主振荡功率放大器方案光纤激光相干合成技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光相干合成技术是实现高功率高亮度光纤激光系统的重要技术途径。论文采用主振荡功率放大器(MOPA)方案,全面系统的对光纤放大器阵列的相干合成技术进行了理论和实验研究。
     本文运用夫琅禾费衍射理论,得到了光纤放大器阵列相干合成远场光强分布的理论模型,分别讨论了相干合成激光器数目、阵列占空比、相位、激光器间的部分相干性以及偏振对相干合成远场光强分布的影响;对光纤放大器的相位噪声进行了理论研究,分析了光纤放大器相位噪声的产生机理,为控制电路的设计提供理论指导;相位控制电路是整个锁相系统中最为关键的部分之一,它直接决定着相干合成的成败与否,论文根据外差探测的工作原理,设计了高频相位检测与控制电路,外差探测的移频量为40 MHz,相位校正精度优于λ/20,控制带宽大于10 KHz;论文对影响控制精度,控制带宽等性能指标的因素进行了分析,为控制电路的进一步优化和改进奠定了基础。
     本文对MOPA方案光纤激光相干合成技术进行了深入的实验研究。首先用自主研制的相位检测与控制电路对输出功率为1 W的光纤放大器的相位噪声进行了实验研究和测量,功率为1 W的光纤放大器的相位噪声的频率小于1 KHz;然后采用两种相位控制方法实现了MOPA方案原型系统:
     1)爬山法。借鉴自适应光学中相位控制理论,提出用爬山法对MOPA方案中掺镱光纤放大器进行相位探测与校正。通过自动寻优的方式不断改变相位调制器的控制电压,使系统输出保持在干涉最强处,爬山法系统的控制精度为λ/10。实验实现了两路掺镱光纤放大器的相干合成。
     2)外差法。外差法通过探测信号光和受调制的参考光的干涉信号的变化实现对信号光相位变化的测量,通过实时探测和校正光路中相位的变化,确保输出光束的相位一致。首次在国内用外差法实现了三路掺镱光纤放大器的相干合成输出,其中每路光纤放大器的输出功率≥1 W,三路总功率≥3 W。系统开环时,远场光斑为动态、模糊的干涉条纹,条纹可见度为6%;系统闭环运行时,远场光斑为稳定、高对比度的干涉条纹,条纹可见度有大幅度提高,达到53%。这表明闭环控制使三路光纤激光的相位变化得到了有效补偿,系统实现了相位锁定运行和高相干度合成输出。
     用外差法对主振荡功率放大器方案实现相位探测与校正时,对每路信号的相位控制都是独立进行的,每一路的相位变化都是相对参考信号而言的,系统多路扩展性强,可实现大功率相干合成输出。同时,论文的主振荡功率放大器方案可适用于固体激光器以及其它激光器的相干合成。
     论文的工作为实现高功率激光器阵列的相干合成方案打下了理论和实验基础,具有重要的参考价值和应用实践意义。
Coherent beam combination of fiber laser arrays plays an important role in realizing high power, high radiance fiber laser systems. In this dissertation, coherent combining technique on fiber amplifier arrays using the master oscillator power amplifier (MOPA) configuration is studied experimentally and theoretically.
     In the dissertation, we arrive at the theoretical model of far-field intensity distribution of fiber amplifier arrays by Fraunhofer Diffraction theory, study the effects of the numbers of the laser arrays, fill factor, phase, partial coherence and polarization on far-field intensity patterns; Phase noise generated in ytterbium fiber amplifiers is theoretically investigated, which should be helpful in designing servo control systems; In the field of fiber laser coherent combining, phase control of ytterbium fiber amplifiers is the most difficult technology in the Master Oscillator Power Amplifier scheme. We design a high-frequency phase control eletronics by heterodyne detection principle. In the heterodyne detection control system, the frequency is shifted 40 MHz and the control precision is better thanλ/20, control-loop bandwidth is more than 10 kHz. The factors that affect control precision and closed-loop bandwidth are also analyzed, so that the performance of control eletronics can be further optimized and improved.
     Coherent combining technique of the master oscillator power amplifier configuration is experimentally investigated. First, we perform optical phase-noise measurements of a commercial 1 -W ytterbium fiber amplifier using our phase control eletronics, the dominant phase noises of the 1-W fiber amplifier are at frequencies below one kilohertz.
     Two methods to realize phase control of ytterbium fiber amplifiers are studied.
     a) "climbing hill". Using phase controll theory which is commonly used in adaptive optics, we propose "climbing hill" to realize phase control of ytterbium fiber amplifiers, which can automatically optimize the control voltage of phase modulator to keep the the output intensity of the system at the status of stable high brightness. The control precision is A/10 in the "climbing hill" control system. The coherent beam combining with two polarization maintaining ytterbium fibre amplifiers is experimentally realized.
     b) "heterodyne detection". In heterodyne detection control system, the detector detects the interferential signal of each amplifier and the modulated reference beam to fulfill the phase noise measurements of ytterbium fibre amplifiers. Heterodyne detection can realize real-time detection and correction of the phase change to ensure phase coherence and matching between all elements of fiber amplifier arrays. Coherent beam combination of three ytterbium fiber amplifiers is firstly realized by heterodyne detection method. in the experiments, the output power of each ytterbium fiber amplifier is not less than 1 W and the total output power of the three amplifiers is not less than 3 W. When the control loop is turned off, the far field interference pattern is dynamic and blurred, the visibility of the interferential fringes is 6%; while the control loop is turned on, the far field interference pattern turns to stable and clear, and the fringes visibility is 53%. This indicates the phase noises of fiber amplifiers are properly controlled, the fiber amplifiers are phase-locked and coherent beam combination of the three beams is achieved.
     In the MOPA configuration, each amplifier is independently locked to the reference beam, so the scalability of this system is good, high power fiber laser arrays can be obtained. Simultaneously, the MOPA configuration in this dissertation can be applied to coherent combination of solid-state lasers.
     The results of this dissertation lay a foundation to realize higher power beam combination of laser arrays and will be useful for the applications in future.
引文
[1]J.Nilsson,J.K.Sahu,Y.Jeong,etal.High power fiber lasers:new developments.SPIE 4974:50-59
    [2]楼祺洪,朱健强,周军,等.双包层光纤激光器及其在军事中的应用.装备指挥技术学院学报,2003,5(14):28-32
    [3]周军.连续波掺镱双包层光纤激光器研究.博士论文.中国科学院上海光学精密机械研究所,2004
    [4]刘颂豪.光纤激光器的新进展.光电子技术与信息,2003,16(1):1-8
    [5]A.Liem,J.Limpert,H.Zellmer,etal.100-W single-frequency master-oscillator fiberpower amplifier.Opt.Lett.,2003,17(28):1537-1539
    [6]M.Wickham,J.Anderegg,S.Brosnan,etal.Coherently Coupled High Power Fiber Arrays.Stanford Photonics Annual Meeting,September 17,2003
    [7]D.Hammons,J.Anderegg,S.Brosnan,etal.High Power Fiber Amplifiers for Kilowatt Fiber Arrays.Conference on Lasers and Electro-Optics,2003
    [8]Y.Jeong,J.Nilsson,J.K.Sahu,etal.Single-frequency,single-mode,plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power.Opt.Lett.,2005,30(5):459-461
    [9]Y.Jeong,J.Nilsson,D.B.S.Soh,etal.High power single-frequency Yb doped fiber amplifiers.Optical Fiber Communication Conference,Mar 5-10,2006
    [10]http://www.ipgphotonics.com/
    [11]P.Dupriez,J.Nilsson,Y.Jeong,etal.Current progress in high-power fiber lasers and amplifiers.OAA,2005,7-10
    [12]C.H.Liu,A.Galvanauskas,B.Ehlers,etal.810-W single transverse mode Yb-doped fiber laser,in Proc Advanced Solid State Photonics,February 1-4,2004
    [13]Y.Jeong,J.K.Sahu,D.N.Payne,etal.Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power.Opt.express,2004,12(25),6088-6092
    [14]V.Gapontsev,D.Gapontsev,N.Platonov,etal.2 kW CW ytterbium fiber laser with record diffraction-limited brightness.Conference on Lasers and Electro-Optics Europe,2005,pp508
    [15]G.Bonati,H.Voelckel,T.Gabler,etal.1.53 kW from a single Yb-doped photonic crystal fiber laser.Photonics West,San Jose,Late Breaking Developments,Session 5709-2a,2005
    [16]李伟,武子淳,陈曦,等.大功率光纤激光器输出功率突破1kW.强激光与粒子束,2006,6(18):890
    [17]周军,楼祺洪,朱健强,等.采用国产大模场面积双包层光纤的714 W连续光纤激光器.光学学报,2006,7(26):1119-1120
    [18]李晨,闫平,陈刚,巩马理.采用国产掺镱双包层光纤的光纤激光器连续输出功率突破700W.中国激光,2006,6(33):738
    [19]E.Cheung,M.Weber,D.Mordaunt.Mode-locked pulsed fiber array scalable to high power.SPIE 5335:98-104
    [20]L.kong,Q.Lou,J.Zhou,etal.133-W pulsed fiber amplifier with large-mode-area fiber.Opt.Eng.,2006,45(1):010502
    [21]T.Y.Fan.Laser Beam Combining for High-Power,High-Radiance Sources.IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2005,11(3):567-577
    [22]T.Y.Fan,A.Sanchez.Coherent(phased array) and wavelength(spectral) beam combining compared.Proceedings of SPIE 5709,2005,157-164
    [23]S.J.Augst,A.K.Goyal,R.L.Aggarwal,etal.Wavelength beam combining of ytterbium fiber lasers.Opt.Lett.,2003,5(28):331-333
    [24]李永忠,范滇元.光纤激光器光束的叠加技术.激光与光电子学进展,2005,9(42):26-29
    [25]I.V.Ciapurin,L.B.Glebov,L.N.Glebova,etal.Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating.SPIE 4974:209-219
    [26]I.V.Ciapurin,L.B.Glebov,E.Rotari,etal.Spectral beam combining by PTR Bragg gratings.SSDLTR2003
    [27]I.V.Ciapurin,L.B.Glebov,V.I.Smirnov.Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass.SPIE 5335:116-124
    [28]A.T(u|¨)nnermann,S.H(o|¨)fer,A.Liem,etal.Power Scaling of High-Power Fiber Lasers and Amplifiers.Laser Physics,2005,15(1):107-117
    [29]F.R(o|¨)ser,S.Klingebiel,A.Liem,etal.Spectral beam combining of fiber lasers SPIE 6102:61020T-1-61020T-6
    [30]T.H.Loftus,A.Liu,P.R.Hoffman,etal.258 W of Spectrally Beam Combined Power with Near-Diffraction Limited Beam Quality.Proc.of SPIE 6102:61020S-1-61020S-8
    [31]P.K.Cheo,A.Liu,and G.G.King.A high-brightness laser beam from a phase-locked multicore Ybdoped fiber laser array. IEEE Photon. Technol. Lett.,2001, 13 (5) : 439-441
    [32] Y. Huo, P.K. Cheo, and G. G. King. Fundamental mode operation of a 19-core phaselocked Yb-doped fiber amplifier. Opt.Express, 2004, 12(25) : 6230-6239
    [33] Y.Huo, P.K.Cheo. Analysis of transverse mode competition and selection in multicore fiber lasers. J.Opt.Soc.Am.B, 2005, 22(11): 2345-2349
    [34] E. J. Bochove, P. K. Cheo, G. G. King. Self-organization in a multicore fiber laser array. Opt. Lett., 2003, 28 (14) : 1200-1202
    [35] P.K.Cheo, G. G. King, Y. Huo. Recent Advances in High-Power and High Energy Multicore Fiber Lasers. SPIE 5335: 106-115
    [36] V. A. Kozlov, J. H.Cordero, T. F. Morse. All-fiber coherent beam combining of fiber lasers.Opt.Lett., 1999, 24 (24) : 1814-1816
    [37] M. L. Minden, H. Bruesselbach, J. L. Rogers, etal. Self-Organized Coherence In Fiber Laser Arrays. Proceedings of SPIE 5335: 89-97
    [38] T. B. Simpson, A. Gavrielides, P. Peterson. Coherent intracavity coupling of fiber lasers. LEOS, 2001, Vol.1: 62-63
    [39] T. B. Simpson, A. Gavrielides, P. Peterson. Extraction characteristics of a dual fiber compound cavity. Opt. Lett., 2002, 10 (20) : 1060-1073
    [40] T. B. Simpson. FIBER LASER ARRAY. Final Report, January 2002
    [41] T. B. Simpson. FIBER LASER ARRAY. Final Report, January 2004
    [42] H. Bruesselbach, D.C.Jones, M. S. Mangir, etal. Self-organized coherence in fiber laser arrays. Opt. Lett., 2005, 30 (11) : 1319-1341
    [43] H. Bruesselbach, M. Minden, J. L. Rogers, etal. 200 W Self-Organized Coherent Fiber Arrays. Conference on Lasers & Electro-Optics (CLEO), 2005, 532-534
    [44] M. Minden, H. Bruesselbach, J. Rogers, etal. Coherent combining of fiber lasers.Conference on Lasers and Electro-Optics Europe, 2005, 718
    [45] A. Shirakawa, T. Saitou, T. Sekiguchi, etal. Coherent addition of fiber lasers by use of a fiber coupler. Opt. Express, 2002, 10 (21) : 1167-1172
    [46] A. Shirakawa, T. Sekiguchi, K. Ueda. Scalable coherent beam coupling of fiber lasers. CLEO/Pacific Rim 2003, Taipei, Dec. 2003, paper W21-(8)-6
    [47] A. Shirakawa, K. Matsuo, K.i. Ueda. Fiber Laser Coherent Array for Power Scaling of Single-Mode Fiber Laser. Proc. of SPIE 5662: 482-487
    [48] A. Shirakawa, K. Matsuo, K.i. Ueda. Fiber laser coherent array for power scaling, bandwidth narrowing, and coherent beam direction control. Proceedings of SPIE 5709 : 165-174
    [49] D. Kouznetsov, J.F. Bisson, A. Shirakawa, etal. Limits of coherent addition of lasers: simple estimate. Optical Review, 2005, 12 (6) : 445-447
    [50] D. Sabourdy, V. Kermene, A. D.Berthelemot, etal. power scaling of fiber lasers with all-fiber interferometric cavity. Electronics Letters, 2002, 38 (14): 692-693
    [51] D. Sabourdy, V. Kermene, A. D.Berthelemot, etal. Efficient coherent combining of widely tunable fiber lasers. Opt. Express, 2003, 11 (2) : 87-97
    [52] C. J. Corcoran, R. H. Rediker. Operation of five individual diode lasers as a coherent ensemble by fiber coupling into an external cavity. Appt. Phys. Lett.,1991, 59 (7) : 759-761
    [53] C. J. Corcoran, K. A. Pasch. Modal analysis of a self-Fourier laser cavity. J. Opt.A:Pure Appl.Opt, 2005, Vol.7: L1-L7
    [54] C. J. Corcoran, K. A. Pasch. Self-Fourier functions and coherent laser fiber combination. J. Phys. A: Math. Gen., 2004, Vol.37: L461-L469
    [55] C. J. Corcoran, F.Durville. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Appl. Phys. Lett., 2005, 86 (20) :201118-1-201118-3
    [56] C. J. Corcoran. Compact Phase-Locked Laser Array. 5~(th) Annual Directed Energy Symposium, November 14, 2002
    [57] J. Morel, A. Woodtli, R. Dandliker. Coherent coupling of an array of Nd~(3+) doped single-mode fiber lasers using an intracavity phase grating. SPIE 1789: 13-17
    [58] L.P. Liu, Y. Zhou, F.T. Kong, etal. Phase locking in a fiber laser array with varying path lengths. Appl. Phys. Lett., 2004, 85 (21) : 4837-4829
    [59] M. Minden. Coherent Coupling of a Fiber Amplifier Array. Thirteenth Annual Solid State and Diode Laser Technology Review ( SSDLTR ) , June 5-8, 2000
    [60] H. Bruesselbach, M. L. Minden, S.Q.Wang, etal. A coherent fiber array based laser link for atmospheric aberration mitigation and power scaling. Proc. of SPIE 5338: 90-101
    [61] M. Mangir, H. Bruesselbach, M. Minden, etal. Atmospheric aberration mitigation and transmitter power scaling using a coherent fiber array. IEEE Aerospace Conference Proceedings, 2004, 1745-1750
    [62] M. Mangir, H. Bruesselbach, M. Minden, etal. Fiber Amplifier Array For Transmitter Power Scaling And Atmospheric Aberration Mitigation. SSDLTR 2004, 328-331
    [63] H.Bruesselbach, S.Q.Wang, M.Minden, etal. Power scalable Phase compensating fiber-array transceiver for laser communications through the atmosphere. J. Opt.Soc.Am.B, 2005, 22 (2) : 347-353
    [64] T. R. O'Meara. The multidither principle in adaptive optics. J. Opt. Soc. Am.,1977, 67 (3) : 306-315
    [65] S. Hofer, H. Zellrner, J.P. Raske, etal. Coherent beam combining of fiber amplifiers. CLEO/Europe, 2003, pp635
    [66] J. Anderegg, S. Brosnan, M. Weber, etal. 8-watt coherently phased 4-element fiber array. Proc. of SPIE 4974: 1-5
    [67] M. Wickham, D. Hammons, J. Anderegg, etal. High power fiber array coherent combination demonstration. SSDLTR2003
    [68] W.C. Holton. Scalable, high-power fiber laser produces coherent output. Laser Focus World July, 2003
    [69] J. Anderegg, S. Brosnan, E. Cheung, etal. Coherently Coupled High Power Fiber Arrays. Proc. of SPIE 6102: 61020U-1-5
    [70] S. J. Augst, T. Y. Fan, A. Sanchez. Coherent beam combining of ytterbium fiber laser amplifiers. CLEO, 2003
    [71] S. J. Augst, T. Y. Fan, A. Sanchez. Coherent combining of two 10-W ytterbium fiber laser amplifiers. SSDLTR2003
    [72] S. J. Augst, T. Y. Fan, A. Sanchez. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers. Opt. Lett., 2004, 29(5) : 474-476
    [73] T. M. Shay, V. Benham. First Experimental Demonstration of Phase Locking of Optical Fiber Arrays by RF Phase Modulation. Proceedings of SPIE 5550:313-319
    [74] T. M. Shay, V. Benham, L.J. Spring, etal. Self-Referenced Locking of Optical Coherence by Single-detector Electronic-Frequency Tagging. Proc. of SPIE 6102: 61020V-1-5
    [75] B. W. Grime, W.B. Roh, T. G. Alley. Beam phasing multiple fiber amplifiers using a fiber phase conjugate mirror. Proc. of SPIE 6102: 61021C-1-8
    [76] V. I. Kovalev, R. G. Harrison. Coherent beam combining of fiber amplifier array output through spectral self-phase conjugation via SBS. Proc. of SPIE 6102:61021B-1-8
    [77] G. D. Goodno, H. Komine, S. J. McNaught, etal. Coherent combination of high-power, zigzag slab lasers. Opt. Lett., 2006, 31 (9) : 1247-1249
    [78] G.Goodno, H.Komine, S.McNaught, etal. Multi-kW near-diffraction-limited single-frequency Nd:YAG laser.Conference on Lasers and Electro-Optics Europe,2005,pp25
    [79]K.H.No,R.W.Herrick,C.Leung,etal.One Dimensional Scaling of 100 Ridge Waveguide Amplifiers.lEEE Phot.Tech.Lett.,1994,6(9):1062-1066
    [80]K.H.No,R.W.Herrick,C.Leung,etal.two dimensional scaling of ridge waveguide amplifiers.SPIE 2148:80-90
    [81]D.Krebs,R.Herrick,K.No,etal.22 W Coherent GaAlAs Amplifier array with 400 emitters.IEEE Phot.Tech.Lett.,1991,3(4):292-295
    [82]周仁忠,阎吉祥,俞信等.自适应光学.北京:国防工业出版社,1996
    [83]J.Levy,K.Roh.Coherent Array of 900 Semiconductor Laser Amplifiers.SPIE 2382:58-69
    [84]J.M.Bernard,R.A.Chodzko,J.G.Coffer.Master oscillator with power amplifiers:performance of a two-element cw HF phased laser array.Appl.Opt.,1989,28(21):4543-4547
    [85]R.A.Chodzko,J.M.Bernard,H.Mirels.Coherent combination of multiline lasers.SPIE 1224:239-253
    [86]J.G.Coffer,J.M.Bernard,R.A.Chodzko,etal.Experiments with active phase matching of parallel-amplified Multiline HF laser beams by a phase-locked Mach-Zehnder interferometer.Appl.Opt.,1983,22(1):142-148
    [87]J.Hou,R.Xiao,Z.F Jiang,etal.Coherent Beam Combination of Two Polarization Maintaining Ytterbium Fibre Amplifiers.Chin.Phys.Lett.,2005,22(9):2273-2275
    [88]肖瑞,侯静,姜宗福.光纤激光器的相干合成技术.激光技术,2005,29(5):516-518
    [89]B.He,Q.H.Lou,J.Zhou,et al.High power coherent beam combination from two fiber lasers.J.Opt.Express,2006,14(7):2721-2726
    [90]何兵,楼祺洪,周军,等.光纤激光器相干组束技术.激光与光电子学进展,2006,43(9):47-54
    [91]Q.Peng,Y.Zhou,Y.Chen,etal.Phase locking of fibre lasers by self-imaging resonator.Eelect.Lett.,2005,41(4):171-173
    [92]楼祺洪,何兵,周军,等.相位锁定双包层光纤激光器阵列获得18.3 w的相干输出.中国激光,2006,33(2):229
    [93]B.He,Q.H.Lou,J.Zhou,etal.Phase-locking of two large-core fibre lasers with 60W of coherent output power.J.Opt.A:Pure Appl.Opt.,2006,Vol.8 759-762
    [94]何兵,楼祺洪,周军,等.两根大芯双包层光纤激光器获得60 W相干输出.光 学学报,2006,26(8):1279-1280
    [95]肖瑞,候静,姜宗福.光纤激光器阵列相干合成中的位相探测与校正方法研究.物理学报,2006,55(1):184-187
    [96]肖瑞,侯静,姜宗福.三路光纤放大器相干合成技术的实验研究.物理学报,2006,55(12):362-366
    [97]侯静,肖瑞,姜宗福等.三路掺镱光纤放大器的相干合成实验.强激光与粒子束,2006,18(10):1585-1588
    [98]何海军,肖瑞,侯静,姜宗福.耦合式光纤激光器阵列的稳定性研究.国防科学技术大学第五届研究生学术活动节论文集,2005,841-846
    [99]B.Zhang,J.Hou,R.Xiao,etc.self-organized coherent combining of fiber laser arrays.Proceedings of the 5~(th) International Conference on Optical Communication and Networks & the 2~(th) International Symposium on Advances and Trends in Fiber Optics and Applications,September 18-22,2006,54-57
    [100]S.P.Chen,Y.G.Li,K.C.Lu.Branch arm filtered coherent combining of tunable fiber lasers.Opt.Express,2005,13(20):7878-7883
    [101]S.T.Kowel,P.Kornreich,A.Nouhi.Adaptive spherical lens.Appl.Opt.,1984,23(16):2774-2777
    [102]G.D.Love.Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator.Appl.Opt.,1997,36(7):1517-1524
    [103]X.H.Wang,B.Wang,J.Pouch,et al.Liquid Crystal on Silicon(LCOS)Wavefront Corrector and Beam Steerer.Proceedings of SPIE 5162,2003,139-146
    [104]B.Wang,G.Q.Zhang,A.Glushchenko,et al.Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction.Appl.Opt.,2005,44(36):7754-7759
    [105]J.A.Thomas,Y.Fainman.Optimal cascade operation of optical phased-array beam deflectors.Appl.Opt.,1998,37(26):6196-6212[100]
    [106]J.Hou,R.Xiao.phase-locked fiber array for coherent combination and atmosphere aberration compensation.Chin.Phys.Lett.,2006,23(12):3288-3290
    [107]D.C.Jones,A.M.Scott,S.Clark,et al.Beam steering of a fibre bundle laser output using phased array techniques.2004 SPIE 5335 125-131
    [108]A.Polishuk,S.Arnon.Communication performance analysis of microsatellites using an optical phased array antenna.Opt.Eng.,2003,42(7):2015-2024
    [109]C.D.Nabors.Effects of phase errors on coherent emitter arrays.Applied Optics,1994,33(12):2284-2289
    [110]G.Josten,H.P.Weber,W.Luethy.Lensless focusing with an array of phase-adjusted optical fibers.Appl.Opt.,1989,28(23):5133-5137
    [111]H.E.Hagemeier,S.R.Robinson.Field properties of multiple coherently combined lasers.Appl.Opt.,1979,8(3):270-280
    [112]H.E.Hagemeier.Field Properties of Multiple,Coherently Combined Lasers.Masters Thesis,Air Force Institute of Technology,December 1977,AD-A053349
    [113]W.M.Neubert,K.H.Kudielka,W.R.Leeb,etal.Experimental demonstration of an optical phased array antenna for laser space communications.Appl.Opt.,1994,33(18):3820-3830
    [114]Y.Liu,J.Barhen,Y.Braiman,etal.Interference pattern formation from an array of coherent laser beams.J.Vac.Sci.Technol.B,2002,20(6):2602-2605
    [115]羊国光,宋菲君编著.高等物理光学.中国科学技术大学出版社,1991
    [116]M.玻恩,E.沃尔夫.光学原理.科学出版社,1978
    [117]E.Hecht.Optics(Fourth Edition).北京:高等教育出版社,2005
    [118]赵凯华,钟锡华.光学.北京大学出版社,2002
    [119]盛骤,谢式千,潘承毅编.概率论与数理统计(第二版).高等教育出版社,1989
    [120]J.W.顾德门著.统计光学.科学出版社,1992
    [121]P.R.Bevington.Data Reduction and Error Analysis for the Physical Sciences.New York:McGraw-Hill,inc,1969
    [122]N.W.Carlson,V.J.Masin,M.Lurie,et al.Measurement of the coherence of a single-mode phase-locked diode laser array.Appl.Phys.Lett.,1987,51(9):643-645
    [123]G.A.Evans,J.M.Hammer.Surface Emitting Semiconductor Lasers and Arrays.London:Academic Press,1993
    [124]D.botez,D.R.Scifres.Diode laser arrays.Cambridge University Press,1994
    [125]F.Gori,M.Santarsiero,S.Vicalvi,et al.Beam coherence-polarization matrix.Pure Appl.Opt.7 1998,941-951
    [126]F.Gori.Matrix treatment for partially polarized,partially coherent beams,optics letters 1998,23(4):241-243
    [127]F.Gori,M.Santarsiero.Use of the van Cittert-Zernike theorem for partially polarized sources,optics letters,2000,25(17):1291-1293
    [128]W.Lei,B.D.Lv.Intensity and polarization changes of partially coherent and partially polarized light in Young's experiment.Optik,2002,113(6):277-283
    [129]王磊.部分相干部分偏振光束的特性和应用研究.博士学位论文.四川大学,2002
    [130]李宾中.多束激光的并合、传输变换与照明特性研究.博士学位论文.四川大学,2002
    [131]沈铉国,张铁强.光电子学.北京:兵器工业出版社,1994
    [132]卢春生.光电探测技术及应用.北京:机械工业出版社,1992
    [133]王日.外差探测激光接收机系统技术研究.硕士学位论文,哈尔滨工业大学,2000.7
    [134]D.G.Heflinger,L.O.Heflinger.dynamic optical phase state detector.U.S.Patent 6147755,November,2000
    [135]D.G.Heflinger,L.O.Heflinger.dynamic optical micrometer.U.S.Patent 6243168,June,2001
    [136]S.J.Brosnan,D.G.Heflinger,L.O.Heflinger.high average power fiber laser system with high-speed,parallel wavefront sensor.U.S.Patent 6366356,April,2002
    [137]S.J.Brosnan,D.G.Heflinger,L.O.Heflinger.heterodyne wavefront sensor.U.S.Patent 6229616,May,2002
    [138]D.G.Heflinger,L.O.Heflinger.Optical communication system with phase modulation.U.S.Patent 6545785,Apr.8,2003
    [139]R.R.Rice,M.G.Wickham,H.Komine.laser source comprising amplifier and adaptive wavefront/polarization driver.U.S.Patent 0201429,Sep.15,2005
    [140]阎石.数字电子技术基础(第三版).北京:高等教育出版社,1989
    [141]鄢景华.自动控制原理(第二版).哈尔滨工业大学出版社,2000
    [142]胡志平,宋如华,杨大让,等.激光器相控阵列的光束合成.激光技术,1991,15(4):232-237
    [143]M.A.Culpepper.Coherent combination of fiber laser beams.Proceedings of SPIE 4629,99-108
    [144]侯静,肖瑞,刘泽金,等.两种方法实现对掺镱光纤放大器的相位校正.强激光与粒子束,2006,18(11):1779-1782
    [145]M.K.Davis,M.J.F.Digonnet,R.H.Pantell.Thermal Effects in Doped Fibers.J.of Lightwave Technol.,1998,16(6):1013-1023
    [146]M.Tr(o|¨)bs,P.Wessels,C.Fallnich.Phase-noise properties of an ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna.Opt.Lett.,2005,30(7):789-791
    [147]M.Tr(o|¨)bs,P.Wessels,C.Fallnich.Power- and frequency-noise characteristics of an Yb-doped fiber amplifier and actuators for stabilization.Opt.Express,2005,13(6):2224-2235
    [148]B.Willke,S.Brozek,K.Danzmann,et al.Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source.Opt.Lett.,2000,25(14):1019-1021
    [149]T.Day.Frequency stabilized solid state lasers for coherent optical communication.Ph.D.dissertation of Stanford University,1990
    [150]K.H.Wanser.Fundamental phase noise limit in optical fibers due to temperature fluctuations.Electron.Lett.,1992,28(1):53-54
    [151]W.H.Glenn.Noise in Interferometric Optical Systems:An Optical Nyquist Theorem.IEEE JOURNAL OF QUANTUM ELECTRONICS,1989,25(6):1218-1224
    [152]M.Heurs,V.M.Quetschke,B.Willke,etal.Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique.Opt.Lett.,2004,29(18):2148-2150
    [153]E.Rochat.High power optical fiber amplifiers for coherent inter-satellite communication.Ph.D.dissertation of University of Neuchatel,2000
    [154]M.Minden.phase control mechanism for coherent fiber amplifier arrays.U.S.Patent 6400871,June,2002
    [155]白居宪.低噪声频率合成.西安交通大学出版社,1995
    [156]廖延彪.偏振光学.北京:科学出版社,2003
    [157]李玲,黄永清.光纤通信基础.北京:国防工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700