互联系统的分散式自适应迭代学习控制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的高速发展,互联系统越来越多地出现在各种实际的控制系统中,近年来,关于互联大系统分散式控制理论的研究引起了学术界和工程界的广泛关注。由于在互联系统中各个子系统之间的信息交换有时在物理上难以实现,并且由于缺少与集中控制器相应的足够计算能力,在这种复杂情况之下分散控制技术需要优先使用。本文以几类非线性互联系统为研究对象,分析系统特性,分别设计分散式自适应迭代学习控制,对算法进行收敛性分析,同时运用算法的数值仿真来验证算法的有效性。本文通过系统性地结合自适应迭代学习控制和分散式控制技术,以求在一定程度上促进非线性互联系统控制科学的深入发展并为一类实际工程问题提供更好的解决方案。
     本文研究内容有以下几方面:
     1.针对一类具有不确定性的非线性互联系统,其互联项满足多项式有界条件,提出分散式模型参考自适应迭代学习控制,该算法包括2部分,一部分为反馈控制,用于保证子系统的闭环稳定性,另一部分为互联估计参数自适应迭代学习控制,用于消除各个子系统之间的互联项影响。进行了该分散式迭代学习控制算法的收敛性分析,仿真结果表明该算法的有效性。
     2.针对一类具有不确定性的状态非线性时滞互联系统,给出分散式模型参考自适应迭代学习控制,该控制器为非记忆型控制器,只应用了跟踪误差项的实时信息,通过额外引入自适应迭代更新参数,来消除由于时滞互联项给互联系统带来的影响。对控制算法的收敛性进行详细推导,得到有效的仿真结果。由于各子系统之间普遍存在着信息传输的滞后性,对非线性互联系统而言,研究存在时滞情况下控制器设计问题更具有实际应用价值。
     3.针对一类具有严格反馈形式的非线性互联系统,分2种情况进行分析,一类为互联项为子系统输出的单项式有界,一类为互联项为子系统输出的高阶多项式有界。当互联项为子系统输出的单项式有界时,引入了自适应更新参数岔,用以消除互联项的影响;当互联项为子系统输出的高阶多项式有界时,同时引入了自适应更新参数(?)ik和βik,消除子系统输出的高阶多项式有界影响。给出了控制器收敛性分析的理论推导,仿真结果验证了这种分散式自适应迭代学习控制的有效性。
     4.将提出的理论与方法在互联机械系统上进行应用。分析了互联机械系统的特点,针对互联机械系统设计了分散式自适应迭代学习控制算法。同时基于Lyapunov方法对其进行算法收敛性分析,通过对子系统中未知参数和互联参数的迭代更新,可使得由跟踪误差和参数估计误差构成的Laypunov函数沿着迭代方向上单调递减。仿真结果显示了所给出的分散式自适应迭代学习控制算法有效性。
With the rapid development of modern science and technology, many practical control systems can be seen as nonlinear interconnected large-scale systems, so the decentralized control theory of interconnected large-scale systems has attracted great attentions in both academic research and industrial applications. Owing to the unrealized information exchanges between subsystems physically and the lack of computing power corresponding to the centralized controllers, the decentralized control technique usually has priority in usage under these complicated circumstances. The dissertation focuses on the certain kinds of nonlinear interconnected systems and analyses the systems characteristics. Then the decentralized adaptive learning control algorithms are designed correspondingly. The convergence analysis is provided for the proposed algorithms in this paper. Simulation results demonstrate that, utilizing the proposed controllers, the tracking error for each subsystem converges along the iteration axis. By systematically combining adaptive iterative learning control and decentralized control techniques, an attempt was made in this dissertation not only to forward deep development of interconnected system control science but also to provide better approaches to practical engineering problems to a certain degree.
     The main contents are composed of the following four parts.
     (1) An decentralized model reference adaptive iterative learning controller is designed for a class of nonlinear interconnected system with uncertainties. There are two parts in the controller, one is the feed-back controller which is used to stabilize the closed subsystem, the other is the adaptive iterative learning controller which eliminates the effects of the interconnections among subsystems. The convergence of the proposed algorithm is proved based on a Lyapunov-like method, guaranteeing the tracking error of each subsystem approaches to zero along with control iterations. A simulation example is given to show the effectiveness of the proposed method.
     (2) Base on the nonlinear interconnected systems with state delay and model uncertainties, a decentralized model reference adaptive iterative learning control is proposed in this paper. The proposed controller of each subsystem is delay-independent which utilize only the current closed-loop local state variables. In order to eliminate the effects of interconnections and state delay, the extra adaptive parameters are updated along iteration axis. The algorithm convergence is proved carefully and the effectiveness of the proposed scheme is shown through computer simulation. Time delays, due to the information transmission between subsystems, naturally exist in interconnected systems and hence the control problem becomes more important than those interconnected systems without time delays.
     (3) A decentralized backstepping adaptive iterative learning control schemes is proposed for a class of interconnected nonlinear systems of strict feedback form. The interconnections among subsystems are assumed to be bounded by an unknown1st-order or Pth-order polynomial in sub-outputs. A time-vary adaptive iterative learning control gain ζik is introduced to counteract the effect of the interconnections which are linear bounded in sub-output. As for the Pth-order polynomial sub-outputs bounded interconnections, two adaptive updated parameters ζik and βik are utilized. All the adaptive parameters are updated along both iteration axis and time one to counter the effects of the interconnections. It is shown that by using the proposed decentralized controller, the outputs of the subsystems can track the desired reference outputs iteratively. The simulation results show that the output tracking error of each subsystem converges along the iterative axis.
     (4) A decentralized robust adaptive iterative learning control scheme for trajectory tracking of interconnected manipulators is developed. The proof of convergences based on the Lyapunov method. Through the iterative update of subsystem unknown parameters and interconnected parameters, the Lyapunov function composed of tracking errors and estimated parameter errors is monotonically decreased in iteration domain. The simulation results show that this method can guarantee the tracking error convergence of each subsystem.
引文
[1]高为炳,霍伟,大系统的稳定性、分散控制及动态递阶控制基础,北京航空航天大学出版社,1994.
    [2]张庆灵,广义大系统的分散控制和鲁棒控制,西北工业大学出版社,1997.
    [3]万百五,工业大系统优化与产品质量控制,北京航空航天大学出版社,2003.
    [4]涂序彦,王枞,郭燕慧,大系统控制论,国防工业出版社,2005.
    [5]D. D. Siljak, Decentralized control and computations:status and prospects, Annual Reviews in Control,1996, vol.20, pp.131-141.
    [6]D. D. Siljak and A. I. Zecevic, Control of large-scale systems:Beyond decentralized feed-Back, Annual Reviews in Control,2005, vol.29, pp.169-179.
    [7]L. Bakule, Decentralized control:an overview, Annual Reviews in Control, 2008, vol.32, pp.87-98.
    [8]Z. P. Jiang, A combined backstepping and small-gain approach to adaptive output feedback control, Automatica,1999, vol.35, pp.1131-1139.
    [9]Z. P. Jiang, New results in decentralized adaptive control with output-feedback, Proceeding of the Conference Decision and Control,1999, pp. 4772-4777.
    [10]Y. Liu and X. Y. Li, Decentralized Robust Adaptive Control of Nonlinear Systems With Unmodeled Dynamics, IEEE Transactions on Automatic Control,2002, vol.47, no.5, pp.848-856.
    [11]Y. Guo, Z. P. Jiang and D. J. Hill, Decentralized robust disturbances attenuation for a class of large-scale nonlinear systems, System Control Letter,1999, vol.37, pp.71-85.
    [12]J. T. Spooner and K. M. Passino, Decentralized adaptive control of a class of large-scale nonlinear systems using radial basis neural networks, IEEE Transactions on Automatic Control,1999, vol.44, no.11, pp.2050-2057.
    [13]F. Nardi, N. Hovakimyan and A. J. Calise, Decentralized control of large-scale systems using single hidden layer neural networks, Proceedings of the American Control Conference,2001, pp.3123-3127.
    [14]S. N. Huang, K. K. Tan and T. H. Lee, Decentralized control design for large-scale systems with strong interconnections using neural networks, IEEE Transactions on Automatic Control,2003, vol.48, pp.805-810.
    [15]N. Hovakimyan, E. Lavretsky, B. J. Yang and A. J. Calise, Coordinated Decentralized Adaptive Output Feedback Control of Interconnected Systems, IEEE Transactions On Neural Networks,2005, vol.16, no.1, pp.185-194.
    [16]S. N. Huang, K. K. Tan and T. H. Lee, Decentralized control of a class of large-scale nonlinear systems using neural networks, Automatica,2005, vol.41, pp. 1131-1139.
    [17]S. Mehraeenl and S. Jagannathan, Decentralized Adaptive Neural Network State and Output Feedback Control of a Class of Interconnected Nonlinear Discrete-time Systems, Proceedings of the American Control Conference,2012, pp. 6406-6411.
    [18]F. Momeni, B. Karimi and M. B. Menhaj, Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Systems Using Wavelet Networks, Proceedings of International Conference on Control, Instrumentation and Automation,2011, pp. 423-428
    [19]S. Jain and F. Khorrami, Decentralized Adaptive Output Feedback Design for Large-Scale Nonlinear Systems, IEEE Transactions on Automatic Control,1997, vol.42, no.5, pp.729-735.
    [20]Z. P. Jiang, Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems, Automatica,2002, vol.38, pp.1407-1415.
    [21]Z. P. Jiang, Decentralized and Adaptive Nonlinear Tracking of Large-Scale Systems via Output Feedback, IEEE Transactions on Automatic Control,2000, vol. 45, no.11, pp.2122-2128.
    [22]Y. F. Xie, W. H. Gui, Z. H. Jiang and C. Huang, Decentralized Robust H∞ Output Feedback Control for Value Bounded Uncertain Large-scale Interconnected Systems, International Journal of Control, Automation, and Systems,2010, vol.8, no. l,pp.16-28.
    [23]M. S. Mahmoud, Stabilizing control for a class of uncertain interconnected system, IEEE Transactions on Automatic Control,1994, vol.39, no.12, pp. 2484-2488.
    [24]X. Ye, Decentralized Adaptive Output-feedback Stabilization of Large-scale Nonlinear Systems with Time-varying Delays and Unknown High-frequency-gain Signs, Proceedings of the Chinese Control Conference,2011, pp.2466-2470.
    [25]G. Feng and Y.A. Jiang, Variable Structure Control based Decentralized Adaptive Control, Proceedings of the IEE Conference on Control Theory Application, 1995, vol.142. no.3, pp.439-443.
    [26]K. C. Hsu, Decentralized variable-structure control design for uncertain large-scale systems with series nonlinearities, International Journal of Control,1997, vol.68, pp.1231-1240.
    [27]K. C. Hsu, Decentralized variable structure model-following adaptive control for interconnected systems with series nonlinearities, International Journal of System Science,1998, vol.29, pp.365-372.
    [28]G. P. Matthews and R. A. Decarlo, Decentralized tracking for a class of interconnected nonlinear systems using variable structure control, Automatica,1988, vol.24, pp.187-193.
    [29]A. G. Aghdam and E. J. Davison, Decentralized switching control for hierarchical systems, Automatica,2007, vol.43, pp.1092-1100.
    [30]J. Zhou, Decentralized adaptive control for large-scale time-delay systems with dead-zone input, Automatica,2008, vol.39, pp.1790-1799.
    [31]K. K. Shyu, W. J. Liu and K. C. Hsu, Decentralized variable structure control of uncertain large-scale systems containing a dead-zone, Proceedings Of the IEE Conference on Control Theory and Application,2003, vol.150, no.5, pp. 467-475.
    [32]S. J. Yoo, J. B. Park and Y. H. Choi, Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs, Automatica,2009, vol.45, pp.436-443.
    [33]K. S. Narendra and N. O. Oleng, Exact Output Tracking in Decentralized Adaptive Control Systems, IEEE Transactions on Automatic Control,2002, vol.47, no.2, pp.390-395.
    [34]W. J. Wang and L. Luoh, Stability and Stabilization of Fuzzy Large-Scale Systems, IEEE Transactions on fuzzy systems,2004, vol.12, no.3, pp.309-305.
    [35]S. J. Liu, J. F. Zhang and Z. P. Jiang, Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 2007, vol.43, pp.238-251.
    [36]J. Zhou and C. Wen, Decentralized Backstepping Adaptive Output Tracking of Interconnected Nonlinear Systems, IEEE Transactions on Automatic Control,2008, vol.53, no.10, pp.2378-2384.
    [37]L. C. Fu, Robust adaptive decentralized control of robot manipulators, IEEE Transactions on Automatic Control,1992, vol.37, pp.106-110.
    [38]K. K. Tan, S. Huang and T. H. Lee, Decentralized adaptive controller design of large-scale uncertain robotic Systems, Automatica,2009, vol.45, pp.161-166.
    [39]Y. Jin, Decentralized Adaptive Fuzzy Control of Robot Manipulators, IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,1998, vol.28, no.1, pp.47-57.
    [40]M. Liu, Decentralized Control of Robot Manipulators:Nonlinear and Adaptive Approaches, IEEE Transactions on Automatic Control,1999, vol.44, no.2, pp.357-363.
    [41]J. C. Martinez-Rosas, M. A. Arteaga and A. M. Castillo-Sanchez, Decentralized control of cooperative robots without velocity-force measurements, Automatica,2006, vol.42, pp.329-336.
    [42]M. L. Hung and J. J. Yan, Decentralized model-reference adaptive control for a class of uncertain large-scale time-varying delayed systems with series nonlinearities, Chaos, Solitons and Fractals,2007, vol.33, pp.1558-1568.
    [43]O. M. Kwon and J. H. Park, Guaranteed cost control for uncertain large-scale systems with time-delays via delayed feedback, Chaos, Solitons and Fractals,2006, vol.27, pp.800-812.
    [44]X. Liu, H. Zhang and F. Zhang, Delay-dependent stability of uncertain fuzzy large-scale systems with time delays, Chaos, Solitons and Fractals,2005, vol. 26, pp.147-158.
    [45]H. Trinh and M. Aldeen, A comment on decentralized stabilization of large-scale interconnected systems with delays, IEEE Transactions on Automatic Control,1995, vol.40, pp.914-919.
    [46]Z. Hu, Decentralized stabilization of large-scale interconnected systems with delays, IEEE Transaction on Automatic Control,1994, vol.39, pp.180-182.
    [47]J. J. Yan, J. Tsai and F. C. Kung, Robust decentralized stabilization of large-scale delay systems via sliding mode control, ASME Journal of Dynamic System, Measure Control,1997, vol.119, pp.307-312.
    [48]H. Wu, Decentralized Adaptive Robust Control for a Class of Large-Scale Systems Including Delayed State Perturbations in the Interconnections, IEEE Transactions on Automatic Control,2002, vol.47, no.10, pp.1745-1751.
    [49]H. Wu, Decentralized Output Feedback Control of Large Scale Interconnected Time-Delay Systems, Proceedings of the Conference on Decision and Control,1996, pp.1611-1616.
    [50]Y. Guo, Decentralized Disturbance Attenuation for Large-Scale Nonlinear Systems with Delayed State Interconnections, Proceedings of the American Control Conference,2004, pp.4290-4295.
    [51]F. H. Hsiao, J. D. Hwang, C. W. Chen and Z. R. Tsai, Robust Stabilization of Nonlinear Multiple Time-Delay Large-Scale Systems Via Decentralized Fuzzy Control, IEEE Transactions on Fuzzy Systems,2005, vol.13, no.1, pp.152-163.
    [52]C. H. Chou and C. C. Cheng, A Decentralized Model Reference Adaptive Variable Structure Controller for Large-Scale Time-Varying Delay Systems, IEEE Transactions on Automatic Control,2003, vol.48, no.7, pp.1213-1217.
    [53]X. G. Yan and S. K. Spurgeon, Decentralized Variable Structure Control for Time Delay Interconnected Systems, Advances in Sliding Mode Control, LNCIS 440, 2013, pp.55-74.
    [54]X. G. Yan, S. K. Spurgeon and C. Edwards, Global decentralized static output feedback sliding mode control for interconnected time-delay systems, IET Control Theory and Applications,2012, vol.6, no.2, pp.192-202.
    [55]R. W. Longman, Iterative learning control and repetitive control for engineering practice, International Journal of Control,2000, vol.73, no.10, pp. 930-954.
    [56]D. A. Bristow, M. Tharayil and A. G. Alleyne, A survey of Iterative Learning Control, IEEE Control Systems Magazine,2006, pp.96-114.
    [57]H. S. Ahn, Y. Q. Chen and K. L. Moore, Iterative Learning Control Brief Survey and Categorization, IEEE Transactions on Systems, Man, And Cybernetics-Part C:Applications And Reviews,2007, vol.37, no.6, pp.1099-1121.
    [58]K. L. Moore, M. Dahleh and S. P. Bhattacharyya, Iterative learning control: A survey and new results, Journal of Robotic System,1992, vol.9, no.5, pp.563-594.
    [59]S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of dynamic systems by learning:A new control theory for servomechanism or mechatronic systems, Proceedings of the Conference On Decision and Control,1984, pp. 1064-1069.
    [60]S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning, Journal of Robotic System,1984, vol. 1,no.2, pp.123-140.
    [61]S. Arimoto, S. Kawamura and F. Miyazaki, Convergence, Stability and Robustness of Learning Control Schemes for Robot manipulations-Recent Trends in Robotics:Modeling, Control and Education, Lodon:Elseier Publishers,1986, pp. 307-316.
    [62]T. Y. Kuc, J. S. Lee and K. Nam, An Iterative Learning Control Theory for a Class of Nonlinear Dynamic Systems, Automatica,1992, vol.28, no.6, pp. 1215-1221.
    [63]G. Heinzinger, D. Fenwick and B. Paden, Robust learning control, Proceedings of the IEEE Conference on Decision and Control,1989, pp.436-440.
    [64]M. Togai and O. Yamano, Analysis and design of an optimal learning control scheme for industrial robots:a discrete system approach, Proceedings of the IEEE Conference on Decision and Control,1985, pp.1399-1404.
    [65]H. Wang and Y. Wang, Iterative learning control for nonlinear systems with uncertain state delay and arbitrary initial error, Journal of Control Theory and Application,2011, vol.9, no.4, pp.541-547.
    [66]T. J. Jang, C. H. Choi and H. S. Ahn, Iterative Learning Control in Feedback Systems, Automatica,1995, vol.31, no.2, pp.243-245.
    [67]Z. Bien and K. Huh, Higher-order Iterative Learning Control Algorithm, Proceedings of the IEE Conference on Control Theory and Applications,1989, vol. 32, pp.105-112.
    [68]C. J. Chien, A discrete iterative learning control for a class of nonlinear time-varying systems, IEEE Transactions on Automatic Control,1998, vol.43, no.5, pp.748-752.
    [69]Y. Chen, Z. Gong and C. Wen, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays, Automatica,1998, vol.34, no.3, pp.345-353.
    [70]Y. C. Chen, C. Wen and M. Sun, A robust high-order P-type iterative learning controller using current iteration tracking error, International Journal of Control,1997, vol.68, pp.331-342.
    [71]J. X. Xu and Y. Tan, New Iterative Learning Control approaches for Nonlinear Non-affine MIMO Dynamic Systems, Proceedings of the American Control Conference,2001, pp.896-901.
    [72]J. L. Kang, W. S. Tang and Y. Y Mao, A New Iterative Learning Control Algorithm For Output Tracking of Nonlinear Systems, Proceedings of the International Conference on Machine Learning and Cybernetics,2005, pp. 1240-1243.
    [73]K. Furuta and M. Yamakita, The design of a learning control system for multivariable systems, Proceedings of the Conference on Decision and Control,1987, pp.371-376.
    [74]V. Hatzikos, J. Hatonen and D. H. Owens, Genetic algorithms in norm optimal linear and non-linear iterative learning control, International Journal of Control,2004, vol.77, no.2, pp.188-197.
    [75]K. Buchheit, M. Pandit and M. Befort, Optimal iterative learning control of an extrusion plant, Proceedings of the IEE International Conference on Control,1994, pp.652-657.
    [76]K. M. Tao, R. L. Kosut and G. Aral, Learning feedforward control, Proceedings of the American Control Conference,1994, pp.2575-2579.
    [77]N. Amann, D. H. Owens and E. Rogers, Iterative learning control using optimal feedback and feedforward actions, International Journal of Control,1996, vol. 65,no.2, pp.277-293.
    [78]N. Amann, D. H. Owens and E. Rogers, Predictive optimal iterative learning control, International Journal of Control,1998, vol.69, no.2, pp.203-226.
    [79]J. H. Lee, K. S. Lee and W. C. Kim, Model-based iterative learning control with a quadratic criterion for time-varying linear systems, Automatica,2000, vol.36, pp.614-657.
    [80]S. Gunnarsson and M. Norrlof, Some aspects of an optimization approach to etutive learning control, Proceeding of the IEEE Conference on Decision Control, 1999, pp.1581-1586.
    [81]D. H. Owens and J. J. Hatonen, A new optimality based adaptive ILC dgorithm, Proceedings of the Conference on Control, Automation, Robotics and Asion,2002, pp.1496-1501.
    [82]C. H. Choi and T. J. Jang, Iterative learning control in feedback systems based on an objective function, Asian Journal of Control,2000, vol.2, no.2, pp. 101-110.
    [83]W. C. Kim, I. S. Chin, K. S. Lee and J. H. Choi, Analysis and reduced order design of quadratic criterion-based iterative learning control using singular value decomposition, Computer and Chemical Engineering,2000, vol.24, no.8, pp. 1815-1819.
    [84]H. Xu, Optimal Iterative Learning Control for Nonlinear Discrete-Time Systems, Software Engineering and Knowledge Engineering:Theory and Practice Advances in Intelligent and Soft Computing,2012, vol.115, pp.69-75.
    [85]M. Arif, T. Ishihara and H. Inooka, Prediction-based iterative learning control (PILC) for uncertain dynamic nonlinear systems using system identification technique, Journal of Intelligent Robotic System,2000, vol.27, no.3, pp.291-304.
    [86]D. Wang, On D-type and P-type ILC designs and anticipatory approach, International Journal of Control,2000, vol.73, no.10, pp.890-901.
    [87]M. X. Sun and D. Wang, Anticipatory iterative learning control for nonlinear systems with arbitrary relative degree, IEEE Transactions on Automatic Control,2001, vol.46, no.5, pp.783-788.
    [88]Z. Geng, R. Carroll and J. Xie, Two-dimensional model and algorithm analysis for a class of iterative learning control systems. International Journal of Control,1990, vol.52, no.4, pp.833-862.
    [89]T. W. S. Chow and Y. Fang, An iterative learning control method for continuous-time systems based on 2-D system theory, IEEE Transactions on Circuits Systems Ⅰ:Fundamental Theory and Applications,1998, vol.45, no.4, pp.683-689.
    [90]J. E. Kurek, Stabilities of 2-D linear discrete-time systems, Proceedings of the IFAC World Congress,1984, pp.191-195.
    [91]J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D sytem theory, IEEE Transactions on Automatic Control,1993, vol.38, no.1, pp. 121-125
    [92]Y. Fang and T. W. S. Chow,2-D analysis for iterative learning controller for discrete-time systems with variable initial conditions, IEEE Transactions on Circuits System Ⅰ, Fundamental Theory Application,2003, vol.50, no.5, pp.722-727.
    [93]M. French, E. Rogers, H. Wibowo and D. H. Owens, A 2D systems approach to iterative learning control based on nonlinear adaptive control techniques, Proceedings of the IEEE International Symposium on Circuits System,2001, pp. 429-432.
    [94]D. Meng, Y. Jia, J. Du and S. Yuan, Feedback iterative learning control for time-delay systems based on 2D analysis approach, Journal of Control Theory and Application,2010, vol.8, no.4, pp.457-463.
    [95]D. H. Owens, N. A. Mann, E. Rogers and M. French, Analysis of linear iterative learning control schemes-A 2D systems/repetitive processes approach, Multidimensional System Signal Process,2000, vol.11, pp.125-177.
    [96]A. Tayebi and J. X. Xu, Observer-based iterative learning for a class of time-varying nonlinear systems, IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications,2003, vol.50, no.3, pp.452-455.
    [97]W. J. Cao and J. X. Xu, On Functional Approximation of the Equivalent Control Using Learning Variable Structure Control, IEEE Transactions on Automatic Control,2002, vol.47, no.5, pp.824-830.
    [98]Y. Q. Chen and K. L. Moore, On D" type Iterative Learning Control, Proceedings of the IEEE Conference on Decision and Control,2001, pp.4451-4456.
    [99]D. Roover and O. H. Bosgra, Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system, International Journal of Control,2000, vol.73, no.10, pp.968-979.
    [100]A. D. Barton, P. L. Lewin and D. J. Brown, Practical implementation of a real-time iterative learning position controller, International Journal of Control,2000, vol.73, no.10, pp.992-999.
    [101]D. Roover, Synthesis of a robust iterative learning controller using an H∞ approach, Proceedings of the IEEE Conference on Decision and Control,1996, pp. 3044-3049.
    [102]D. De Roover, Synthesis of a Robust Iterative Learning Controller Using H∞ Approach, Proceedings of the IEEE Conference on Decision and Control,1996, pp.3044-3049.
    [103]T. Y. Doh, J. H. Moon, K. B. Jim and M. J. Cheng, Robust learning control, Internal Journal of Systems Science,1999, vol.30, no.1, pp.39-47.
    [104]J. X. Xu and T. Zhu, Dual-Scale Direct Learning Control of Trajectory Tracking for a Class of Nonlinear Uncertain Systems, IEEE Transaction on Automatic Control,1999, vol.44, no.10, pp.1884-1888.
    [105]M. Arif, T. Ishihara and H. Inooka, Iterative learning control utilizing the error prediction method. Intelligent Robotic System,1999, vol.25, no.2, pp.95-108.
    [106]B. H. Park, T. Y. Kun, Lee and S. Jin, An adaptive learning control of uncertain robotic system, International Journal of Control,1996, vol.65, no.6, pp. 725-744.
    [107]D. Sun and J. K. Mills, High-accuracy trajectory tracking of industrial robot manipulator using adaptive-learning scheme, Proceedings of the American Control Conference,1999, pp.1935-1939.
    [108]S. C. Lee, R. W. Longman and M. Q. Phan, Direct model reference learning and repetitive control, Intelligent Automation and Soft Computing,2002, vol. 8, no.2, pp.143-161.
    [109]C. J. Chien and C. Y. Yao, Iterative learning of model reference adaptive controller for uncertain nonlinear systems with only output measurement, Automatica, 2004, vol.40, no.5, pp.855-864.
    [110]Y. Miyasato, Iterative learning control of robotic manipulators by hybrid adaptation schemes, Proceedings of the IEEE Conference on Decision and Control, 2003, pp.4428-4433.
    [111]D. H. Owens and G. S. Munde, Universal adaptive iterative learning control, Proceedings of the IEEE Conference on Decision and Control,1998, pp. 181-185.
    [112]M. French, G. Munde, E. Rogers and D. H. Owens, Recent developments in adaptive iterative learning control, Proceedings of the IEEE Conference on Decision and Control,1999, pp.264-269.
    [113]H. Chen and P. Jiang, Adaptive iterative feedback control for nonlinear system with unknown control gain, Control Theory And Application,2003, vol.20, no. 5, pp.691-694.
    [114]H. Chen and P. Jiang, Adaptive iterative feedback control for nonlinear system with unknown high-frequency gain, Proceedings of the World Congress on Intelligent Control and Automation,2002, pp.847-851.
    [115]C. J. Chien and C. Y. Yao, An output-based adaptive iterative learning controller for high relative degree uncertain linear systems, Automatica,2004, vol.40, no. 1,pp.145-153.
    [116]M. French and E. Rogers, Nonlinear iterative learning by an adaptive Lyapunov technique, International Journal of Control,2000, vol.73, no.10, pp. 840-850.
    [117]S. Yang, X. Fan and A. Luo, Adaptive robust iterative learning control for uncertain robotic systems, Proceedings of the World Congress on Intelligent Control Automation,2002, pp.964-968.
    [118]J. X. Xu and B. Viswanathan, Adaptive robust iterative learning control with dead zone scheme, Automatica,2000, vol.36, no.1, pp.91-99.
    [119]W. Chen and L. Zhang, Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-Varying Delays, International Journal of Control, Automation, and Systems,2010, vol.8, no.2, pp. 177-186.
    [120]M. Yu, J. Zhang and D. Qi, Discrete-Time Adaptive Iterative Learning Control with Unknown Control Directions, International Journal of Control, Automation, and Systems,2012, vol.10, no.6, pp.1111-1118.
    [121]D. Li and J. Li, Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-varying Delay and Unknown Control Direction, International Journal of Automation and Computing,2012, vol.9, no.6, 578-586.
    [122]W. G. Seo, B. H. Park and J. S. Lee, Intelligent learning control for a class of nonlinear dynamic systems, Proceedings of the IEE Conference on Control Theory Application,1999, vol.146, no.2, pp.165-170.
    [123]J. X. Xu, R. Yan and W. Wang, On Learning Wavelet Control for Affine Nonlinear Systems, Proceedings of the American Control Conference,2007, pp. 1287-1292.
    [124]J. X. Xu and R. Yan, Constructive Learning Control Based on Function Approximation and Wavelet, Proceedings of the IEEE Conference on Decision and Control,2004, vol.5, pp.4952-4957.
    [125]G. Ji and F. Wang, Adaptive Iterative Learning Control of Nonlinear Time-delay Systems Using Neural Network, Proceedings of the IEEE International Conference on Control and Automation,2007, pp.2648-2653.
    [126]M. Q. Phan and J. A. Frueh, Model reference adaptive learning control with basis functions, Proceedings of the IEEE Conference on Decision and Control, 1999, pp.251-257.
    [127]W. Qin and L. Cai, A Fourier series based iterative learning control for nonlinear uncertain systems, Proceedings of the IEEE/ASME International Conference on Advance Intelligent Mechatronics,2001, pp.482-487.
    [128]C. Ham, Z. Qu and J. Kaloust, Nonlinear learning control for a class of nonlinear systems, Automatica,2001, vol.37, pp.419-428.
    [129]Y. P Tian and X. Yu, Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties, Automatica,2003, vol.39, pp. 1957-1966.
    [130]D. H. Hwang, B. K. Kim and Z. Bien, Decentralized iterative learning control method for large scale linear dynamic systems, International Journal of Systems Science,1993, vol.24, no.12, pp.2239-2254.
    [131]H. Wu, Decentralized iterative learning control for a class of large scale interconnected dynamical systems, Journal of Mathematical Analysis and Applications,2007, pp.233-245.
    [132]H. Wu, H. Kawabata and K. Kawabata, Decentralized iterative learning control schemes for large scale systems with unknown interconnections, Proceedings of the IEEE Conference on Control Applications,2003, pp.1290-1295.
    [133]X. Ruan and Z. Z. Bien, Decentralized Iterative Learning Control to Large-Scale Industrial Processes for Nonrepetitive Trajectory Tracking, IEEE Tractions on Systems, Man, And Cybernetics-Part A:Systems and Humans,2008, vol. 38, no.1, pp.238-252.
    [134]X. Ruan, Z. Bien and K. H. Park, Iterative learning controllers for discrete-time large-scale systems to track trajectories with distinct magnitudes, International Journal of System Science,2005, vol.36, no.4, pp.221-233.
    [135]X. Ruan, F. M. Chen and B. W. Wan, Decentralized Iterative Learning Controllers for Nonlinear Large-scale Systems to Track Trajectories with Different Magnitudes, Acta Automatica Sinica,2008, vol.34, no.4, pp.426-432.
    [136]X. Ruan and Z. Bien, Iterative learning controllers with time-varying gains for large-scale industrial processes to track trajectories with different magnitudes, International Journal of Systems Science,2008, vol.39, no.5, pp.513-527.
    [137]W. Huang, L. Cai and X. Tang, Decentralized Learning Control for Robot Manipulators, Proceedings of the IEEE International Conference on Robotics and Automation,1999, pp.843-848.
    [138]C. J. Chien and M. J. Er, Decentralized Adaptive Fuzzy Iterative Learning Control for Repeatable Nonlinear Interconnected Systems, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,2006, pp.1710-1715.
    [139]S. C. Lee, S. S. Park and J. W. Lee, A study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System, International Journal of Precision Engineering and Manufacturing,2006, vol.7, no.l, pp.62-66.
    [140]L. Shi and S. K. Singh, Decentralized adaptive controller design for large-scale system with higher order interconnections, IEEE Transactions on Automatic Control,1992, vol.37, no.8, pp.1106-1118.
    [141]Y. Tang, M. Tomizuka, G. Guerrero and G. Montemayor, Decentralized robust control of mechanical systems, IEEE Transactions on Automatic Control,2000, vol.45, no.4, pp.771-776.
    [142]W. Chen and F. N. Chowdhury, Model reference iterative learning control, Proceedings of the American Control Conference,2006, pp.1654-1658.
    [143]L. Shi and S. K. Singh, Decentralized control design for interconnected uncertain systems:extensions to higher-order uncertainties, International Journal of Control,1993, vol.75, pp.1453-1468.
    [144]S. Jain and F. Khorrami, Robust decentralized control of power systems utilizing only swing angle measurements, International Journal of Control,1997, vol. 66, pp.581-601.
    [145]C. Hua, X. Guan and P. Shi, Decentralized robust model reference adaptive control for interconnected time-delay systems, Journal of Computational and Applied Mathematics,2006, vol.193, pp.383-396.
    [146]孙明轩,不确定时滞系统的迭代学习控制算法(Ⅰ),西安工业学院学报,1997,vol.17,no.4,pp.259-266.
    [147]孙明轩,不确定时滞系统的迭代学习控制算法(Ⅱ),西安工业学院学报,1998,vol.18,no.1,pp.1-8.
    [148]Y. Q. Chen, Z. M. Gong and C. Y. Wen, Analysis of a high order iterative learning control algorithm for uncertain nonlinear systems with state delays, Automatica,1998, vol.34, no.3, pp.345-353.
    [149]K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay, Proceedings of the IEE International Conference on Control Theory and Applications,1998,145, pp. 507-512.
    [150]S. Jain and F. Khorrami, Decentralized adaptive control of a class of large-scale interconnected nonlinear systems, IEEE Transactions on Automatic Control,1997,vol.42, no.2, pp.136-154.
    [151]C. Wen and J. Zhou, Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis, Automatica,2007, vol.43, pp.426-440.
    [152]J. Y. Han, H. Hemami and S. Yurkovich, Nonlinear adaptive control of a n-link robot with unknown load, International Journal of Robotics Research,1987, vol.6, no.3, pp.71-86.
    [153]S. N. Huang, K. K. Tan and T. H. Lee, Stable decentralized adaptive control design of robot manipulators using neural networks, Advanced Robotics,2003, vol.17, pp.369-383.
    [154]B. K. Yoo and W. C. Ham, Adaptive contorl of robot manipulator using fuzzy compensator, IEEE Transactions on Fuzzy Systems,2000, vol.8, no.2, pp. 186-199.
    [155]Z. C. Fu, Robust Adaptive Decentralized control of Robot Manipulators, IEEE Transactions on Automatic Control,1992, vol.37, no.1, pp.106-110.
    [156]J. T. Feddela, C. Lewis and D. A. Schoenwald, Decentralized control of cooperative robotic vehicles:Theory and application. IEEE Transactions on Robotics Automation,2002, vol.18, no.5, pp.852-863.
    [157]P. Fraisse, R. Zapata, W. Zarrad and D. Andreu, Remote secure decentralized control strategy for mobile robots, Advanced Robotics,2005, vol.19, no. 9, pp.1027-1040.
    [158]F. Da, Decentralized Sliding Mode Adaptive Controller Design Based on Fuzzy Neural Networks for Interconnected Uncertain Nonlinear Systems, IEEE Transactions on Neural Networks,2000, vol.11, no.6, pp.1471-1480.
    [159]H. Gao, Y. Lu, Q. Mai and Y Hu, Inverted Pendulum System Control by Using Modified Iterative Learning Control, Intelligent Robotics and Applications, Lecture Notes in Computer Science,2009,vol.5928, pp.1230-1236.
    [160]A. Tayebi, Adaptive iterative learning control for robot manipulators, Automatica,2004, vol.40, pp.1195-1203.
    [161]P. A. Ioannou, Decentralized adaptive control on interconnected systems, IEEE Transactions on Automatic Control,1986, vol.130, pp.291-298.
    [162]赵东亚,李少远,高峰,六自由度并联机器人分散鲁棒非线性控制,控制理论与应用,2008,vol.25,no.5,pp.867-972.
    [163]申铁龙,机器人鲁棒控制基础[M],清华大学出版社,2000,pp.205-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700