不确定切换系统的滑模控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切换系统是一类重要的混合动态系统,它由一组连续系统或者离散系统以及作用在其中的切换信号组成。在过去的二十年中,切换系统吸引了众多学者的关注,这主要是由于以下两个原因:第一,切换系统具有广泛的实际应用背景。在实际系统中,由于工作环境的突然变化、系统元部件磨损老化以及子系统内部联接的改变等因素会导致系统的结构发生突变,切换系统能有效的描述这类结构发生突变的系统;第二,切换系统的动态性能特殊复杂。切换信号的存在使得切换系统的稳定性分析特殊复杂,具体体现为切换系统的性质不是各个子系统性质的简单叠加,甚至可能会有截然不同的性质。
     众所周知,滑模变结构控制具有快速响应、设计过程简单以及对参数不确定性和匹配干扰具有强鲁棒性等优良特性,因此,该方法自上世纪50年代被提出以来便成为了一种备受关注的鲁棒控制方法。近年来,伴随着切换系统的研究热潮,滑模控制方法开始被用于切换系统,并且已经取得了一些有意义的结果。然而值得注意的是,已有的工作都是在一些理想假设条件(输入通道相同、系统状态可测、控制元件正常工作以及数据完整传输)下展开讨论的,那么当上述假设条件不能满足时,研究和设计合适的滑模控制器对于提高切换系统的控制性能具有十分重要的理论价值和实际意义。
     本文针对输入矩阵不同的切换系统,提出了输入矩阵加权方法,研究了系统在状态未知、控制器受限、执行器故障、观测器存在参数扰动以及信息非完整传输等复杂情况下切换系统的滑模控制问题,取得了一些有意义的研究成果。
     本文主要工作包括:
     (1)研究了一类不确定切换系统的滑模控制问题。针对输入矩阵不同的切换系统,提出了输入矩阵加权方法,构造了一个公共滑模面。设计了一个依赖于状态和时间的切换信号,运用多Lyapunov函数方法,讨论了滑动模态的渐近稳定性,并且设计滑模控制律保证了滑模面的可达性。在系统状态不可测的情况下,通过引入状态观测器,进一步考虑了切换系统的输出反馈控制问题;
     (2)研究了执行器非线性受限情况下切换系统的滑模控制问题。首先运用上面提出的输入矩阵加权方法,构造了一个积分型公共滑模面。接着运用平均驻留时间方法,给出了滑动模态指数稳定性的充分条件。在控制输入包含扇区非线性和死区的情况下,设计了一种根据切换函数值的变化而采用不同形式的特殊的滑模控制器,可以保证滑模面的可达性;
     (3)研究了执行器可能发生故障情况下切换系统的滑模可靠控制问题。首先建立了执行器故障模型,其中,各执行器通道均有可能发生不同程度的失效。基于被动可靠控制的思想,设计了一个鲁棒滑模控制器,在执行器故障、外界干扰以及不确定参数存在的情况下,证明了闭环系统的稳定性;
     (4)研究了切换系统的自适应滑模可靠控制问题。通过在线估计执行器的失效程度,滑模控制器的参数得以在线更新,从而降低了单纯利用故障的上下界设计控制器带来的保守性,有效补偿了执行器故障给系统性能带来的影响,并设计依赖于平均驻留时间的切换信号,给出了滑动模态指数稳定的充分条件;
     (5)研究了一类不确定切换系统的非脆弱滑模控制问题。构造一个状态观测器对不可测状态进行估计,其中,观测器增益可能发生参数摄动。设计了依赖于状态估计的非脆弱滑模控制器保证了滑模面的可达性。最后运用多Lyapunov函数方法,分析了滑动模态的指数稳定性;
     (6)研究了系统状态信息可能发生丢包情况下离散切换系统的滑模控制问题。首先提出了一种补偿器弥补状态信息丢失,构造了一个依赖于丢包概率的公共滑模面。通过设计一个基于补偿器的滑模控制器,得到由状态变量和滑模变量组成的增广系统,利用随机稳定性理论,证明了在原点的状邻域内滑动模态均方指数稳定,并且系统状态轨迹于有限时间内被趋使到滑模面的带状邻域内。
As an important class of hybrid dynamical systems, switched systems are consisted of a series of continuous-time subsystems or discrete-time subsystems and a switching signal among them. In the past two decades, the stability analysis and stabilization of switched systems have received an increasing attention. The reasons can be seen in the following two aspects. Firstly, switched systems have been used widely in practice. In physical world, many plants may subejet to abrupt variations in their structures, due to sudden changes of the environment, system components aging and changing of subsystem's struture, which can be described as switched systems; Secondly, the dynamic analysis of switched systems is complex. Due to the existence of the switching signal, the sability analysis of switched systems is complex. A common example is that the dynamical performance of switched systems is not the simple superposition of the subsystems.
     It is well known that, sliding mode control (SMC) has many desirable properties, such as fast response, simple design and strong robustness against both uncertain parameters and matched disturbances. Therefore, SMC strategy has been an important robust control method and attracted a lot of attentions since its appearance in the1950s. In recent years, SMC method has been used to analyze switched systems and many constructive results have been developed. However, it is worth noting that the aforementioned works were considered under the assumptions that the input channels were the same, the system state was available, the actuator or sensor worked normally, or the system signals could be successfully transmitted to the controller/actuator. Theorefore, when the above conditions are not satisfied, the sliding mode controller design of switched systems may have important theoretical and practical significance in developing control performance of switched systems.
     For switched systems with different input matrices, a weighted sum of the input matrices is proposed. This thesis has discussed SMC of switched systems under the following cases: unavailable states, actuator nonlinearities, actuator faults, non-fragile observer and incomplete state information, and some meaningful results have been obtained.
     The main contribution in this thesis is as follows:
     (1) Considering the SMC for a calss of uncertain switched systems. Firstly, a weighted sum of the input matrices is proposed such that a common slidng surface is designed. Construct a switching signal depending on the state and time. Then, by employing the multiple Lyapunov function theory, the asymptotical stability of the sliding mode dynamics is analyzed. Moreover, a SMC law is designed to ensure the reachability of the sliding surface. Furthermore, when the system states are unmearable, by introducing a state observer, the output feedback control of switched systems is considered;
     (2) Considering the problem of SMC for switched systems with actuator nonlinearities. Firstly, by means of the weighted sum approach, a common integral sliding surface is designed. And then, the efficient condition on the exponential stability of the sliding mode dynamics is geiven based on the average dwell time method. In the cases that the control input contains both sector nonlinearities and deadzones, a special sliding mode controller depending on the switched function is designed, by which the reachability of the specified sliding surface is guaranteed;
     (3) Considering the reliable control of SMC for switched systems subject to actuator fualts. Firstly, the model of actuator faults with different degradation channels is proposed. And then, based on the theory of passive reliable control, a robust slidng mode controller is presented such that the closed-loop systems is exponentially stable despite the presence of actuator faults, external disturbances and uncertain parameters;
     (4) Considering the adaptive sliding mode control of switched systems. By estimating the actuator failures online, the controller's parameters are updated adaptively. It not only reduce the conservatism compared with some existing approaches which only utilize the bound of the actuator gain variation, but also compensate effectively the effects of the gain variation of the actuators on the system performance. Finally, by designing a switching signal depending on the average dwell time, sufficient conditions on stability of the closed-loop systems were given;
     (5) Considering the non-fragile control for switched systems with unmearable state. Firstly, to estimate the unmearable state, a state observer is introduced, in which the uncetrtain parameters exist. And then, an observer-based sliding mode controller is designed such that the reachability of the sliding surface can be ensured. Finally, by menas of the multiple Lyapunov function method, the exponential stability of the closed-loop systems is analyzed;
     (6) Considering the SMC for discrete switched systems subject to incomplete state information. Firstly, a compensator is introduced such that the lost data can be estimated. A common sliding surface depending on the dropout-probability is constructed. And then, a compensator-dependent sliding mode law is designed. Thus, the augmented system consisted of system state and slidng variable is obtained. By employing the stochastic stability theory, it is shown that the sliding mode dynamics is mean square exponentially stable in a neighborhood of the origion. Meanwhile, the state trajectories are driven (with mean square) into a band of the sliding surface.
引文
[1]P. J. Antsaklis and A. Nerode. Guest Editorial hybrid control systems:all introductory discussion to special issue. IEEE Trans. Automatic Control, 1998,43(4): 457-460.
    [2]M. Dogruel and U. Ozguner. Stability of hybrid systems. Proceedings of the 1994 IEEE International Symposium on intelligent control, 1994, 129-134.
    [3]R. A. DeCarlo, M. S. Branicky, S. Pettersson and B. Lennartson. Perspectives and results on the stability and stabilizability of hybrid Systems. Proceedings of the IEEE, 2000, 88(7):1069-1082.
    [4]R. Shorten, F. Wirth, O. Mason, K. Wul and C. King. Stability criteria for switched and hybrid systems. Siam, 2007, 49(4):545-592.
    [5]D. Cheng, L. Guo and Y. Yuan. Stabilization of switched linear Systems. IEEE Trans. Automatic Control, 2005,50(5):661-666.
    [6]J. Zhao and D. J. Hill. On stability, L2-gain and H8 control for switched system. Automatica,2008,44(5):1220-1232.
    [7]Z. Sun and S. S. Ge. Analysis and synthesis of switched linear control systems. Automatica,2005,41(2):181-195.
    [8]H. Lin and P. J. Antsaklis. Stability and stabilization of switched linear systems:a survey of recent results. IEEE Trans. Automatic Control, 2009,54(2):308-322.
    [9]E. D. Santis, M. D. D. Benedetto and G Pola. Stabilizability of linear switching systems. Nonlinear Analysis: Hybrid Systems, 2008, 2(3):750-764.
    [10]C. Chase, J. Serrano and P. J. Ramadge. Periodicity chaos from switched flow systems: contrasting examples of discretely controlled continuous systems. IEEE Trans. Automatic Control, 1993,38(1):70-83.
    [11]Y. Mori, T. Mori and Y. Kuroe. On a class of linear constant systems which have a common quadratic Lyapunov function. Proceedings of the 37th IEEE conference on Decision and Control, Florida, USA.1998,3:2808-2809.
    [12]Y. Mori, T. Mori and Y. Kuroe. Some new subclasses of system having a common quadratic Lyapunov function and comparison of known subclasses. Proceedings of the 40th IEEE conference on Decision and Control, Tampa, Florida. 2001,3:2179-2180.
    [13]L. Zhang, D. Cheng and J. Liu. Stabilization of linear switched systems. Asian Journal of Control, 2003,5(4):476-484.
    [14]W. Chen and D. Balance. On switching control scheme foe nonlinear systems with ill-defined relative degree. System & Control Letters,2002, 47(2):159-166.
    [15]S. R. Sanders and G. C. Verghese. Lyapunov-based control for switched power converters. IEEE Trans. Power Electronics, 1992,7(1): 17-24.
    [16]Y. B. Shtesse, O. A. Raznopolov and L. A. Ozerov. Control of multiple modular dc-to-dc power converters in conventional and dynamic sliding surfaces. IEEE Trans. Circuits System, 1998,45(10):1091-1100.
    [17]D. Liberzon. Switching in Systems and Control. Birkhauser: MA, 2003.
    [18]A. S. Morse. Supervisory control of families of linear set-point controllers. Part 1:exact matching. IEEE Trans. Automatic Control, 1996, 41(10):1413-1431.
    [19]D. Jeon and M. Tomizuka. Learning hybrid for ceand position control of robot manipulators. IEEE Trans. Robotics Automation Control, 1996, 9 (4):423-431.
    [20]P. D. Christofides and N. EI-Farra. Control of Nonlinear and Hybrid Process Systems. Springer-Verlag, Berlin Heidelberg, 2005.
    [21]R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson. Perspectives and results on the stability and stabilizability of hybird systems. Proceedings of the IEEE, 2000, 88(7):1069-1082.
    [22]Y. Xia, Z. Zhu, C. Li, H. Yang and Q. Zhu. Robust adaptive sliding mode control for uncertain discrete-time systems with time delay. Journal of the Franklin Institute, 2010, 347(1):339-357.
    [23]J. Hu, Z. D. Wang, H. Gao and L. K. Stergioulas. Robust sliding mode control for discrete time-delay systems with stochastic nonlinearities. Journal of the Franklin Institute, 2012, 349(4):1459-1479.
    [24]Y. Xia and Y. Jia. Robust sliding-mode control for uncertain time delay systems:an LMI approach. IEEE Trans. Automatic Control, 2003,4(6):1086-1092.
    [25]Y. Niu, J. Lam and X. Wang. Sliding mode control for uncertain neutral delay systems. IEE Proceedings Part D: Control Theory and Applications, 2004, 151(1): 38-44.
    [26]Y. Niu, D. W. C. Ho and J. Lam. Robust integral sliding mode control for uncertain stochastic systems with time-varying delay. Automatica, 2005,41(5):873-880.
    [27]P. Shi, Y. Xia, G. P. Liu and D. Rees. On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Automatic Control, 2006, 51(1):97-103.
    [28]Y. Niu, D. W. C. Ho and X. Wang. Sliding mode control for It6 stochastic jump systems with Markovian switching. Automatica, 2007,43(10):1784-1790.
    [29]S. Ma and E. K. Boukas. A singular system approach to robust sliding mode control for uncertain Markov jump systems. Automatica,2009, 45(11):2707-2713.
    [30]L. Wu and J. Lam. Sliding mode control of switched hybrid systems with time-varying delay. International Journal of Adaptive Control and Signal Processing, 2008,22(10): 909-931.
    [31]L. Wu, D. W. C. Ho and C. W. Li. Sliding mode control of switched hybrid systems with stochastic perturbation. Systems & Control Letters, 2011,60(8):531-539.
    [32]X. Yu, C. Wu, F. Liu and L. Wu. Slidingmode control of discrete-time switched systems with time-delay. Journal of the Franklin Institute, 2013,350(1):19-33.
    [33]J. Lian, J. Zhao and G. M. Dimirovski. Robust H8 sliding mode control for a class of uncertain switched delay systems. International Journal of Systems Science, 2009,40(8): 855-856.
    [34]莫以为,萧德云.混合动态系统及其应用综述.控制理论与应用:2002,19(1):1-8.
    [35]W. L. D. Koning. Digital optimal reduced-order control of pulse-widthmodulated switched linear systems. Automatica, 2003,39(11):1997-2003.
    [36]E. Hernandez-vargas, P. Colaneri and R. Middleton. Discrete-time control for switched positive systems with application to mitigating viral escape. International Journal of Robust and Nonlinear Control,2011, 21(10):1093-1111.
    [37]R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topgy and time-delays. IEEE Trans. Automatic Control, 2004,49(9): 1520-1533.
    [38]J. A. Saver and P. J. Antsaklis. Modeling and analysis of hybrid control systems. Proceedings of the 31st IEEE Conference on Decision and Control, Arizona, USA. 1992, 3748-3751.
    [39]M. S. Branicky. Studies in hybrid systems: modeling analysis and control. PhD thesis, Massachusetts Institute of Technology, MA, USA, 1995.
    [40]H. Ye, A. N. Michel and L. Hou. Stability theory for hybrid dynamical systems. IEEE Trans. Automatic Control, 1998,43(4):461-473.
    [41]程代展,郭宇骞.切换系统进展.控制理论与应用:2005,22(6).
    [42]D. Liberzon and A. S. Morse. Basic problems in stability and design of switched systems. IEEE Control Systems,1999,19(5):59-70.
    [43]M. Dogruel and U. Ozguner. Stability of a set of matrices: an application to hybrid systems. Proceedings of IEEE International Symposium on Intelligent Control, 1995, 59-64.
    [44]K. S. Narendra and J. A. Balakrishnan. A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Automatic Control, 1994,39(12): 2469-2471.,
    [45]D. Liherzon and J. P. Morse. Stability of switched systems: a Lie algebraic condition. Systems & Control Letters, 1999,37(3):117-122.
    [46]M. Margaliota and D. Liberzon. Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions. Systems & Control Letters, 2006, 55(1):8-16.
    [47]W. P. Dayawansa and C. F. Martin. A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automatic Control, 1999, 44(4):751-760.
    [48]J. L. Mancilla-Aguilar and R. A. Garcua. A converse Lyapunov Theorem for nonlinear switched systems. Systems & Control Letters, 2000,44(1):67-71.
    [49]Mamilla-Aguilar. A conditin for the stability ofswkched nonlinear systems. IEEE Trans. Automatic Control, 2000,45(11):2077-2079.
    [50]M. S. Branicky. Stability of switched and hybrid systems. Proceedings of the 33rd IEEE Conference on Decision and Control, 1994,4:3498-3503.
    [51]M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automatic Control, 1998,43(4):475-482.
    [52]G. Lietmann. Semi-active control for vibration suppression in a system subjected to unknown disturbances. Journal of Circuits, Systems and Computers, 1994,4(4):379-383.
    [53]A. S. Morse. Supervisory control of families of linear set-point controllers part I:exact matching. IEEE Trans. Automatic Control, 1996,41(10):1413-1431.
    [54]J. P. Hespanha and A. S. Morse. Stability of switched systems with average dwell-time. Proceedings of the 38th IEEE Conference on Decision and Control, 1999,3:2655-2660.
    [55]G. S. Zhai, B. Hu and K. Yasuda. Stability analysis of switched systems with stable and unstable subsystems:An average dwell time approach. International Journal of Systems science,2001,32(8):1055-1061.
    [56]W. Xiang and J. Xiao. Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica, 2014,50(3):940-945.
    [57]D. Chatterjee and D. Liberzon. On stability of randomly switched nonlinear systems. IEEE Trans. Automatic Control, 2007,52(12):2390-2394.
    [58]L. Vu and K. A Morgansen. Stability of time-delay feedback switched linear systems. IEEE Trans. Automatic Control,2010,55(10):2385-2390.
    [59]W. A. Zhang and L. Yu. Stability analysis for discrete-time switched time-delay systems. Automatica,2009,45(10):2265-2271.
    [60]M. A. Wicks, P. Peleties and R. A. Decarlo. Switched controller design for the quadratic stabilization of a pair of unstable linear systems. European Journal of Control,1998,4(2): 140-147.
    [61]S. Pettersson and B. Lennartson. Stabilization of hybrid systems using a min-projection strategy. American Control Conference, 2001,223-228.
    [62]S. Pettersson. Synthesis of switched linear systems. Proceedings of the 42nd IEEE Conference on Decision and Control,2003,5:5283-5288.
    [63]S. Pettersson. Synthesis of switched linear systems handling sliding motions. IEEE International Symposium on Intelligent Control, 2005,18-23.
    [64]Z. Sun. Stabilizing switching design for switched linear systems:a statefeedback pathwise switching approach. Automatica, 2009,45(7):1708-1714.
    [65]H. Lin and P. J. Antsaklis. Switching stabilizability for continuous-time uncertain switched linear systems. IEEE Trans. Automatic Control, 2007,52(4):633-646.
    [66]R. K. Brayton and C. H. Tong. Constructive stability and asymptotic stability of dynamic systems. IEEE Trans. Circuits and Systems, 1980, 27(11):1121-1130.
    [67]A. Polamki. On absolute stability analysis by polyhedral Lyaponov functions. Automatica, 2000, 36(4):573-578.
    [68]K. Wulff, F. Wirth and R. Shorten. A control design method for a class of switched linear systems. IEEE Trans. Automatic Control, 2009,45(11):2592-2596.
    [69]D. Cheng. Stabilization of planar switched systems. Systems & Control Letters, 2004, 51(2):79-88.
    [70]Y. Sun, L. Wang, and G. Xie. Necessary and sufficient conditions for stabilization of discrete-time planar switched systems. Nonlinear Analysis: Theory, Methods and Applications, 2006,65(5):1039-1049.
    [71]Y. Sun and L. Wang. Stabilization of planar discrete-time switched systems:switched Lyapunov functional approach. Nonlinear Analysis: Hybrid Systems, 2008,2(4): 1062-1068.
    [72]L. Lu and Z. L. Lin. Design of switched linear systems in the presence of actuator saturation. IEEE Trans. Automatic Control, 2008,53(6):140-1542.
    [73]L. Lu and Z. L. Lin. A switching anti-windup design using multiple Lyapunov functions. IEEE Trans. Automatic Control, 2010,55(1):142-148.
    [74]F. Blanchini. Set invariane in control-a survey. Automatica, 1999,35(11):1747-1768.
    [75]F. Blanchini and S. Miani. New class of universal Lyapanov functions for the control of uncertain line systems. IEEE Trans. Automatic Control, 1999,44(3):641-647.
    [76]X. D. Koutsonkos and P. Antsaldis. Design of stabilizing switching control Laws for discrete and continuous-time linear systems using piecewise-linear Lyapunov functions. International Journal of Control, 2002, 75(12):932-945.
    [77]H. Lin and P. Antsaklis. Hybrid H8 state feedback control for discrete-time switched linear systems. International Journal of Control, 2008, 81(7):1114-1124.
    [78]H. Lin. Hybrid output feedback stabilization for LTI systems with single output. IEEE Trans. Automatic Control, 2008,53(7):1736-1740.
    [79]X. Sun, J. Zhao and W. Wang. State feedback control for discrete delay systems with controller failures based on average dwell-time method. IET Control Theory and Applications, 2008,2(2):126-132.
    [80]J. C. Geromel, P. Colaneri and P. Bolzern. Dynamic output feedback control of switched linear systems. IEEE Trans. Automatic Control, 2008,53(3):720-733.
    [81]G S. Deaecto, J. C. Geromel, and J. Daafouz. Dynamic output feedback H8 control of switched systems. Automatica, 2011,47(8):1713-1720.
    [82]J. C. Geromel and G. S. Deaecto. Switched state feedback control for continuous-time uncertain systems. IEEE Trans. Automatic Control, 2009,45(2):593-597.
    [83]B. Hu, X. Xu, P. J. Antsaklis, A. N. Michel. Robust stabilizing control laws for a class of second-order switched systems. System & Control Letters, 1999, 38(3):197-207.
    [84]聂宏,赵军.一类不确定切换组合系统的分散H∞鲁棒镇定.自动化学报,2004,30(4):635-640.
    [85]孙文安,赵军.基于LMIs的不确定线性切换系统鲁棒控制.控制与决策,2005,20(6):650-655.
    [86]J. Daafouz and J. Bernussou. Robust dynamic output feedback control for switched systems. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002.
    [87]X. M. Sun, J. Zhao, D. J. Hill. Stability and L2-gain analysis for switched delay systems: a delay-dependent method. Automatica, 2006, 42(10):1769-1774.
    [88]J. Liu, X. Liu and W. C. Xie. Delay-dependent robust control for uncertain switched systems with time-delay. Nonlinear Analysis: Hybrid Systems, 2008,2(1):81-95.
    [89]M. Rodrigues, D. Theilliol and D. Sauter. Fault tolerant control design for switched systesms. The 2nd IFAC Conference on Analysis and Design of Hybrid Systems, Alghero, Italy.2006.
    [90]R. Wang, M. Liu and J. Zhao. Reliable control for a class of switched nonlinear systems with actuator failures. Nonlinear Analysis: Hybrid Systems, 2007, 1(3):317-325.
    [91]S. Yang, X. Zhengrong, C. Qingwei and H. Weili. Robust reliable control of switched uncertain systems with time-varying delay. International Journal of Systems Science, 2007,37(15):1077-1087.
    [92]L. Li, J. Zhao and G M. Dimirovski. Observer-based reliable exponential stabilization and control for switched systems with faulty actuators: An average dwell time approach. Nonlinear Analysis: Hybrid Systems,2011,5(3):479-491.
    [93]A. Rantzer and M. Johansson. Piecewise linear quadratic optimal control. IEEE Trans. Automatic Control, 2000, 45(4):629-637.
    [94]费树岷,王泽宁,冯纯伯.一类开关系统的开关控制策略优化设计.自动化学报2001,27(2):247-251.
    [95]X. Xu and P. J. Antsaklis. Optimal control of switched systems via nonlinear optimization based on direct differentiations of value Rmctions. International Journal of Control, 2002,75(16-17):1406-1426.
    [96]X. Xu and P. J. Antsaklis. Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Automatic Control, 2004, 49(1):2-16.
    [97]S. V. Emelyanov and A. I. Fedotova. Design of a static tracking system with variable structure. Automation and Remote Control, 1962,10: 223-1235.
    [98]S. V. Emelyanov and V. A. Taran. Use of inertial elements in the design of a class of variable structure control systems. Automation and Remote Control, 1963,1(1-29): 183-190.
    [99]S. V. Emelyanov and V. Utkin. On stability of a class of variable structure systems. Eng. Cybern. 1964,2:115-117.
    [100]Y. Itkis. Control Systems of Variable Structure. New York: Wiley.1976.
    [101]V. Utkin. Variable structure systems with sliding modes. IEEE Trans. Automatic Control, 1977,22(2):212-222.
    [102]高为炳.变结构控制的理论及设计方法.北京:科学出版社.1996.
    [103]S. Hui and S. H. Zak. On discrete-tme variable structure sliding mode control. Systems & Control Letters, 1999,38(4-5):283-288.
    [104]C. L. Hwang. Robust discrete variable structure control with finite-time approach to switching surface. Automatica, 2002, 38(1):167-175.
    [105]N. N. Hazem and S. M. Magdi. Variable structure adaptive control for a class of continuous time-delay systems. IMA Journal of Mathematical Control and Information, 2006,23(2):225-235.
    [106]Y. Niu and D. W. C. Ho. Robust observer design for Ito stochastic time delay systems via sliding mode control. Systems & Control Letters, 2006, 5(10):781-793.
    [107]D. W. C. Ho and Y. Niu. Robust fuzzy design for nonlinear uncertain stochastic systems via sliding-mode control. IEEE Trans. Automatic Control, 2007, 15(3): 350-358.
    [108]W. D. Chou, F. J. Lin and K. K. Shyu. Incremental motion control of induction motor Servo drive via a genetic-algorithm-based sliding mode controller. lEE Proceedings on Control Theory and Application,2003,150(3):209-220.
    [109]J. X. Xu and W. J. Can. Learning variable structure control approaches for repeatable tracking control tasks. Automatica, 2001,37(7):997-1006.
    [110]M. Falahpoor, M. Ataei and A. Kiyoumarsi. A chattering-free sliding mode control design for uncertain chaotic systems. Chaos, Solitons and Fractals, 2009, 42 (3): 1755-1765.
    [111]W. C. Su, S. V. Drakunov and U. Ozguner. Constructing discontinuity surface for variable structure systems:A Lyapunov Approach. Automatica, 1996, 32(6):925-928.
    [112]T. Acarman and U. Ozguner. Frequency shaping compensation for backstepping sliding mode control. The 15th IFAC World Congress, 2002,5(1):1075-1075.
    [113]C. Edwards. A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica, 2004, 40(10):1761-1769.
    [114]C. M. Doffing and A. S. I. Zinober. Two approaches to hyperplane design in multivariable structure control systems. International Journal of Control, 1986, 44(1): 922-926.
    [115]A. S. I. Zinober and C. M. Dorling. Design techniques for multivariable structure control systems. Proceedings of Institution of Electrical Engineering, 1986, 1:306-311.
    [116]H. Sira-Ramirez. Nonlinear variable structure systems in sliding mode:the general case. IEEE Trans. Automatic Control, 1989,34(11):1186-1188.
    [117]C. Edwards and S. Spurgeon. Sliding mode control:Theory and Applications. London: Taylor and Francis. 1998.
    [118]J. H. Lee, J. S. Ko, S. K. Chung, D. S. Lee, J. J. Lee and M. J. Youn. Continuous variable structure controller for BLDDSM position control with prescribed tracking performance. IEEE Trans. Industrial Electronics, 1994, 41(5):483-491.
    [119]V. Utkin and J. Shi. Integral sliding mode in systems operating under uncertainty conditions. Proceedings of the IEEE Conference on Decision and Control, Kobe, Japan. 1996,4:4591-4596.
    [120]Y. Niu, D. W. C. Ho and J. Lam. Robust integral sliding mode control for uncertain stochastic systems with time-varying delay. Automatica, 2005,41(5):873-880.
    [121]J. Lian, J. Zhao and G. M. Dimirovski. Integral sliding mode control for a class of uncertain switched nonlinear systems. European Journal of Control, 2010, 16(1): 16-22.
    [122]M. Basin. New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems. Berlin: Springer. 2008.
    [123]S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan. Linear Matrix Inequalities in system and control theorly. Philadelpha: SIAM. 1994.
    [124]俞立.鲁棒控制-线性矩阵不等式处理方法.清华大学出版社.2002.
    [125]Y. Wang, L. Xie and C. E. de Souza. Robust control of a class of uncertain nonlinear systems. Systems & Control Letters, 1992, 19(2):139-149.
    [126]G. Tao and P. V. Kokotovic. Adaptive Control of Systems with Actuator and Sensor Nonlinearities, New York: Wiley. 1996.
    [127]A. Benzaouia, L. Saydy and O. Akhrif. Stability and control synthesis of switched systems subject to actuator saturation. American Control Conference, 2004, 5818-5823.
    [128]A. Benzaouia, O. Akhrif and L. Saydy. Stabilization of switched systems subject to actuator saturation by output feedback. The 45th IEEE Conference on Decision and Control, 2006,777-782.
    [129]L. Lu and Z. Lin. Design of switched linear systems in the presence of actuator saturation. IEEE Trans. Automatic Control, 2008,53(6):1536-1542,2008.
    [130]K. C. Hsu. Variable structure control design for uncertain dynamic systems with sector nonlinearities. Automatica, 1998,34(4):505-508.
    [131]K. K. Shyu, W. J. Liu and K. C. Hsu. Decentralized variable structure control of uncertain large-scale systems containing a dead-zone. IEE Proceedings on Control Theory and Application, 2003,150(5):467-475.
    [132]K. C. Hsu, W. Y. Wang and P. Z. Lin. Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and deadzones. IEEE Trans. Systems, Man and Cybernetics-Part B: Cybernetics, 2004, 34(1):374-380.
    [133]B. Chen, J. M. Huang and Y. Niu. Sliding mode control for Markovian jumping systems with actuator nonlinearities. International Journal of Systems Science, 2012, 43(4):656-664.
    [134]M. Benosman and K, Y. Lum. Application of passivity and cascade structure to robust control against loss of actuator effectiveness. International Journal of Robust and Nonlinear Control, 2010,20(6):673-693.
    [135]G. Tao, S. Chen, X. Tang and S. M. Joshi. Adaptive Control of Systems with Actuator Failures. London, UK: Springer. 2004.
    [136]R. J. Veillette. Reliable linear-quadratic state-feedback control. Automatica,1995, 31(1):137-143.
    [137]Q. Zhao and J. Jiang. Reliable state feedback control system design against actuator failures. Automatica, 1998,34(10):1267-1272.
    [138]G. Yang, J. L. Wang, Y. C. Soh. Reliable H8 controller design for linear systems. Automatica, 2001,37(5):717-725.
    [139]L. Wang and C. Shao. The design of a hybrid output feedback controller for an uncertain delay system with actuator failures based on the switching method. Nonlinear Analysis: Hybrid Systems, 2010, 4(1):165-175.
    [140]Y. Liang and S. Xu. Reliable control of nonlinear systems via variable structure scheme. IEEE Trans. Automatic Control, 2006,51(10):1721-1725.
    [141]H. Alwi and C. Edwards. Fault tolerant control using sliding modes with on-line control allocation. Automatica,2008,44(7):1859-1866.
    [142]Y. Niu and X. Wang. Sliding mode control design for uncertain delay systems with partial actuator degradation. International Journal of Systems Science, 2009,40(4): 403-409.
    [143]Y. Song, Z. Xiang, Q. Chen and W. Hu. Robust reliable control of switched uncertain systems with time varying delay. International Journal of Systems Science, 2006, 37(15):1077-1087.
    [144]R. Wang, M. Liu and J. Zhao. Reliable Ha control for a class of switched nonlinear systems with actuator failures. Nonlinear Analysis:Hybrid Systems, 2007,1(3): 317-325.
    [145]Z. Xiang and Q.Chen. Robust reliable control for uncertain switched nonlinear systems with time delay under asynchronous switching. Applied Mathematics and Computation, 2010, 216(3):800-811.
    [146]Z. Xiang, R. Wang and Q. Chen. Robust reliable stabilization of stochastic switched nonlinear systems under asynchronous switching. Applied Mathematics and Computation ,2011,217(19):7725-7736.
    [147]R. J. Veillette, J. V. Medanic and W. R. Perkins. Design of reliable control systems. IEEE Trans. Automatic Control, 1992,37(3):290-304.
    [148]R. J. Veillette. Reliable linear-quadratic state-feedback control. Automatica, 1995, 31(1):137-143.
    [149]M. Benosman and K. Y. Lum. Application of passivity and cascade structure to robust control against loss of actuator effectiveness. International Journal of Robust and Nonlinear Control, 2010,20(6):673-693.
    [150]Z. Wang, B. Huang and H. Unbehauen. Robust reliable control for a class of uncertain nonlinear state-delayed systems. Automatica, 1999, 35(5):955-963.
    [151]J. D. Boskovic, J. A. Jackson, R. K. Mehra and N. T. Nguyen. Multiple-model adaptive fault tolerant control of a planetary lander. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1812-1826.
    [152]G. Tao, S. Chen and S. M. Joshi. An adaptive actuator failure compensation controller using output feedback. IEEE Trans. Automatic Control, 2002,47(3):506-511.
    [153]G. Yang and D. Ye. Reliable H8 control of linear systems with adaptive mechanism. IEEE Trans. Automatic Control, 2010,55(1):242-247.
    [154]B. Chen, Y. Niu and Y. Y. Zou. Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation. Automatica, 2013,49(6), 1748-1754.
    [155]P. Ioannou and J. Sun. Robust adaptive control. Englewood Cliffs, N.J.:Prentice-Hall. 1996.
    [156]S. Yin, S. Ding and H. Luo. Real-time implementation of fault tolerant control system with performance optimization. IEEE Trans. Industrial Electronics, 2014, 61(5): 2402-2411.
    [157]S. Yin, S. Ding, A. Haghani, H. Hao and P. Zhang. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 2012, 22(9):1567-1581.
    [158]G. H. Yang and J. L. Wang. Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE Trans. Automatic Control, 2001,46(2): 343-348.
    [159]G. H. Yang and J. L. Wang. Non-fragile H8 control for linear systems with multiplicative controller gain variations. Automatica, 2001,37(5):727-737.
    [160]L. Liu, Z. Han and W. Li. H8 non-fragile observer-based sliding mode conntrol for uncertain time-delay systems. Journal of the Frankin Institute, 2010, 347(2):567-576.
    [161]L. Liu, Z. Han and W. Li. Non-fragile observer-based passive control for uncertain time delay systems subjected to input nonlinearity. Nonlinear Analysis: Theory, Methods & Applications,2010,73(8):2603-2610.
    [162]J. Zhang, P. Shi and J. Qiu. Non-fragile guaranteed cost control for uncertain stochastic nonlinear time-delay systems. Journal of the Frankin Institute, 2009, 246(7):676-690.
    [163]R. Wang and J. Zhao. Non-fragile hybrid guaranteed cost control for a class of uncertain switched linear systems. Control Theory and Applications, 2006, 4(1):32-37.
    [164]D. Liberzon and J. P. Hespanha. Stabilization of nonlinear systems with limited information feedback. IEEE Trans. Automatic Control, 2005,50(6):910-915.
    [165]J. P. Hespanha, P. Naghshtabrizi and Y. Xu. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1):138-162.
    [166]W. Zhang, M. Branicky and S. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, 2001,21(1):84-99.
    [167]Z. Wang, F. Yang, D. W. C. Ho and X. Liu. Robust H8 control for networked systems with random packet losses. IEEE Trans. Systems, Man, and, Cybernetics-part B: Cybernetics, 2007, 52(9): 1666-1672.
    [168]Z. Wang, D. W. C.Ho and X. Liu. Variance-constrained control for uncertain stochastic systems with missing measurements. IEEE Trans. Systems, Man, and, Cybernetics-part A:Systems and Humans, 2005,35(5):746-753.
    [169]F. Yang, Z. Wang, D. W. C. Ho and M. Gani. Robust H8 control with missing measurements and time delays. IEEE Trans. Automatic Control, 2007,43(1):80-87.
    [170]P. Seiler and R. Sengupta. An H8 approach to networked control. IEEE Trans. Automatic Control, 2005,50(3):356-364.
    [171]J. Xiong and J. Lam. Stabilization of linear systems over networks with bounded packet losses. Automatica, 2007, 43(1): 80-87.
    [172]Y. Niu and D. W. C. Ho, Design of sliding mode control subject to packet losses. IEEE Trans. Automatic Control, 2010,55(11):2623-2628.
    [173]T. Jia, Y. Niu and Y. Zou. Sliding mode control for stochastic systems subject to packet losses. Information Sciences, 2012, 217(25):117-126.
    [174]B. Chen, Y. Niu and Y. Zou. Sliding mode control for stochastic Markovian jumping systems subject to successive packet losses. Journal of the Franklin Institute, DOI: org/10.1016/j.jfranklin.2012.10.004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700