(2469.8eV)处,随着铁(镍)含量的增加,Fe-S键(Ni-S键)逐渐替代Si-S键。
     通过对玻璃表面硫扩散的理论假设,本文提出四种S~(6+)和S~(2-)分布的数学模型,并根据SIMS测得的玻璃上下表面硫的含量分布对模型进行验证,发现S~(2-)的含量在计算硫的扩散时不可忽略,Erf数学模型最符合实际S6+和S~(2-)的含量分布;计算结果表明玻璃下表面硫的扩散系数大于上表面。
     根据玻璃中阳离子含量的测试结果,本文原创性地构建了浮法玻璃上下表面还原层模型:将浮法玻璃上表面的还原层分为富硅层、富碱土金属层、富碱金属层三层;下表面还原层分为:富锡层、富碱土金属层、富碱金属层,另外还发现还原层的厚度与阴离子S~(2-)的厚度相符合。
     另外还发现含铁的钠钙硅玻璃在空气和还原气氛下热处理后表面都形成辉石类晶体,但其形貌并不相同,由此可以推断含铁的辉石类晶体的来源:针状晶体来源于于锡槽,树枝状来源于熔窑的可能性比较大;锡中加入一定量的铁可以减少渗锡量,但会降低玻璃的透过率,还可能在下表面产生的类“十字形”玻璃缺陷,其形成与锡液中形成Fe_2O3晶体有关。
Sulfate is often added to the soda-lime float glass manufacturing process as finingagent. However, it does not decompose entirely. The sulfate of float glass is reducedto sulfide in the tin bath, which results in tin loss and defects generation. In order tosolve the problem and understand the redox reactions between a glass and itssurroundings in the float process, it is necessary to reveal the oxidation state of sulfurand the diffusion mechanism of sulfur in glass manufacture process. The oxidationstate of sulfur of both sides of the soda-lime-silicate glass is determined by X-rayabsorption near edge structure (XANES) spectra. The sulfur and other ion depthprofiles are measured by secondary ion mass spectrometry (SIMS).
     The results show that the sulfur is mainly in the form of S6+and no S4+, furthermore,the S~(2-)starts to appear at650℃and the content of S~(2-)at750℃is higher than that ofthe glass treated at other temperatures, because the S~(2-)volatilizes to the atmosphereeasily at higher temperature. Two peaks of XANES spectrum are associated withsulfide, the broader one at about2476.3eV and the sharper one with an accurateposition at2473.7eV.
     By means of experiments and theoretical analysis, it is firstly found that there areSn-S bonding(the shoulder peak between2468.8eV and2473.1eV) and Si-Sbonding(a sharper peak at2473.7eV) in soda-lime float glass. Furthermore, there areFe-S bonding(Ni-S bonding) while some Fe(Ni) presents in glass and the position ofabsorption peak at2469.5eV(2469.8eV). Following the increase of the content ofFe(Ni), the Si-S bonding is replaced with Fe-S bonding(Ni-S bonding).
     Through the theoretical hypothesis of sulfur diffusion, this paper proposes fourmathematical models and verifies that the Erf fitting model is the most reasonable forthe S6+and S~(2-)depth profiles. The coefficient of diffusion of the tin side is bigger thanthat of the air side of glass.
     Based on the cation depth profiles, this paper divides the reduced layer of the airside into three layers: the silica-rich layer, the alkaline earth-rich layer and thealkaline-rich layer. Meanwhile, the reduced layer of the tin side can be divided intothe tin-rich layer, the alkaline earth-rich layer and the alkaline-rich layer. Furthermore,the depth of reduced layer coincides with the S~(2-)depth profiles.
     Besides, it is found that the augite crystal is formed in bearing-iron soda-lime-silicate glass which is heat-treated in air and reduced atmosphere, however,the morphology of the crystal is different, so it is possible to deduce the origin of theaugite crystal. The needle-like crystal comes from the tin bath whereas thedendrite-like crystal is from the furnace. Adding some content iron to tin can reducethe stannizing, however, it will reduce the transparency and may generate criss-crosslike defect in the tin side surface, which isrelated to the Fe2O3crystal.
引文
[1]中经网数据有限公司.中国玻璃行业分析报告(2012年2季度)[J].wwwceigovcn,2012,2-3.
    [2]彭寿,杨京安.平板玻璃生产过程与缺陷控制[M].武汉:武汉理工大学出版社,2010:1-2.
    [3]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006:197-199.
    [4]姜宏赵,王廷籍.浮法玻璃表面渗锡与工艺诊断[J].玻璃与搪瓷,2000,28(3):44-57.
    [5]宋炯生,张金栋,陈良卫.浅谈锡槽内的硫污染[J].玻璃,2006,33(2):25-27.
    [6] Collignon J, Rongen M, Beerkens R. Gas release during melting and fining ofsulphur containing glasses[J]. Glass Technology-European Journal of GlassScience and Technology Part A,2010,51(3):123-129.
    [7] Smedskjaer MM, Deubener J, Yue Y. Inward cationic diffusion and formation ofsilica-rich surface nanolayer of glass[J]. Chemistry of Materials,2009,21(7):1242-1247.
    [8]王廷籍,关庆彬,戴小丽.浮法玻璃渗锡的物理化学过程[J].中国建材科技,1995,4(5):16-22.
    [9] Matyá J, Hrma P. Sulfate Fining Chemistry in Oxidized and ReducedSoda-Lime-Silica Glasses (G Plus Project for Visteon Inc.)[J].2005,
    [10]曹炜,王硕稔.锡槽气氛污染的危害与防治[J].玻璃,2007,34(5):35-37.
    [11]刘世民,许哲峰,秦国强, et al.二氧化硫气体在浮法线中的应用研究[J].硅酸盐通报,2006,24(4):110-113.
    [12]宋炯生李,席国勇. SO2处理浮法玻璃下表面的作用及其机理[J].玻璃,2005,183(6):28-29.
    [13] Kim K-D. Electrochemical Approach in Plasma Display Panel Glass Melts dopedwith Sulfate and Sulfide II. Square Wave Voltammetry[J]. Journal of the KoreanCeramic Society,2008,45(7):375-379.
    [14] Kim K-D. A voltammetric approach to the redox behavior of S in flint glass meltsdoped with sulfate or sulfide[J]. Journal of Ceramic Processing Research,2010,11(1):25-28.
    [15] Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis forX-ray absorption spectroscopy using IFEFFIT[J]. Journal of synchrotron radiation,2005,12(4):537-541.
    [16] Fleet ME, Liu X, Harmer SL, et al. Sulfur K-edge XANES spectroscopy:Chemical state and content of sulfur in silicate glasses[J]. The CanadianMineralogist,2005,43(5):1605-1618.
    [17] Backnaes L, Stelling J, Behrens H, et al. Dissolution Mechanisms of TetravalentSulphur in Silicate Melts: Evidences from Sulphur K Edge XANES Studies onGlasses[J]. Journal of the American Ceramic Society,2008,91(3):721-727.
    [18] Couch S, Howes A, Kohn S, et al.33 S solid state NMR of sulphurspeciation in silicate glasses[J]. Solid State Nuclear Magnetic Resonance,2004,26(3):203-208.
    [19] Beerkens RG, Schaaf J. Gas release and foam formation during melting andfining of glass[J]. Journal of the American Ceramic Society,2006,89(1):24-35.
    [20] Lenoir M, Grandjean A, Poissonnet S, et al. Quantitation of sulfate solubility inborosilicate glasses using Raman spectroscopy[J]. Journal of Non-CrystallineSolids,2009,355(28):1468-1473.
    [21] Lenoir M, Neuville DR, Malki M, et al. Volatilization kinetics of sulphur fromborosilicate melts: A correlation between sulphur diffusion and melt viscosity[J].Journal of Non-Crystalline Solids,2010,356(50):2722-2727.
    [22] Hayashi Y, Matsumoto K, Kudo M. The diffusion mechanism of tin into glassgoverned by redox reactions during the float process[J]. Journal ofNon-Crystalline Solids,2001,282(2):188-196.
    [23]Frischat GH. Tin ions in float glass cause anomalies[J]. Comptes Rendus Chimie,2002,5(11):759-763.
    [24] Flank AM, Lagarde P, Jupille J, et al. Redox profile of the glass surface[J].Journal of Non-Crystalline Solids,2011,357(16–17):3200-3206.
    [25] Li D, Bancroft GM, Kasrai M, et al. S K-and L-edge X-ray absorptionspectroscopy of metal sulfides and sulfates; applications in mineralogy andgeochemistry[J]. The Canadian Mineralogist,1995,33(5):949-960.
    [26] Ban N, Kamihori T, Takamuku H. A study of the behavior of volatiles in the floatprocess[J]. Journal of Non-Crystalline Solids,2004,345–346(0):777-781.
    [27] Tilquin J-Y, Duveiller P, Gilbert J, et al. Electrochemical behaviour of sulfate insodium silicates at1000°C[J]. Electrochimica acta,1997,42(15):2339-2346.
    [28] Métrich N, Berry AJ, O’Neill HSC, et al. The oxidation state of sulfur insynthetic and natural glasses determined by X-ray absorption spectroscopy[J].Geochimica et Cosmochimica Acta,2009,73(8):2382-2399.
    [29]叶大伦,热力学.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981:666-947.
    [30] Hayashi Y, Fukuda Y, Kudo M. Investigation on changes in surface compositionof float glass––mechanisms and effects on the mechanical properties[J]. Surfacescience,2002,507(872-876.
    [31] Magnien V, Neuville D, Cormier L, et al. Kinetics of iron oxidation in silicatemelts: a preliminary XANES study[J]. Chemical Geology,2004,213(1):253-263.
    [32] Cook GB, Cooper RF. Redox dynamics in the high-temperature float processingof glasses. I. Reaction between undoped and iron-doped borosilicate glassmeltsand a gold–tin alloy[J]. Journal of Non-Crystalline Solids,1999,249(2–3):210-227.
    [33] Behrens H, Haack M. Cation diffusion in soda-lime-silicate glass melts[J].Journal of Non-Crystalline Solids,2007,353(52–54):4743-4752.
    [34] Frischat G, Müller-Fildebrandt C, Heide DM. On the origin of the tin hump inseveral float glasses[J]. Journal of Non-Crystalline Solids,2001,283(1):246-249.
    [35] Hayashi A, Tatsumisago M, Minami T, et al. Structural Investigation of95(0.6Li2S0.4SiS2)5Li4SiO4Oxysulfide Glass by Using X‐ray PhotoelectronSpectroscopy[J]. Journal of the American Ceramic Society,1998,81(5):1305-1309.
    [36] Machacek J, Gedeon O, Liska M, et al. Molecular simulations of silicate meltsdoped with sulphur and nitrogen[J]. Journal of Non-Crystalline Solids,2010,356(44):2458-2464.
    [37] Minami T, Tatsumisago M, Wakihara M, et al. Solid state ionics for batteries[M].Tokyo: Springer,2005:
    [38] T lke T, Barz A, Stachel D. Behaviour and phase transformations of nickelsulphide inclusions in glass melts[J]. Journal of Physics and Chemistry of Solids,2007,68(5):830-834.
    [39] Barry J, Ford S. An electron microscopic study of nickel sulfide inclusions intoughened glass[J]. Journal of materials science,2001,36(15):3721-3730.
    [40] Kasper A, Stadelmann H. Chemical behavior of nickel sulfide in soda-lime-silicaglass melts[J]. Glass science and technology,2002,75(1):1-11.
    [41] Farrell SP, Fleet ME. Sulfur K-edge XANES study of local electronic structure internary monosulfide solid solution [(Fe, Co,Ni)<sub>0.923</sub>S][J]. Physics and Chemistry of Minerals,2001,28(1):17-27.
    [42]陆佩文.无机材料科学基础:硅酸盐物理化学[M].武汉:武汉理工大学出版社,2006:229-235.
    [43] Richet P, Bottinga Y. Rheology and configurational entropy of silicate melts[J].Reviews in Mineralogy and Geochemistry,1995,32(1):67-93.
    [44]Avramov I. Viscosity of glassforming melts[J]. Journal of Non-Crystalline Solids,1998,238(1):6-10.
    [45]孟政,刘树江,沈建兴,等.玻璃粘度与温度关系研究发展现状[J].山东陶瓷,2010,003):9-13.
    [46]孟政.玻璃熔块在不同温度下粘度和析晶行为研究.山东轻工业学院,硕士:2010:15-23.
    [47] Smedskjaer MM, Yue Y. Redox reactions and inward cationic diffusion inglasses caused by CO and H2gases[J]. Solid State Ionics,2009,180(17–19):1121-1124.
    [48] Smedskjaer MM, Yue Y. Surface modification of polyvalent element-containingglasses[J]. Applied Surface Science,2009,256(1):202-207.
    [49] Smedskjaer MM, Yue Y. Inward cationic diffusion in glass[J]. Journal ofNon-Crystalline Solids,2009,355(14):908-912.
    [50] Smedskjaer MM, Yue Y. Inward and Outward Diffusion of Modifying Ions andits Impact on the Properties of Glasses and Glass–Ceramics[J]. InternationalJournal of Applied Glass Science,2011,2(2):117-128.
    [51] Smedskjaer MM, Yue Y, Deubener J, et al. Modifying glass surfaces via internaldiffusion[J]. Journal of Non-Crystalline Solids,2010,356(6–8):290-298.
    [52] Smedskjaer MM, Yue Y, M rup S. Inward Cationic Diffusion and PercolationTransition in Glass–Ceramics[J]. Journal of the American Ceramic Society,2010,93(8):2161-2163.
    [53] Smedskjaer MM, Zheng Q, Mauro JC, et al. Sodium diffusion inboroaluminosilicate glasses[J]. Journal of Non-Crystalline Solids,2011,357(22–23):3744-3750.
    [54] Smith DR, Cooper RF. Dynamic oxidation of a Fe2+-bearingcalcium–magnesium–aluminosilicate glass: the effect of molecular structure onchemical diffusion and reaction morphology[J]. Journal of Non-Crystalline Solids,2000,278(1–3):145-163.
    [55]李家主.浮法玻璃表面渗锡分析及加铁实践[J].中国玻璃,2010,002):6-9.
    [56]陈恭源.浮法玻璃工艺讲座第五讲——锡槽中的物理化学反应[J].玻璃,1982,4(28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700