拟南芥液泡膜H~+-焦磷酸酶基因AVP1改良紫花苜蓿(Medicago Sativa L.)抗逆性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱和盐碱化是人类面临的世界性问题,也是制约作物和牧草产量的2个主要的环境因子。特别在我国西北干旱半干旱地区,随着水资源的日益短缺,干旱和土壤盐碱化已成为该地区的农牧业发展和生态环境的严重威胁。紫花苜蓿(Medicago sativa L.)是一种优良的豆科牧草,在我国西北干旱半干旱地区农牧业生产和生态建设中发挥着极为重要的作用。然而,很多紫花苜蓿品种的耐盐、抗旱能力普遍不高,在盐渍或灌溉不足条件下种植难获高产。培育具有较强耐盐性和抗旱性的紫花苜蓿新品种,是提高西北干旱半干旱地区紫花苜蓿人工草地产量、节约灌溉以及利用大面积盐荒地的根本途径之一。传统的紫花苜蓿抗逆育种周期长,且容易受到种内抗逆基因资源的限制,基因工程技术的迅速发展为紫花苜蓿抗逆育种提供了一个新的手段。通过转基因技术培育耐盐、抗旱品种将是紫花苜蓿抗逆育种的一个重要的发展方向。液泡膜H~+-pyrophosphatase(H~+-PPase)已经被证明在植物离子区域化和生长素运输中有着重要的作用,其编码基因在一些模式植物和重要作物中的超表达显著提高了转基因植物的耐盐、抗旱性或耐瘠薄性,并促进了其生长发育,表明此类基因在改良紫花苜蓿的抗逆性方面具有潜在的应用价值。
     在前期的研究中,我们已初步建立了农杆菌介导的紫花苜蓿栽培品种遗传转化体系,本研究对其做了进一步优化调整。为获得抗逆性强的转基因紫花苜蓿品系,本研究首先利用相关的农艺学和生理学指标,通过隶属函数法对西北地区广泛栽培的5个优良紫花苜蓿品种的耐盐性和抗旱性分别进行综合评价,筛选出具有较强耐盐性和抗旱性的材料新疆大叶苜蓿,将拟南芥液泡膜H~+-PPase编码基因AVP1导入该品种,并对转基因紫花苜蓿的抗逆性进行鉴定,主要研究结果如下:
     1.与无NaCl胁迫的对照相比,在200 mmol·~(-1)NaCl胁迫下,5个紫花苜蓿品种的地上部干重和K~+/Na~+比均显著降低,叶片MDA含量和相对质膜透性均有所增加,但各指标的变化幅度因品种而异;利用上述4个指标对5个紫花苜蓿品种进行综合评价,发现它们的耐盐性由强到弱依次为:润布勒>新疆大叶>三得利>甘农3号>陇东。同样,与正常浇水的对照相比,在干旱胁迫下,紫花苜蓿各品种的地上部干重、叶片渗透势和相对含水量均显著下降,叶片相对质膜透性均显著增加,但各指标的变化幅度因品种的不同而不同;利用以上4个指标对5个紫花苜蓿品种进行综合评价,抗旱性由强到弱依次为:陇东>新疆大叶>甘农3号>三得利>润布勒。通过分析以上综合评价结果,发现新疆大叶苜蓿既有良好的耐盐性,又有较强的抗旱性,因此本研究将其选为遗传转化的种质材料,进一步改良其抗逆性。
     2.在已有研究的基础上,进一步优化了农杆菌侵染方式和卡那霉素(Kan)选择方案,分别为:下胚轴在常压下用农杆菌侵染12 min;用75和40 mg·L~(-1)Kan分别于体胚和生根诱导的第2周开始选择抗性体胚和抗性植株。调整后的转化体系的转化效率(PCR阳性植株占侵染外植体的百分率)约为2.1%,转化周期约为19周。
     3.首次用拟南芥液泡膜H~+-PPase基因AVP1对新疆大叶苜蓿进行遗传转化,获得了转基因植株;PCR分析表明外源基因已经整合到紫花苜蓿基因组中;对随机抽取的8个转基因系列进行RT-PCR分析,发现AVP1基因在这些转基因系列中都能稳定表达,但其表达量在不同系列间存在差异,其中系列1最高,系列8最低。
     4.对转基因紫花苜蓿的耐盐、抗旱性分析表明,AVP1的超表达增强了转基因紫花苜蓿的耐盐性和抗旱性。200 mmol·L~(-1)NaCl处理10 d后,野生型植株生长严重受抑,出现萎蔫、甚至死亡,而转基因植株仍然能够正常生长。自然干旱处理6 d后,野生型植株开始萎蔫,而转基因植株依然正常生长,直到第8 d才发生萎蔫;复水后,转基因植株解除萎蔫并恢复正常的生长发育,而野生型植株却发生永久萎蔫,最后死亡。生理测定结果表明:不论在正常生长条件,还是在盐或干旱胁迫下,转基因紫花苜蓿比野生型植株在叶和根中积累了更多的Na~+、K~+和Ca2~+;大量的阳离子积累造成转基因植株的叶片渗透势显著低于野生型植株,使其在干旱胁迫下维持较高的叶片相对含水量。此外,在盐或水分胁迫下,转基因紫花苜蓿的叶片MDA含量和相对质膜透性均显著低于野生型植株,净光合速率和根系活力均显著高于野生植株。这些结果说明AVP1的超表达促进了转基因紫花苜蓿细胞中Na~+向液泡中的区域化,并增强了细胞对其它阳离子的吸收能力。一方面可以避免盐胁迫下细胞质中过量Na~+对细胞膜和各类细胞器的伤害,并稳定细胞内的离子平衡,另一方面提高细胞的渗透调节能力,使转基因紫花苜蓿能在盐或干旱胁迫下保持较多水分并维持其膨压。
     5.盆栽实验表明,AVP1的超表达促进了转基因紫花苜蓿的根系增生和地上部发育。无论在正常生长条件下,还是长期处于盐或干旱环境中,转基因紫花苜蓿的生长状况总是好于野生型植株。在正常浇水条件下生长60 d(第20 d刈割1次)后,2个转基因系列的株高和地上部生物量分别比野生型植株显著高出15.5%-21.6%和27.8%-35.2%;经过较长时间盐或干旱处理后,转基因植株的以上指标同样高于野生型植株。这是因为无论在何种条件下,与野生型植株相比,AVP1转基因植株的根系更为粗壮发达、根干重和根冠比更高。发达的根系有助于转基因紫花苜蓿在胁迫条件下吸收更多的水分和养分,因而对其耐盐性和抗旱性也有着重要的贡献。
     6.AVP1的超表达提高了转基因紫花苜蓿的耐瘠薄性。在缺磷(10μmol·L~(-1)Pi)条件下生长21 d后,2个转基因系列植株的生长受抑程度比野生型植株小,其根干重、地上部干重以及根冠比分别比野生型植株显著高出54.6%-96.5%、20.7%-39.7%和23.5%-41.2%。不论有无养分胁迫,转基因植株的单株含磷量(μmol·plant~(-1))显著高于野生型植株,分别是野生植株的1.3-1.4倍(1 mmol·L~(-1)Pi)和1.3-1.8倍(10μmol·L~(-1)Pi);其单位干物质中的含磷量(μmol·g~(-1)DW)也高于野生型植株。说明转基因紫花苜蓿吸收了更多的Pi,从而促进其生长。
Salinity and drought are two major abiotic factors limiting crop production and forageyield.In particular,with ingravescent fresh water scarcity,drought and soil salinity havebeen threatening the development of agriculture and animal husbandry,and even thesecurity of whole ecosystem in the arid and semi-arid areas of northwest China.Alfalfa(Medicago sativa L.) is one of the most important legume forages and acts a veryimportant role in the agriculture and animal husbandry,and the ecological construction inthe arid and semi-arid areas of northwest China.However,most alfalfa cultivars aredifficult to maintain high forage yield in saline and arid soils since they are sensitive to saltand drought.Breeding enhanced salt and drought resistant alfalfa cultivars is one ofnecessary ways for increasing forage yield of alfalfa pastures,decreasing irrigation,andreusing salinity land,in the arid and semi-arid areas of northwest China.Salt and droughttolerance of alfalfa can be improved by conventional breeding method,but it often takes along time and is readily limited by narrow genes resources within species.Recentdevelopments in transgenetic technology have provided an efficient tool for improvingalfalfa,and will trigger an important direction of alfalfa stress tolerance breeding.It hasbeen confirmed that vacuolar H~+-pyrophosphatase (H~+-PPase) plays important roles invacuolar Na~+ sequestration and auxin fluxes.The overexpressions of H~+-PPase confersome model plants and crops enhanced growth and tolerance to salinity,water-deficit andlow-Pi stress conditions,suggesting that the H~+-PPase genes have potential benefits inimproving stress tolerance of alfalfa.
     We have previously established an Agrobacterium-mediated transformation systemfor alfalfa cultivars.In this study,to generate transgenic alfalfa lines with enhanced stresstolerance,we comprehensively assessed the tolerance of five cultivars which are widelysowed in northwest China through subordinate function values analysis using relevantagricultural and physiological indicators together,and selected the alfalfa cultivar withwell salt and drought tolerance.Then an H~+-PPase gene AVP1 from Arabidopsis wasintroduced into this cultivar based upon the transformation system,which was furthermodified and evaluated.Finally,the stress tolerance of transgenic alfalfa was assayed.Themain results of this study are as following:
     1.Compared with 0 mM NaCl,200 mM NaCl reduced significantly the shoot dryweight and shoot K~+/Na~+ ratio,and enhanced the leaf MDA content and relative membranepermeability in all five alfalfa cultivars,but the degree of either reduction or enhancementdiffered between these cultivars.Through comprehensively combining above fourindicators,the salt tolerance of the five cultivars decreased in the order:Rambler,XinjiangDaye,Sandili,Gannong No.3,and Longdong.Similarly,compared with well watered condition,after drought stress treatment,the shoot dry weight,leaf osmotic potential andrelative water content were significantly dropped,and the leaf relative membranepermeability was significantly increased in all five alfalfa cultivars,however the changerange of these indicators are different between five cultivars.Through comprehensiveassessment combining above four indicators,the drought tolerance of the five cultivarsdecreased in the order:Longdong,Xinjiang Daye,Gannong No.3,Sandili,and Rambler.According to analysis of above two comprehensive assessment results,we found that thecultivar Xinjiang Daye possessed well both salt and drought tolerance,and it thus wasselected as a potential germplasm material to further improve its stress tolerance in thisstudy.
     2.Based upon our previous transformation system,we modified the Agrobacteriuminfection and kanamycin (Kan) selection procedures:the Agrobacterium infection wasperformed under normal pressure for 12 min;kanamycin resistant somatic embryos andplants were selected by 75 and 40 mg·L~(-1) Kan after 2 weeks when somatic embryos androots were induced,respectively.This adjusted transformation system took about 19 weeksto get a transformation efficiency (number of PCR-positive plants produced per onehundred infected hypocotyls.) of about 2.1%.
     3.This study firstly transformed an H~+-PPase gene A VPI from Arabidopsis intoalfalfa cultivar Xinjiang Daye and obtained transgenic plants.PCR amplification indicatedthat A VPI was integrated into the chromosomal DNA of alfalfa.RT-PCR analysis inrandom eight transgenic lines showed that A VPI expressed in all tested lines,but itstranscript levels are different between eight lines.Compared with other lines,line 1 andline 8 showed the highest and lowest expression level ofA VPI,respectively.
     4.The overexpression of AVPI enhanced salt and drought tolerance in transgenicalfalfa.After 10 days in the presence of 200 mM NaCl,wild type plants exhibited growthreduction,chlorosis,even die,whereas transgenic plants continue to grow well.Moreover,After 6 days of drought stress,wild-type plants showed chlorosis,whereas transgenicalfalfa still maintained normal growth until day 8 after subjected to water-deficit stress.After rewatered,wild-type plants showed irreversible chlorosis and die,but plants fromtransgenic lines survived and resumed normal growth.The examinations of physiologyshowed that transgenic alfalfa accumulate more Na~+,K~+ and Ca~(2+) in leaves and roots thanwild type,which resulted in lower leaf osmotic potential in transgenic plants;thus theirleaves retained more water during drought stress than wild-type plants.Furthermore,undersalt or water-deficit stress,transgenic alfalfa displayed significantly lower leaf MDAcontent and relative membrane permeability,significantly higher net photosynthetic rateand root activity compared with wild-type plants.These results suggested that theoverexpression ofA VPI increased sequestration of Na~(-1) into vacuole and uptake capacity of other cations in the transgenic alfalfa.These mechanisms might on the one hand reduce thedeleterious effects of excess Na~+ in the cytosol under salt stress and steady intracellular ionhomeostasis,on the other hand,enhance the osmoregulation capacity of cells,thus increasethe water retention and maintain the turgor of transgenic alfalfa under salt or droughtstress.
     5.Pot experiments showed that the overexpression of AVPI resulted in increased rootproliferation and shoot development in transgenic alfalfa.Under normal condition,orlong-term salt/drought treatments,transgenic alfalfa always displayed enhanced growththan wild-type.The plants of two transgenic lines grown in well water soil for 60 days(cutting at 20th day) exhibited 15.5%-21.6% higher shoot height and 27.8%-35.2% highershoot dry weight than wild-type plants.Similar results were observed in long-term salt ordrought treatments.These phenotypes should be ascribed to that transgenic alfalfadeveloped more robust root systems,and thus got higher root biomasses and root/shootratios compared with wild-type under either normal condition or salt/drought stress.Therobust root systems allowed transgenic alfalfa to take up greater amounts of water andnutrient during the imposed salt or water deficit stress,thus also contributed to enhance saltand drought tolerance of transgenic plants.
     6.The overexpression of AVPI increased the barren tolerance in transgenic alfalfa.Transgenic plants outperformed wild-type plants when challenged with inphosphorus-deficient condition (10μM Pi) for 21 days:the root biomass,shoot biomassand root/shoot ratio of transgenic plants from two transgenic lines were 54.6%-96.5%,20.7%-39.7%,and 23.5%-41.2% higher,respectively,than that of wild-type plants.Undereither normal or restrictive Pi condition,the toltal Pi content per plant (μmol·plant~(-1)) in twotransgenic lines were 1.3-1.4 fold (under 1 mM Pi) and 1.3-1.8 fold (under 10μM Pi) incomparison that of wild-type;the normalized Pi content (μmol·g~(-1) DW) was also higher intransgenic alfalfa than in wild-type plants,suggesting that transgenic plants absorbed morePi and thus grown accordingly.
引文
[1]Abel GH,MacKenzie AJ(1964).Salt tolerance of soybean varieties(Glycine max L.Merrill)during germination and later growth.Crop Sci 4:157-161.
    [2]Al-Khatib MM,McNeilly T,Collins JC(1994).Between and within cultivar variability in salt tolerance in lucerne(Medicago sativa L.).Genet Resour Crop Ev 41:159-164.
    [3]Allakhverdiev SI,Sakamoto A,Nishiyama Y,Inaba M,Murata N(2000).Ionic and osmotic effects of NaCl induced inactivation of photosystems Ⅰ and Ⅱ in Synechococcus sp.Plant Physiol 123:1047-1056.
    [4]Allen SG,Dobrenz AK,Schonhorst MH,Stoner JE(1985).Heritability of NaCl tolerance in germinating alfalfa seeds.Agron J 77:99-101.
    [5]Athar HR,Ashraf M(2009).Strategies for crop improvement against salinity and drought stress:an overview.In:Ashraf M,Ozturk M,Athar HR eds.Salinity and Water Stress.Berlin,Springer-verlag.pp.1-16.
    [6]Austin SET,Bingham E,Mathews MN,Shahan J,Burgess RR(1995).Production and field performance of transgenic alfalfa(Medicago sativa L.)expressing alpha-amylase and manganese-dependent lignin peroxidase.Euphytica 85:381-393.
    [7]Avraham T,Badani H,Galili S,Amir R(2005).Enhanced levels of methionine and cysteine in transgenic alfalfa(Medicago sativa L.)plants over-expressing the Arabidopsis cystathionine γ-synthase gene.Plant Biotechnol J 3:71-79.
    [8]Bagga S,Armendaris A,Klypina N,Ray I,Ghoshroy S,Endress M,Sutton D,Kemp JD,Sengupta-Gopalan C(2004).Genetic engineering ruminal stable high methionine protein in the foliage of alfalfa.Plant Sci 166:273-283.
    [9]Bajji M,Lutts S,Kinet JM(2001).Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat(Triticum durum Desf.)cultivars performing differently in and conditions.Plant Sci 160:669-681.
    [10]Baltscheffsky M,Nadanaciva S,Schultz A(1998).A pyrophosphate synthase gene:molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum.Biochim Biophys Acta 1364:301-306.
    [11]Barone P,Rosellini D,LaFayette P,Bouton J,Veronesi F,Parrott W(2008).Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa.Plant Cell Rep 27:893-901.
    [12]Baucher M,Bernard-Vailhe MA,Chabbert B,Besle JM,Opsomer C,Vanmontagu M,Botterman J(1999).Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa(Medicago sativa L.)and the effect on lignin composition and digestibility.Plant Mol Biol 39:437-447.
    [13]Baykov AA,Bakuleva NP,Rea PA(1993).Steady-state kinetics of substrate hydrolysis by vacuolar H~+-pyrophosphatase,a simple three-state model.Eur J Biochem 217:755-762.
    [14]Baykov AA,Cooperman BS,Goldman A,and Lahti R(1999).Cytoplasmic inorganic pyrophosphatase.Prog Mol Subcell Biol 23:127-150.
    [15]Bernstein L,Ehlig CF,Clark RA(1969).Effect of grape rootstocks on chloride accumulation in leaves.J Am Soc Hortic Sci 94:584-590.
    [16]Bernstein L,Hayward HE(1958).Physiology of salt tolerance.Annu Rev Plant Physiol 9:25-46.
    [17] Blumwald E (2000). Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12: 431-434.
    
    [18] Blumwald E, Poole RJ (1985). Na~+/ H~+ antiporter in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant physiol 78: 163-167.
    
    [19] Boughanmi N, Michonneau P, Daghfous D, Fleurat-Lessard P (2005). Adaptation of Medicago sativa cv. Gabès to long-term NaCl stress. J Plant Nutr Soil Sci 168: 262-268.
    
    [20] Bowler C, Alliotte T, de Loose M, Van Montagu M, Inzé D (1989). The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8: 31-38.
    
    [21] Boyer JS (1982). Plant productivity and environment. Science 218: 443-448.
    
    [22] Bremberger C, Lüttge U (1992). Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L. during the induction of crassulacean acid metabolism. Planta 188: 575-580.
    
    [23] Brill LM, Evans CJ, Hirsch AM (2001). Expression of MsLECl- and MsLEC2-antisense genes in alfalfa plant lines causes severe embryogenic, developmental and reproductive abnormalities. Plant J 25: 453-461.
    
    [24] Brill LM, Fujishige NA, Hackworth CA, Hirsch AM (2004). Expression of MsLEC1 transgenes in alfalfa plants causes symbiotic abnormalities. Mol Plant Microbe Interact 17: 16-26.
    
    [25] Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005). Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophoshatase proton pump. Plant Physiol Biochem 43: 347-354.
    
    [26] Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007). Overexpression of wheat Na~+/H~+ antiporter TNHX1 and H~+-pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58: 301-308.
    
    [27] Britten CJ, Turner JC, Rea PA (1989). Identification and purification of substrate-binding of higher plant H~+-translocating inorganic pyrophosphatase. FEBS Letters 256: 200-206.
    
    [28] Britten CJ, Zhen RC, Kim EJ, Rea PA (1992). Reconstitution of transport function of vacuolar H~+-translocating inorganic pyrophosphatase. Biol Chem 267: 21850-21855.
    
    [29] Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995). Vacuolar H~+ -translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641-649.
    
    [30] Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105: 1-14.
    
    [31] Chabaud M, Passiatore JE, Cannon F, Buchanan-Wollaston V (1988). Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep 7: 512-516.
    
    [32] Chandhard MT, Wainwright ST, Merrett MT (1996). Comparative NaCl tolerance of lucerne regenerated from salt selected suspension cultures. Plant Sci Limerick 3: 15-18.
    
    [33] Chaoui A, Mazhoudi S, Ghorbal H, Ferjani E E (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme in bean (Phaseolus vulgaris L.) Plant Sci 127: 139-147.
    
    [34] Chinnusamy V, Jagendorf A, Zhu JK (2005). Understanding and improving salt tolerance in plants. Crop Sci 45:437-448.
    [35]Colombo R,Cerana R(1993).Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota.J Plant Physiol 142:226-229.
    [36]Confer AF,Clinkenbeard KD,Murphy GL(1995).Pathogenesis and virulence of Pasteurella haemolytica in cattle:an analysis of current knowledge and future approaches.In:Donachie W,Lainson FA,Hodgson JC eds.Haemophilus,Actinobacillus and Pastur.New York,Plenum Press.pp.51-62.
    [37]Cooperman BS,Baykov AA,Lahti R(1992).Evolutionary conservation of the active site of soluble inorganic pyrophosphatase.Trends Biochem Sci 17:262-266.
    [38]Cordoba E,Shishkova S,Vance CP,Hern(?)ndez G(2003).Antisense inhibition of NADH glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa(Medicago sativa L.).Plant J 33:1037-1049.
    [39]D'Halluin K,Boteerman J,de Greef W(1990).Engineering of herbicide-resistant alfalfa and evaluation under field conditions.Crop Sci 30:866-870.
    [40]D'yakova EV,Rakitin AL,Kamionskaya AM,Baikov AA,Lahti R,Ravin NV,Skryabin KG(2006).A study of the effect of expression of the gene encoding the membrane H~+-pyrophosphatase of Rhodospirillum rubrum on salt resistance of transgenic tobacco plants.Dokkady Biol Sci 409:346-348.
    [41]Darley CP,Davies JM,Sanders D(1995).Chill-induced changes in the activity and abundance of the vacuolar proton-pumping pyrophosphatase from mung bean hypocotyls.Plant Physiol 109:659-665.
    [42]Davies JM,Darley CP,Sanders D(1997).Energetics of the plasma membrane pyrophosphatase.Trends in Plant Sci 2:9-10.
    [43]Davies JM,Poole RJ,Rca PA,Sanders D(1992).Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase.Proc Natl Acad Sci USA 89:11701-11705.
    [44]Davies JM,Rea PA,Sanders D(1991).Vacuolar proton-pumping pyrophosphatase in Beta vulgaris shows vectorial activation by potassium.FEBS Lett 278:66-68.
    [45]Deak M,Kiss G,Koncz C,Dudits D(1986)Transformation of Medicago by Agrobacterium-mediated gene transfer.Plant Cell Rep 5:97-100.
    [46]del Rio LA,Corpas FJ,Sandalio LM,Palma JM,Gomez M,Barroso JB(2002).Reactive oxygen species,antioxidant systems and nitric oxide in peroxisomes.J Exp Bot 53:1255-1272.
    [47]Delauney AJ,Verma DPS(1993).Poline biosynthesis and osmoregulation in plants.Plant J 4:215-223.
    [48]Desgagn(?)s R,Laberge S,Allard G,Khoudi H,Castonguay Y,Lapointe J,Michaud R,Vezina L(1995).Genetic transformation of commercial breeding lines of alfalfa(Medicago sativa).Plant Cell Tissue Organ Cult 42:129-140.
    [49]Ding YL,Aldao-Humble G,Ludlow E,Drayton M,Lin YH,Nagel J,Dupal M,Zhao GQ,Pallaghy C,Kalla R,Emmerling M,Spangenberg G(2003).Efficient plant regeneration and Agrobacterium-mediated transformation in Medicago and Trifolium species.Plant Sci 165:1419-1427.
    [50]Dodet B,Heseltine E,Mary C,Salion P(1997).Rotaviruses in human and veterinary medicine. Santé 7: 195-199.
    
    [51] Dong JL, Liang BG, Jin YS, Zhang WJ, Wang T (2005). Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology 339: 153-163.
    
    [52] Drozdowicz YM, Kissinger JC, Rea PA (2000). AVP2, a sequence-divergent, K~+-insensitive H~+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol 123: 353-362.
    
    [53] Drozdowicz YM, Lu YP, Patel V, Fitz-Gibbon S, Miller JH, Rea PA (1999). A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Lett 460: 505-512.
    
    [54] Drozdowicz YM, Rea PA (2001). Vacuolar proton-pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6: 206-211.
    
    [55] Drozdowicz YM, Shaw M, Nishi M, Striepen B, Liwinski HA, Roos DS, Rea PA (2003). Isolation and characterization of TgVP1, a type I vacuolar H~+-translocating pyrophosphatase from Toxoplasma gondii. J Biol Chem 278: 1075-1085.
    
    [56] Duan XG, Song YJ, Yang AF, Zhang JR (2009). The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. Physiol Plant 135: 281-295.
    
    [57] Duan XG, Yang AF, Gao F, Zhang SL, Zhang JR (2007). Heterologous expression of vacuolar H~+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma 232: 87-95.
    
    [58] Essa TA (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci 188: 86-93.
    
    
    [59] Esterbauer H, Schaur RJ, Zollner H (1991). Chemistry andbiochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Bio Med 11: 81-128.
    
    [60] Flowers TJ (2004). Improving crop salt tolerance. J Exp Bot 55: 307-319.
    
    [61] Flowers TJ, Hajibagheri MA (2001). Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil 231: 1-9.
    
    [62] Flowers TJ, Koyama ML, Flowers SA, Sudhakar C, Singh KP, Yeo AR (2000). QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51: 99-106.
    
    [63] Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004). Effect of salt and osmotic stresses on the vacuolar H~+-pyrophosphatase, H~+-ATPase subunit A, and Na~+/H~+ antiport from barley. J Exp Bot 55: 585-594.
    
    [64] Fukuda A, Tanaka Y (2006). Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H~+-inorganic pyrophosphatase, H~+-ATPase subunit A, and Na~+/H~+ antiporter in barley. Plant Physiol Biochem 44: 351-358.
    
    [65] Gao F, Gao Q, Duan XG, Yue GD, Yang AF, Zhang JR (2006). Cloning of an H~+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57: 3259-3270.
    
    [66] Gaxiola RA, Fink GR, Hirschi KD (2002). Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129: 967-973.
    
    [67] Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H-pump. Proc Natl Acad Sci. USA 98: 11444-11449.
    [68] Gaxiola RA, Palmgren MG, Schumacher K (2007). Plant proton pumps. FEBS Lett 581: 2204-2214.
    
    [69] Gaxiola RA, Rao RI, Sherman A, Grisafi P, Alper SL, Fink GR (1999). The Arabidopsis thaliana proton transporters, AtNhxl and Avpl can functionin cation detoxification in yeast. Proc Natl Acad Sci USA 96: 1480-1485.
    
    [70] Gibon Y, Bessieres MA, Larher F (1997). Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant, Cell and Environ 20: 329-340.
    
    [71] Ginzberg I, Stein H, Kapulnik Y (1998). Isolation and characterization of two different cDNAs of Delta (1)-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol 38: 755-764.
    
    [72] Goplen BP, Howarth RE, Sarkar SK, Lesins K (1980). A search for condensed tannins in annual and perennial species of Medicago, Trigonella, and Onobrychis. Crop Sci 20: 801-804.
    
    [73] Gordon-Weeks R, Koren'kov VD, Steele SH, Leigh RA (1997). Tris is a competitive inhibitor of K~+ activation of the vacuolar H~+-pumping pyrophosphatase. Plant Physiol 114: 901-905.
    
    [74] Gordon-Weeks R, Steele SH, Leigh RA (1996). The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H~+-pumping inorganic pyrophosphatase. Plant Physiol 111: 195-202.
    
    [75] Greenway H, Munns R (1980). Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31: 149-190.
    
    [76] Guo DG, Chen F, Inoue K, Blount JW, Dixon RA (2001a). Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implication for biosynthesis of G and S lignin. The Plant Cell 13: 73-88.
    
    [77] Guo DG, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001b). Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferase. Transgenic Res 10: 457-464.
    
    [78] Guo SL, Yin HB, Zhang X, Zhao FY, Li PH, Chen SH, Zhao YX, Zhang H (2006). Molecular cloning and characterization of a vacuolar H~+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60: 41-50.
    
    [79] Guo ZG, Liu HX, Wang SM, Tian FP, Cheng GD (2005). Biomass, persistence, and drought resistance of nine varieties in dryland conditions of west China. Aust J Exp Agr 45: 59-64.
    
    [80] Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000). Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499.
    [81] He XZ, Dixon RA (2000). Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. The Plant Cell 12: 1689-1702.
    
    [82] Heichel GH, Barnes DK, Vance CP (1981). Nitrogen fixation of alfalfa in the seeding year. Crop Sci 21: 330-335.
    
    [83] Hermans C, Hammond JP, White PJ, Verbruggen N (2006). How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11: 610-617.
    [84] Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001). Antioxidant systems and O_2~-/H_2O_2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127: 817-831.
    
    [85] Hill JE, Scott DA, Luo S, Docampo R (2000). Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi. J Biochem 351: 281-288.
    
    [86] Hill KK, Jarvis EN, Halk E, Krahn K, Liao L, Mathewson R, Merlo D, Nelson S, Rashka K, Loesch FL (1991). The development of virus-resistant alfalfa (Medicago sativa L.). Bio/Tech 9:373-377.
    
    [87] Hipskind JD, Paiva NL (2000). Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases-resistance to Phoma medicaginis. Mol Plant Microbe Interact 13: 551-562.
    
    [88] Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005). Overexpression of △~1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169: 746-752.
    
    [89] Hocking PJ (2001). Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plants in acid soils. Adv Agron 74: 63-97.
    
    [90] Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M, (2004). Silencing of hydroxycinnamoyl-coenzyme a shikimate/quinate hydroxycinnamoyl transferase affects phenylpropanoid biosynthesis. Plant Cell 16: 1446-1465.
    
    [91] Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH, Lee CH, Liu PF, Chang WC, Wang YK, Chien LF, Pan RL (2007). Functional roles of arginine residues in mung bean vacuolar H-pyrophosphatase. Biochim Biophys Acta 1767: 965-973.
    
    [92] Hsiao YY, Van RC, Hung HH, Pan RL (2002). Diethylpyrocarbonate inhibition of vacuolar H~+-pyrophosphatase possibly involves a histidine residue. J Protein Chem 21:51 -58.
    
    [93] Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL (2004). Roles of histidine residues in plant vacuolar H-pyrophosphatase. Biochim Biophys Acta 1608: 190-199.
    
    [94] Huang LK, Liao SC, Chang CC, Liu HJ (2006). Expression of avian reovirus sigma C protein in transgenic plants. J Virol Methods 134: 217-222.
    
    [95] Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997). Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33: 857-865.
    
    [96] Ikeda M, Rahman M, Moritani C, Umami K, Tanimura Y, Akagi R, Tanaka Y, Maeshima M, Watanabe Y (1999). A vacuolar inorganic H-pyrophosphatase in Acetabularia acetabulum: molecular cloning and comparison with higher plants and a bacterium. J Exp Bot 50: 139-140.
    
    [97] Inoue K, Sewalt VJH, Ballance GM, Ni W, Sturzer C, Dixon RA (1998). Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in relation to lignification. Plant Physiol 117: 761-770.
    
    [98] Irigoyen JJ, Einerich DW, Sanchez-Diaz M (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84: 55-60.
    
    [99] Ivanova A, Djilianov D, van Onckelen H, Atanassov A (1997). Abscisic acid changes in osmotic stressed leaves of alfalfa genotypes varying in drought tolerance. Plant Physiol 150: 224-227.
    
    [100] Jackson LA, Shadle GL, Zhou R, Nakashima J, Chen F, Dixon RA (2008). Improving saccharification efficiency of alfalfa stems through modification of the tenninal stages of monolignol biosynthesis.Bioenerg Res 1:180-192.
    [101]Joensuu JJ,Verdonck F,Ehrstr(o|¨)m A,Peltola M,Siljander-Rasi H,Nuutila AM,Oksman-Caldertey KM,Teeri TH,Cox E(2006).F4(K88)fimbrial adhesin FaeG expressed in alfalfa reduces F4+ enterotoxigenic Escherichia coli excretion in weaned piglets.Vaccine 24:2387-2394.
    [102]Johnson DW,Smith SE,Dobrenz AK(1992).Genetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa.Theor Appl Genet 83:833-838.
    [103]Jones HG,Jones MB(1989).Introduction:some terminology and common mechanisms.In:Jones HG,Flowers TJ,Jones MB eds.Plant under Stress:Biochemistry,Physiology and Ecology and Their Application to Plant Improvement.New York,Cambridge University Press.pp.1-10.
    [104]Kabala K,Klobus G(2008).Modification of vacuolar proton pumps in cucumber roots under salt stress.J Plant Physiol 165:1830-1837.
    [105]Kang HJ,Anbazhagan VR,You XL,Moon HK,Yi JS,Choi YE(2006).Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots.Plant Cell Tissue Organ Cult 85:187-196.
    [106]Karlsson J(1975).Membrane-bound potassium and magnesium ion-stimulated inorganic pyrophosphatese from roots and cotyledons of sugar beet(Beta vugaris L.).Biochim Biophys Acta 399:356-363.
    [107]Kasai M,Nakamura T,Kudo N,Sato H,Maeshima M,Sawada S(1998).The activity of the root vacuolar H~+-pyrophosphatase in rye plants grown under conditions deficient in mineral nutrients.Plant Cell Physiol 39:890-894.
    [108]Kidambi SP,Matches AG,Bolger TP(1990).Mineral concentrations in alfalfa and sainfoin as influenced by soil moisture level.Agron J 82:229-236.
    [109]Kim EJ,Zhen RG,Rea PA(1995).Site-directed mutagenesis of vacuolar H~+-pyrophosphatase:necessity of Cys634 for inhibition by maleimides but not catalysis.J Biol Chem 270(6):2630-2635.
    [110]Kim Y,Kim EJ,Rea PA(1994).Isolation and characterization of cDNAs encoding the vacuolar H~+-pyrophosphatase of Beta vulgaris.Plant Physiol 106:375-382.
    [111]Kingsbury RW,Epstein E(1984).Selection for salt-resistant spring wheat.Crop Sci 24:310-315.
    [112]Kooter JM,Matzke MA,Meyer P(1999).Listening to the silent genes:transgene silencing,gene regulation and pathogen control.Trends Plant Sci 4:341-347.
    [113]Kunitz MJ(1952).Crystalline inorganic pyrophosphatase inolated from baker's yeast.Gen Physiol 35:423-449.
    [114]Kuo SY,Chien LF,Hsiao YY,Van Ru C,Yan KH,Liu PF,Mao SJ,Pan RL(2005).Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings.J Plant Physiol 162:129-38.
    [115]Lee RWH,Cornelisse M,Ziauddin A,Slack PJ,Hodgins DC,Strommer JN,Shewen PE,Lo RYC(2008).Expression of a modified Mannheimia haemolytica GS60 outer membrane lipoprotein in transgenic alfalfa for the development of an edible vaccine against bovine pneumonic pasteurellosis.J Biotechnol 135:224-231.
    [116]Lee RWH,Strommer J,Hodgins D,Shewen P,Niu Y,Lo R(2001).Towards development of an edible vaccine against bovine pneumonic pasteurellosis using transgenic clover expressing a Mannheimia haemolytica A1 leukotoxin 50 fusion protein. Infect Immun 69: 5786-5793.
    
    [117] Lerchl J, K(o|¨)nig S, Zrenner R, Sonnewald U (1995). Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound protontranslocating inorganic pyrophosphatase in tobacco. Plant Mol Biol 29: 833-840.
    
    [118] Li B, Wei A, Song C, Li N, Zhang JR (2008). Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6: 146-159.
    
    [119] Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek BA, Murphy AS, Gilroy S, Gaxiola RA (2005). Arabidopsis H-PPase AVP1 regulates auxinmediated organ development. Science 310: 121-125.
    
    [120] Liu HX, Guo ZG, Wang SM, Zhang ZH, Wang YR (2005). A new procedure for evaluating lucerne genotypes for semi-arid land in west China. New Zeal J Agr Res 48: 109-116.
    
    [121] Lo RYC (2001). Genetic analysis of virulence factors of Mannheimia (Pasteurella) haemolytica Al. Vet Microbiol 83: 23-35.
    
    [122] Long AR, Williams LE, Nelson SJ, Hall JL (1995). Localization of membrane pyrophosphatase activity in ricinus communis seedlings. J Plant Physiol 146: 629-638.
    
    [123] Lu HG, Zhong L, De Souza W, Benchimol M, Moreno SN, Docampo R (1998). Ca~(2+)-content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol 18: 2309-2323.
    
    [124] Lü SY, Jing YX, Pang XB, Zhao HY, Ma LQ, Li YF (2005). cDNA cloning of a vacuolar H~+-pyrophosphatase and its expression in Hordeum brevisubulatum (Trin.) Link. in response to salt stress. Agricul Sci in China 4 (4): 247-251.
    
    [125] Ludwig SR, Wessler SR (1990). Maize R gene family: tissue-specific helix-loop-helix proteins. Cell 62: 849-851.
    
    [126] Luttge U, Ratajczak R (1997). The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. In: Leigh RA, Sanders D eds. The Plant Vacuole. Adv Bot Res 25: 253-296.
    
    [127] Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang JR (2008). Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49: 1150-1164.
    
    [128] Maas EV, Hoffman GJ (1977). Crop salt tolerance-current assessment. J Irrigat Drain Div, ASCE 103: 115-134.
    
    [129] Maeshima M (2000). Vacuolar H-pyrophosphatase. Biochim Biophys Acta 1465: 37-51.
    
    [130] Maeshima M, Yoshida S (1989). Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264: 20068-20073.
    
    [131] Maruyama C, Tanaka Y, Mitsuda NT, Takeyasu K, Yoshida M, Sato MH (1998). Structural studies of the vacuolar H~+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiol 39: 1045-1053.
    
    [132] Masoud SA, Zhu Q, Lamb C, Dixon RA (1996). Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen chitin-containing fungi. Transgenic Res 5: 313-323.
    [133]Matsumoto H,Chung GC(1988).Increase in proton-transport activity of tonoplast vesicles as an adaptive response of barley roots to NaCl stress.Plant Cell Physiol 29:1133-1140.
    [134]Matzke MA,Matzke AJM(1995).How and why do plants inactivate homologous(trans)genes?Plant Physiol 107:679-685.
    [135]Mcintosh MT,Drozdowicz YM,Laroiya K,Rea PA,Vaidya AB(2001).Two classes of plant-like vacuolar-type H~+-pyrophosphatases in malaria parasites.Mol Biochem Parasitol 114:183-195.
    [136]Mckersie BD,Bowley SR,Harjanto E,Leprince O(1996).Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase.Plant Physiol 111:177-1181.
    [137]McKersie BD,Chen Y,de Beus M,Bowley SR,Bowler C,Inze D,D'Halluin K,Botterman J(1993).Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L.).Plant Physiol 103:1155-1163.
    [138]Mckersie BD,Murnaghan J,Jones KS,Bowley SR(2000).Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance.Plant Physiol 122:1427-1437.
    [139]Mimura H,Nakanishi Y,Hirono M,Maeshima M(2004).Membrane topology of the H~+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis.J Biol Chem 279:35106-35112.
    [140]Mitsuda N,Enami K,Nakata M,Takeyasu K,Sato MH(2001).Novel type Arabidopsis thaliana H~+-PPase is localized to the Golgi apparatus.FEBS Lett 488:29-33.
    [141]Mizukami Y,Houmura I,Takamizo T,Nishizawa Y(2000).Production of transgenic alfalfa with chitinase gene(RCC2).In:Spangenberg G ed.Abstracts 2nd International Symposium Molecular Breeding of Forage Crops.Lorne and Hamilton,Victoria.pp.105.
    [142]Moftah AE,Michel BE(1987).The effect of sodium chloride on solute potential and proline accumulation in soybean leaves.Plant Physiol 83:238-240.
    [143]Mohammadi H,Poustini K,Ahmadi A(2008).Root nitrogen remobilization and ion status of two alfalfa.J Agron Crop Sci 194:126-134.
    [144]Montazar A,Sadeghi M(2008).Effects of applied water and sprinkler irrigation uniformity on alfalfa growth and hay yield.Agr Water Manage 95:1279-1287.
    [145]Morgan JM(1984).Osmoregulation and water stress in higher plants.Annu Rev Plant Physiol 35:299-319.
    [146]Munns R(1993).Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses.Plant,Cell and Environ 16:15-24.
    [147]Murata Y,Iyama J,Honma T(1966).Studies on the photosynthesis of forage crops:the influence of soil moisture content on the photosynthesis and respiration of seedlings in various forage crops.Proc of Crop Sci Socity of Japan 34:385-390.
    [148]Murphy AS,Bandhyopadhyay A,Holstein S,Peer WA(2005).Vesicular cycling mechanisms in Arabidopsis.Ann Rev Plant Biol 56:221-251.
    [149]Murphy J,Riley JP(1962).A modified single solution method for the determination of phosphate in natural waters.Anal Chim Acta 27:31-36.
    [150]Nakamura Y,Kasamo K,Shimosato N,Sakata M,Ohta E(1992).Stimulation of the extrusion of protons and H-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca ~(2+) ions. Plant Cell Physiol 33: 139-149.
    
    [151] Nakanishi Y, Maeshima M (1998). Molecular cloning of vacuolar H~+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol 116: 589-597.
    
    [152] Nakanishi Y, Matsuda N, Aizawa K, Kashiyama T, Yamamoto K, Mimura T, Ikeda M, Maeshima M (1999). Molecular cloning of the cDNA for vacuolar H~+-pyrophosphatase from Chara corallina. Biochim Biophys Acta 1418: 245-250.
    
    [153] Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001). Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H~+-pyrophosphatase. J Biol Chem 276 (10): 7654-7660.
    
    [154] Nakanishi Y, Yabe I, Maeshima M (2003). Patch clamp analysis of an H~+ pump heterologously expressed in giant yeast vacuoles. J Biol Chem 134: 615-623.
    
    [155] Niu X, Bressan RA, Hasegawa PM, Pardo J M (1995). Ion homeostasis in NaCl stress environment. Plant Physiol 109: 735-742.
    
    [156] Noble CL, Halloran GM, West DW (1984). Identification and selection for salt tolerance in lucerne (Medicago sativa L.). Aust J Agric Res 35: 239-252.
    
    [157] Noble CL, Rogers ME (1992). Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant and Soil 146: 99-107.
    
    [158] Nore BF, Sakai-Nore Y, Maeshima M, Baltschejsky M, Nyr(e|¨)n P (1991). Immunological cross-reactivity between proton-pumping inorganic pyrophosphatases of widely phylogenic separated species. Biochem Biophys Res Commun 181: 962-967.
    
    [159] Norlyn JD, Epstein E (1984). Variability in salt tolerance of four Triticale lines at germination and emergence. Crop Sci 24: 1090-1092.
    
    [160] Obermeyer G, Sommer A, Bentrup FW (1996). Potassium and voltage dependence of the inorganic pyrophosphatase of intact vacuoles from Chenopodium rubrum. Biochem Biophys Acta 1284:203-212.
    
    [161] Ohnishi M, Mimura T, Tsujimura T, Mitsuhashi N, Washitani-Nemoto S, Maeshima M, Martinoa E (2007). Inorganic phosphate uptake in intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don under varying Pi status. Planta: 225: 711-718.
    
    [162] Ortega JL, Moguel-Esponda S, Potenza C, Conklin CF, Quintana A, Sengupta-Gopalan C (2006). The 3' untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J 45: 832-846.
    
    [163] Ortega JL, Temple SJ, Sengupta-Gopalan C (2001). Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol 126: 109-121.
    
    [164] Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005). Up-regulation of a H~+-pyrophosphatase (H~+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102: 18830-18835.
    
    [165] Pearson GA, Ayers AD, Eberhard DL (1966). Relative salt tolerance of rice during germination and early seedling development. Soil Sci 102: 151-156.
    
    [166] Peever TL, Higgins VJ (1989). Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and non specific elicitors from Cladosporium fluvum.Plant Physiol 90:867-875.
    [167]Pereira LF,Erickson L(1995).Stable transformation of alfalfa by particle bombardment.Plant Cell Rep 14:290-293.
    [168]Peuthert A,Chakrabarti S,Pflugmacher S(2007).Uptake of microcystins-LR and -LF(Cyanobacterial toxins)in seedlings of several important agricultural plant species and the correlation with cellular damage.Environ Toxicol 22:436-442.
    [169]Pugliarella MC,Rasi-Caldogno F,Michelis MID(1991).The tonoplast H~+-pyrophosphatase of radish seedings:biochemical characteristics.Physiol Plant 83:339-345.
    [170]Radcliffe BC,Hynd PI,Benevenga NJ,Egan AR(1985).Effects of cysteine ethyl ester supplements on wool growth rate.Aust J Agri Res 36:709-715.
    [171]Ratajczak R,Hinz G,Robinson DG(1999).Localization of pyrophosphatase in membranes of cauliflower inflorescence cells.Planta 208:205-211.
    [172]Ray H,Yu M,Auser P,Blahut-Beatty L,McKersie B,Bowley S,Westcott N,Coulman B,Lloyd A,Gruber MY(2003).Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc.Plant Physiol 132:1448-1463.
    [173]Rea PA,Britten CJ,Sarafian V(1992).Common identity of substrate-binding subunit of vacuole H~+-translocating inorganic pyrophosphatase of higher plant cells.Plant Physiol 100:723-732.
    [174]Rea PA,Poole RJ(1993).Vacuolar H~+-translocating pyrophosphatase.Annu Rev Plant Physiol Plant Mol Biol 44:157-180.
    [175]Reich TJ,Lyer VN,Miki BL(1986).Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti-plasmids.Bio Technol 4:1001-1004.
    [176]Reis PJ(1979).Effects of amino acids on the growth and properties of wool.In:Black JL,Reis PJ eds.Physiological and Environmental Limitations to Wool Growth.Armidale,University of New England Publishing Unit.pp.223-242
    [177]Rejili M,Telahigue D,Lachiheb B,Mrabet A,Ferchichi A(2008).Impact of gamma radiation and salinity on growth and K~+/Na~+ balance in two populations of Medicago sativa(L.)cultivar Gab(?)s.Prog Nat Sci 18:1095-1105.
    [178]Rhodes D,Hanson AD(1993).Quaternary ammonium and tertiary sulphonium compounds in higher plants.Annu Rev Plant Physiol Plant Mol Biol 44:357-384.
    [179]Robinson DG,Haschke HP,Hinz G,Hoh B,Maeshima M,Marty F(1996).Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons.Planta 198:95-103.
    [180]Robinson DG,Hoppenrath M,Oberbeck K,Luykx P,Ratajczak R(1998).Localization of pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii.Bot Acta 111:108-122.
    [181]Rogers SO,Bendich AJ(1988).Extraction of DNA from plant tissues.In:Gelvin SB,Schilperoot RA eds.Plant Molecular Biology Manual.Kluwer,Dordrecht.pp 1-11.
    [182]Ros R,Romieu C,Gibrat R,Grignon C(1995).The plant inorganic pyrophosphatase does not transport K~+ in vacuole membrane vesicles multilabeled with fluorescent probes for H~+,K~+,and membrane potential.J Biol Chem 270:4368-4374.
    [183]Rozema J,Flowers TJ(2008).Crops for a salinized world.Science 322:1478-1480.
    [184] Rubio MC, Gonzalez EM, Minchin FR, Judith WK, Arrese-Igor C, Ramos J, Becana M (2002). Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115: 531-540.
    
    [185] Rumbaugh MD, Pendery BM (1990). Germination salt resistance of alfalfa (Medicago sativa L.) germplasm in relation to subspecies and centers of diversity. Plant Soil 124: 47-51.
    
    [186] Sakakibara Y, Kobayashi H, Kasamo K (1996). Isolation and characterization of cDNAs encoding vacuolar H~+-pyrophosphates isoforms from rice (Oryza sativa L.). Plant Mol Biol 31:1029-1038.
    
    [187] Salmi ML, Roux SJ (2008). Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229: 151-159.
    
    [188] Samac DA, Austin-Phillips S (2006). Alfalfa (Medicago sativa L.). In: Wang K ed. Methods Mol Biology Agrobacterium Protocols, 2nd ed. Totowa, Humana Press, pp. 301-311.
    
    [189] Samac DA, Temple SJ (2004). Development and utilization of transformation in Medicago species. In: Liang GH, Skinner DZ eds. Genetically Modified Crops: Their Development, Uses, and Risks. New York, Haworth Press, pp. 165-202.
    
    [190] Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning, a Laboratory Manual, 2nd ed. New York, CSH. pp. 343-348.
    
    [191] Samis K, Bowley SR, McKersie BD (2002). Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot 53: 1343-1350.
    
    [192] SarafianV, Kim Y, Poole RJ, Rea PA (1992). Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 1775-1779.
    
    [193] Sato MH, Kasahara M, Ishii N, Homareda H, Matsui H, Yoshida M (1994). Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H~+ into reconstituted proteoliposomes. J Biol Chem 269: 6725-6728.
    
    [194] Schoenbeck MA, Temple SJ, Trepp GB, Blumenthal JM, Samac DA, Gantt JS, Hernandez G, Vance CP (2000). Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. J Exp Bot 51:29-39.
    
    [195] Schroeder HE, Khan MRI, Kinbb WR, Spencer D, Higgins TJV (1991). Expression of a chicken ovalbumin gene in three lucerne cultivars. Aust J Plant Physiol 18: 495-505.
    
    [196] Scott DA, de Souza W, Benchimol M, Zhong L, Lu HG, Moreno SNJ, Docampo R (1998). Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem 273: 22151-22158.
    
    [197] Scott DA, R Docampo (2000). Characterization of isolated acidocalcisomes of trypanosoma cruzi. J Biol Chem 275: 24215-24221.
    
    [198] Seger M, Ortega JL, Bagga S, Sengupta-Gopalan C (2009). Repercussion of mesophyll-specific overexpression of a soybean cytosolic glutamine synthetase gene in alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.). Plant Sci 176: 119-129.
    
    [199] Sengupta-Gopalan C, Bagga S, Potenza C, Ortega JL (2007). Alfalfa. In: Pua EC, Davey MR eds. Biotechnology in Agriculture and Forestry. Vol. 61, transgenic crops VI. Berlin, Springer-Verlag. pp. 321-335.
    [200]Serrano A,Per(?)z-Casti(?)eira PC,Baltscheffsky M,Baltscheffsky H(2007).H~+-PPases:yesterday,today and tomorrow.IUBMB Life 59:76-83.
    [201]Seufferheld M,Vieira MCF,Ruiz FA,Rodrigues CO,Moreno SNJ,Docampo R(2003).Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes.J Biol Chem 278:29971-29978.
    [202]Shdle G,Chen F,Reddy MSS,Jackson L,Nakashima J,Dixon RA(2007).Down-regulation of hydroxycinnamoyl CoA:Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification,development and forage quality.Phytochemistry 68:1521-1529.
    [203]Sheaffer CC,Tanner CB(1988).Alfalfa water relations and irrigation.In:Hanson AA ed.Alfalfa and Alfalfa Improvement.Wisconsin,American Society of Agronomy.pp.135-154.
    [204]Shiratake K,Kanayama Y,Maeshima M,Yamaki S(1997).Changes in H~+-Pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit.Plant Cell Physiol 38:1039-1045.
    [205]Siswanto,Prevot JC,Clement A(1994).Characterization of tonoplast pyrophosphatase from Hevea brasiliensis latex.Indian J Natl Rubber Res 7:1-8.
    [206]Smith SE(1993).Salinity and the production of alfalfa(Medicago sativa L.).In:Pessrarkli M ed.Handbook of Crop Stress.New York,Marcel Dekker Press.pp.431-448.
    [207]Somers DA,Samac DA,Olhoft PM(2003).Recent advances in legume transformation.Plant Physiol 131:892-899.
    [208]Strizhov N,Keller M,Mathur J,Koncz-K(?)lm(?)n Z,Bosch D,Prudovsky E,Schell J,Sneh B,Koncz C,Zilberstein A(1996).A synthetic cryIC gene,encoding a Bacillus thuringiensis δ-endotoxin,confers Spodoptera resistance in alfalfa and tobacco.Proc Natl Acad Sci USA 93:15012-15017.
    [209]Surjus A,Durand M(1996).Lipid changes in soybean root membranes in response to salt treatment.J Exp Bot 47:17-23.
    [210]Suyama H,Benes SE,Robinson PH,Grattan SR,Grieve CM,Getachew G(2006).Forage yield and quality under irrigation with saline-sodic drainage water:Greenhouse evaluation.Agr Water Manage 88:159-172.
    [211]Sze H,Schumacher K,Muller ML,Padmanaban S,Taiz L(2002).A simple nomenclature for a complex proton pump:VHA genes encode the vacuolar H~+-ATPase.Trends Plant Sci 7:157-161.
    [212]Tabe LM,Wardley-Richardson T,Ceriotti A,Aryan A,McNabb W,Moore A,Higgins TJ(1995)A biotechnological approach to improving the nutritive value of alfalfa.J Anim Sci 73:2752-2759.
    [213]Takasu A,Nakanishi Y,Yamauchi T,Maeshima M(1997).Analysis of the substrate-binding site and carboxyl terminal region of vacuolar H~+-pyrophosphatase of mung bean with peptide antibodies.J Biochem 122:883-889.
    [214]Tanaka Y,Chiba K,Maeda M,Maeshima M(1993).Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare.Bioche Biophys Res Commun 190:1110-1114.
    [215]Tayal D,Srivastava PS,Bansal KC(2004).Transgenic crops for abiotic stress tolerance.In:Srivastava PS,Narula A,Srivastava S eds.Plant Biotechnology and Molecular Markers.New Delhi,Anamaya Publishers.pp.346-365.
    [216] Temple SJ, Bagga S, Sengupta-Gopalan C (1998b). Down-regulation of specific members of the glutamine synthetase gene family in alfalfa by antisense RNA technology. Plant Mol Biol 37:535-547.
    
    [217] Temple SJ, Heard J, Ganter G, Dunn K, Sengupta-Gopalan C (1995). Characterization of a nodule-enhanced glutamine synthetase from alfalfa: nucleotide sequence, in situ localization and transcript analysis. Mol Plant Microbe Interact 8: 218-227.
    
    [218] Temple SJ, Vance CP, Gantt JS (1998a). Glutamate synthase and nitrogen assimilation. Trends Plant Sci 3: 51-56.
    
    [219] Tesfaye M, Denton MD, Samac DA, Vance CP (2005). Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soil 269: 233-243.
    
    [220] Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127: 1836-1844.
    
    [221] Thomas JC, Wasmann CC, Echt C, Dunn RL, Bohnert HJ, Mccoy TJ (1994). Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Rep 14: 31-36.
    
    [222] Trieu AT, Burleigh SH, Kardailsky LV, Maldonado-Mendoza E, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000). Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531-541.
    
    [223] Van RC, Pan YJ, Hsu SH, Huang YT, Hsiao YY, Pan RL (2005). Role of transmembrane segment 5 of the plant vacuolar H~+-pyrophosphatase. Biochim Biophys Acta 1709: 84-94.
    
    [224] Venter M, Groenewald JH, Botha FC (2006). Sequence analysis and transcriptional profiling of two vacuolar H-pyrophosphatase isoforms in Vitis vinifera. J Plant Res 119: 469-478.
    
    [225] Vera-Estrella R, Barkla BJ, Garcia-Ramfrez L, Pantoja O (2005). Salt stress in Thellungiella halophila activates Na~+ transport mechanisms required for salinity tolerance. Plant Physiol 139: 1507-1517.
    
    [226] Waghorn GC (1990). Beneficial effects of low concentrations of condensed tannins in forages fed to ruminants. New York, Elsevier. pp. 137-147.
    
    [227] Wang BS, Luttge U, Ratajczak R (2001). Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52: 2355-2365.
    
    [228] Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005). Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3: 475-486.
    
    [229] Wang XS, Han JG (2007). Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53: 278-285.
    
    [230] Williams LE, Nelson SJ, Hall JL (1990). Characterization of a solute transport in plasma membrane vesicles isolated from cotyledons of Ricinus communis Ⅱ. Evidence for a proton-coupled mechanism for sucrose and amino acid uptake. Planta 182: 540-545.
    
    [231] Winicov I (2000). Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210: 416-422.
    
    [232] Winicov I, Bastola DR (1997). Salt tolerance in crop plants: new approaches through tissue culture and gene regulation.Acta Physiol Plant 19:435-449.
    [233]Winicov I,Bastola DR(1999).Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants.Plant Physiol 120:473-480.
    [234]Winicov I,Deutch CE(1994).Characterization of genes for photosynthesis transcription to salt tolerance of alfalfa cells.Plant Cell Physiol 31:1155-1161.
    [235]Xi JJ,Wu GQ,Wang SM(2007).http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=156640556.
    [236]Yang H,Knapp J,Koirala P,Rajagopal D,Peer WA,Silbart LK,Murphy A,Gaxiola RA(2007).Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type Ⅰ H~+-pyrophosphatase.Plant Biotechnol J 5 735-745.
    [237]Yang SJ,Jiang SS,Tzeng CM,Kuo SY,Hung SH,Pan RL(1996).Involvement of tyrosine residue in the inhibition of plant vacuolar H~+-pyrophosphatase by tetranitromethane.Biochim Biophys Acta 1294:89-97.
    [238]Yang SJ,Jiang SS,Van RC,Hsiao YY,Pan R(2000).A lysine residue involved in the inhibition of vacuolar H~+-pyrophosphatase by fluorescein 5'-isothiocyanate.Biochim Biophys Acta 1460:375-383.
    [239]Yang T,Poovaiah BW(2002).Hydrogen peroxide homeostasis:Activation of plant catalase by calcium/calmodulin.Proc Natl Acad Sci USA 99:4097-4102.
    [240]Yazaki Y,Asukagawa N,Ishikawa Y,Ohta E,Sakata M(1988).Estimation of cytoplasmic free Mg~(2+)levels and phosphorylation potentials in mung bean root tips by in vivo 31PNMR spectroscopy.Plant Cell Physiol 29:919-924.
    [241]Yin XY,Yang AF,Zhang KW,Zhang JR(2004).Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHXI gene.Acta Botanica Sinica 46:854-861.
    [242]Yokoi S,Bressan RA,Hasegawa PM(2002).Salt stress tolerance of plant.JIRCAS Working Rep 25-33.
    [243]Yu BJ,Lam HM,Shao GH,Liu YL(2005).Effects of salinity on activities of H~+-ATPase,H~+-PPase and membrane lipid composition in plasma membrane and tonoplast vesicles isolated from soybean(Glycine max L.)seedlings.J Environ Sci(China)17(2):259-262.
    [244]Zancani M,Skiera LA,Sanders D(2007).Roles of basic residues and salt-bridge interaction in a vacuolar H~+-pumping pyrophosphatase(AVP1)from Arabidopsis thaliana.Biochim Biophys Acta 1768:311-316.
    [245]Zandonadi DB,Canellas LP,Rocha FA(2006).Indolacetic and humic acids induce lateral root development through a concertated plasmalemma and tonoplast H~+-pumps activation.Planta.
    [246]Zeng Y,Xing T,Zhang F(2006).http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=118429129.
    [247]Zhang J,Davies WJ(1990).Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth.Plant,Cell and Environ 13:277-285.
    [248]Zhang JY,Broeckling CD,Blancaflor EB,Sledge MK,Sumner LW,Wang ZY(2005).Overexpression of WXP1,a putative Medicago truncatula AP2 domain-containing transcription factor gene,increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa).Plant J 42:689-707.
    [249]Zhang YY,Wang LL,Liu YL,Zhang Q,Wei QP,Zhang WH(2006).Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na~+/H~+ antiport in the tonoplast.Planta 224:545-555.
    [250]Zhao FY,Zhang XJ,Li PH,Zhao YX,Zhang H(2006).Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1.Mol Breeding 17:341-353.
    [251]Zhao JS,Zhi DY,Xue ZY,Liu H,Xia GM(2007).Enhanced salt tolerance of transgenic progeny of tall fescue(Festuca arundinacea)expressing a vacuolar Na~+/H~+ antiporter gene from Arabidopsis.J Plant Physiol 164:1377-1383.
    [252]Zhen RG,Kim EJ,Rea PA(1994).Localization of cytosolically oriented maleinide-reactive domain of vacuolar H~+-pyrophosphatase.J Biol Chem 269(37):23342-23350.
    [253]Zhen RG,Kim EJ,Rea PA(1997a).The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane.Adv Bot Res 25:297-338.
    [254]Zhen RG,Kim EJ,Rea PA(1997b).Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H~+-pyrophosphatase by N,N′-dicyclohexylcarbodiimide.J Biol Chem 272:22340-22348.
    [255]Zhong XH,Huang NR(2005).Rice grain chalkiness is negatively correlated with root activity during grain filling.Rice Sci 12:192-196.
    [256]Zhu JK(2001).Plant salt tolerance.Trends in Plant Sci 6:66-71.
    [257]Ziauddin A,Lee RWH,Lo R,Shewen P,Strommer J(2005).Transformation of alfalfa with a bacterial fusion gene,Mannheimia haemolytica Al leukotoxin50 gfp:Response with Agrobacterium tumefaciens strains LBA4404 and C58.Plant Cell Tissue Organ Cult 79(3):271-278.
    [258]Zingarelli L,Anzani P,Lado P(1994).Enhanced K~+-stimulated pyrophosphatase activity in NaCl-adapted cells of Acer pseudoplatanus.Physiol Plant 91:510-516.
    [259]奥斯伯,布伦特,金斯顿,等(2005).精编分子生物学实验指南(马学军,颜子颖,王海林译).北京,科学出版社.pp.120-126.
    [260]包爱科(2006).AVPI基因转化紫花苜蓿的初步研究.兰大大学硕士学位论文.
    [261]包爱科,王强龙,张金林,王锁民(2007).苜蓿基因工程研究进展.分子植物育种5(6S):160-168.
    [262]包爱科,张金林,郭正刚,王锁民(2006).液泡膜H~+-PPase与植物耐盐性.植物生理学通讯42(4):777-783.
    [263]曹孜义,刘国民(1996).实用植物组织培养技术教程,第2版.兰州,甘肃科学技术出版社.
    [264]陈积山,李锦华,常根柱(2008).不同苜蓿品种根系形态结构的抗旱性分析.内蒙古草业20(2):41-44.
    [265]董建辉,陈明,徐兆师,张晓科,李连城,马有志(2008).披碱草(Elymus dahuricus)焦磷酸化酶基因EdHP1的克隆及功能鉴定.麦类作物学报28(3):364-371.
    [266]桂枝,高建明(2007).盐胁迫对6个苜蓿品种脯氨酸含量和超氧化物歧化酶活性的影响.天 津农学院学报,14(4):18-21.
    [267]桂枝,高建明,袁庆华(2008).6个紫花苜蓿品种的耐盐性研究.华北农学报23(1):133-137.
    [268]韩德梁,王彦荣(2005).紫花苜蓿对干旱胁迫适应性的研究进展.草业学报14(6):7-13.
    [269]韩德梁,王彦荣,余玲,何胜江(2005).离体干旱胁迫下三种紫花苜蓿相关生理指标的测定草原与草坪(2):38-42.
    [270]韩利芳,张玉发(2004a).烟草MnSOD基因在保定苜蓿中的转化.生物技术通报(1):39-46.
    [271]韩利芳,张玉发(2004b).紫花苜蓿作为生物反应器的研究现状及应用前景.草业学报13(2):23-27.
    [272]韩瑞宏(2006).苗期紫花苜蓿对干旱胁迫的适应机制.草地学报14(4):393-394.
    [273]韩瑞宏,卢欣石,高桂娟,杨秀娟(2006).紫花苜蓿抗旱性主成分及隶属函数分析.草地学报14(2):142-146.
    [274]韩瑞宏,卢欣石,高桂娟,杨秀娟(2007).紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应.生态学报27(12):5229-5237.
    [275]韩瑞宏,张亚光,田华,卢欣石(2008).干旱胁迫下紫花苜蓿叶片几种内源激素的变化.华北农学报23(3):81-84.
    [276]黄俊轩,田瑞娟,李双跃,李建科,王晓亮(2007).盐胁迫下苜蓿品种的生理特性变化.北方园艺(6):143-146.
    [277]黄绍兴,吕德扬,邵嘉红,李良才,陈英(1991).紫花苜蓿原生质体转基因植株再生.科学通报17:1345-1347.
    [278]黄文惠,刘自学(1995).概论苜蓿的分布和发展.见:中国苜蓿.北京,中国农业出版社.pp.2-7.
    [279]贾利霞,张众(2008).NaCl胁迫对苜蓿种子萌发的影响.内蒙古草业20(1):40-42.
    [280]金兰,罗桂花(2004).盐胁迫对紫花苜蓿SOD、丙二醛及SOD同工酶的影响.黑龙江畜牧兽医(5):15-16.
    [281]金湘,张建军,毛培宏,徐建辉(2007).离子注入介导麻黄和甘草总DNA转化苜蓿的初步研究.生物技术17(4):53-55.
    [282]康俊梅,樊奋成,杨青川(2004).41份紫花苜蓿抗旱鉴定试验研究.草地学报12(1):21-23,56.
    [283]黎万奎,陈幼竹,周宇,徐恒(2003).肝片吸虫抗原基因转基因苜蓿再生的研究.四川大学学报(自然科学版)40(1):144-147.
    [284]李波,贾秀峰,白庆武,唐宇红(2003).干旱胁迫对苜蓿脯氨酸累积的影响.植物研究23(2):189-191.
    [285]李崇巍,贾志宽,林岭,徐春明,刘玉华(2002).几个苜蓿新品种抗旱性的初步研究.干旱地区农业研究20(4):21-25.
    [286]林栖风,李冠一(2000).植物耐盐性研究进展.生物工程进展20:20-25.
    [287]刘建新,王鑫,王凤琴(2005).水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响.草业科学22(3):18-21.
    [288]刘艳芝,王玉民,刘莉,隋松兵,李望丰,董英山(2004).Bar基因转化草原1号苜蓿的研究.草地学报12(4):273-280.
    [289]刘玉华,贾志宽,史纪安,韩清芳,曾庆飞(2006).旱作条件下不同苜蓿品种光合作用的日变化.生态学报26(5):1468-1477.
    [290]刘志鹏,杨青川,呼天明(2003).抗臌胀病紫花苜蓿研究进展.四川草原5:7-8.
    [291]吕德扬,范云六,俞梅敏,唐顺学,侯宁,汪清(2000).苜蓿高含硫氨基酸蛋白转基因植株再生.遗传学报27(4):331-337.
    [292]罗小英,崔衍波,邓伟,李德谋,裴炎(2004).超量表达苹果酸脱氢酶基因提高苜蓿对铝毒的耐受性.分子植物育种2(5):621-626.
    [293]马春平,崔国文(2006).10个紫花苜蓿品种耐盐性的比较研究.种子25(7):50-53.
    [294]马青枝,李造哲(1992).干旱胁迫下苜蓿体内游离脯氨酸的积累.内蒙古农牧学院学报13(4):137-140.
    [295]马宗仁,陈宝书(1992).甘肃地方苜蓿品种脯氨酸积累能力与抗旱性的关系研究.甘肃农业大学学报32(2):131-137.
    [296]萨姆布鲁克,拉赛尔(2002).分子克隆实验指南(黄培堂译).北京,科学出版社.pp.26-27.
    [297]山仑(2005).加速发展我国节水农业.求是杂志22:42-43.
    [298]山仑,邓西平,张岁岐(2006).生物节水研究现状及展望.中国科学基金(2):66-71.
    [299]山仑,张岁岐,李文娆(2008).论苜蓿的生产力与抗旱性.中国农业科技导报10(1):12-17.
    [300]沈艳,兰剑(2006).干旱胁迫下苜蓿抗旱性参数动态研究.农业科学研究27(3):21-23,30.
    [301]沈振荣,杨万仁,徐秀梅(2006).不同盐分胁迫对苜蓿种子萌发的影响.种子25(4):34-37.
    [302]宋淑明(1998).甘肃省紫花苜蓿地方类型抗旱性的综合评判.草业学报7(2):74-80.
    [303]陶玲(1998).甘肃省紫花苜蓿地方类型抗旱等级分类的研究.草业科学15(6):7-10.
    [304]田福平,陈子萱,张自和,常根柱,李尚中(2006).紫花苜蓿体内钾的积累与抗旱性的研究.牧草科学(1):19-22.
    [305]田福平,王锁民,郭正刚,张自和(2004).紫花苜蓿脯氨酸含量和含水量、单株干质量与抗旱性的相关性研究.草业科学21(1):3-6.
    [306]田瑞娟,杨静慧,梁国鲁,刘艳军,杜长城,黄俊轩,汪海霞(2006).不同品种紫花苜蓿耐盐性研究.西南农业大学学报(自然科学版)28(6):933-936.
    [307]王关林,方宏筠(2002).植物基因工程,第2版.北京,科学出版社.pp.385-402
    [308]王强龙,王锁民,张金林,陈托兄,楼洁琼,陆妮(2006).紫花苜蓿体细胞胚高频再生体系的建立.草业科学23(11):21-27.
    [309]王伟,陈亮,崔红(2001).盐度对铺地黍叶片中脯氨酸积累的影响.厦门人学学报(自然科学版)40(1):116-121.
    [310]王瑛,朱宝成,孙毅,张琳宇,罗建平(2007).外源lea3基因转化紫花苜蓿的研究.核农学报21(3):249-252.
    [311]王遵亲等著(1993).中国盐渍土.北京,科学出版社.
    [312]魏永胜,梁宗锁,山仑,张辰露(2005).利用隶属函数值法评价苜蓿抗旱性.草业科学22(6):33-36.
    [313]翁森红,赵来喜(1997).干旱处理下豆科牧草在二个生长期游离脯氨酸积累动态.四川草原3:20-23.
    [314]伍国强,王强龙,包爱科,王锁民(2008).液泡膜Na~+/H~+逆向转运蛋白与植物耐盐性.中国农业科技导报10(2):13-21.
    [315]武冬梅,陈创夫,祝建波,李冀新(2007).含有MAR序列的STI-STII-LTB融合基因在苜蓿中的表达.扬州大学学报(农业与生命科学版)28(2):83-87.
    [316]新华网(2009).http://news.xinhuanet.com/fortune/2009-02/04/content_10759381.htm.
    [317]徐恒,黎万奎,谢志健,吴炼,张旭,周宇(2001).苜蓿愈伤组织诱导及GUS基因瞬时表达.四川大学学报(自然科学版)38:905-908.
    [318]晏石娟,马晖玲,曹致中(2006).紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究.甘肃农业大学学报41(5):91-94.
    [319]杨青川,耿华珠,郝吉国(1994).紫花苜蓿、扁蓿豆POD同工酶的测定.中国草地(2):53-56.
    [320]姚觉,于晓英,邱收,李达(2007).植物抗旱机理研究进展.华北农学报22(8):51-56.
    [321]余玲,王彦荣,Trevor GT,Geoff AT,韩德梁(2006).紫花苜蓿不同品种对干旱胁迫的生理响应.草业学报15(3):75-85.
    [322]云岚,米福贵,云锦凤,白玉娥,张春明(2004).六个苜蓿品种幼苗对水分胁迫的响应及其抗旱性.中国草地26(2):15-20.
    [323]张志胜,赵世绪(1993).苜蓿抗性愈伤组织抗旱机理的初步研究.华南农业大学学报14(1)60-64.
    [324]赵金梅,周禾,王秀艳(2005).水分胁迫下苜蓿品种抗旱生理生化指标变化及其相互关系.草地学报13(3):184-189.
    [325]赵利辉,刘友良(1999).液泡膜H~+-PPase及其对逆境胁迫的反应.植物生理学通讯35(6):441-445.
    [326]赵昕,李玉霖(2001).高温胁迫下冷地型草坪草几项生理指标的变化特征.草业学报10(4)85-91.
    [327]周丽霞,王朝凌,卢欣石(1999).八种非秋眠苜蓿品种的耐盐性评定.中国草地(1):23-25.
    [328]周瑞莲,张承烈(1991).PEG渗透胁迫对不同抗旱性紫花苜蓿品种过氧化物酶和过氧化氢酶同工酶的影响.中国草地(5):21-25.
    [329]周瑞莲,张承烈,金巨合(1991).水分胁迫下紫花苜蓿叶片含水量、质膜透性、SOD、CAT活性变化与抗旱性关系研究.中国草地(2):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700