阴、阳离子表面活性剂高盐溶液及其与卵磷脂复配体系的聚集行为和性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂体系形成的聚集体结构、形状、尺寸和性质与形成机理,以及随之发生的相转变和转变过程中热力学和动力学问题仍然是表面活性剂科学研究的热点。表面活性剂复配体系以其能够简单快捷地形成新的产品而得以广泛研究,由于表面活性剂之间是以非共价键的方式作用,这样即可以利用各自的性能和优势,又可以发挥各种物质的协同效应。
     表面活性剂复配体系在溶液中能够自发形成各种有序聚集体,如球状和蠕虫状胶束、囊泡、层状液晶等,阴/阳离子表面活性剂体系就是其中杰出的代表。阴/阳离子表面活性剂体系呈现出丰富的相行为,而这些相行为的变化因素主要是阴离子和阳离子表面活性剂的混合比例、表面活性剂总浓度和表面活性剂的自身性质,如链长、极性头基类型等。这些体系一个显著的性质是能够自发形成阴/阳离子表面活性剂囊泡,而这些自发形成的囊泡能够稳定存在相当长的一段时间,可以作为一种模型体系来研究,具有重要的理论研究价值。
     卵磷脂作为一种生物表面活性剂,是细胞的重要组成成分,它能够促进神经传导,提高大脑活力;促进脂肪代谢,防止出现脂肪肝;改善血液循环,预防心、脑血管疾病,具有极高的营养和医学价值。卵磷脂具有乳化、润湿、分散、改善粘度以及生物降解性等,在表面活性剂聚集体的构筑及调控等方面有不同于普通表面活性剂的特点,能形成一些独特的聚集结构。研究卵磷脂参与形成的阴/阳离子表面活性剂复配体系,可为近年来兴起的纳米材料、生物技术以及医药研究提供基础。
     论文以阴/阳离子表面活性剂复配体系为模型体系,研究了模拟体系在高盐溶液中的聚集结构和性质以及它们与卵磷脂混合构筑的无盐阴/阳离子表面活性剂复配体系。
     第一章中简要介绍了与本论文研究相关的基本知识、国内外近年的研究动态以及选题的内容和研究意义。
     在第二章中,我们研究了无机盐NaBr、NaCl和KBr分别在阳离子表面活性剂TTABr和阴离子表面活性剂SDS溶液中从298.15K到353.15K的溶解度。无机盐在表面活性剂溶液中的溶解度随温度的增加而增加,与其在水中的溶解度随温度变化趋势相同。NaBr、NaCl和KBr在低于临界胶束浓度(cmc)的表面活性剂溶液中的溶解度大于它们在高于cmc溶液中的溶解度。NaBr和KBr在阳离子表面活性剂溶液TTABr中的溶解度随温度增加而显著增加,但是NaBr和NaCl在阴离子表面活性剂溶液SDS中的溶解度随温度升高增加缓慢。在考察温度范围内,无机盐在SDS溶液中的溶解度远小于其在水中的溶解度。而对于TTABr溶液则不同,当温度低于312.5K时,KBr和NaBr在TTABr溶液中的溶解度远小于其在水中的溶解度;当温度高于340.15K时,KBr和NaBr在TTABr溶液中的溶解度略高于其在水中溶解度:当温度在312.15~340.15K之间时,KBr和NaBr在TTABr溶液中的溶解度与其在水中溶解度相当。这些数据和结论对于物理化学和工业应用中无机盐和表面活性剂的相互作用提供了新的理解和基本数据。
     在第三章中,NaBr诱导阴/阳离子表面活性剂复配形成的无盐和含盐体系聚集体形貌发生了变化,具体研究的体系是:i)优质的稀土金属萃取剂二(2-乙基已基磷酸酯(HDEHP)和十四烷基三甲基氢氧化铵(TTAOH)混合体系,ii)HDEHP的钠盐NaDEHP (HDEHP+NaOH→NaDEHP+H2O)与十四烷基三甲基溴化铵(TTABr).随着盐的加入,无盐体系由Lα/L1两相转变成由囊泡组成的Lα相,含盐体系也转变成La相,即两个体系中聚集体形貌都发生了变化,但转变后形成的微观结构是完全不同的。对于无盐体系HDEPH/TTAOH/H2O,盐的加入使得聚集体从紧密堆积导致的形变严重的囊泡转变成尺寸小、分散度低、自发曲率稳定的囊泡相:而含盐体系NaDEHP/TTABr/H2O随溶液中Na+的增加,单分散的多层囊泡相转变成严重变形、曲率较小、体积较大的囊泡。偏光显微镜观察、流变学测量、2H和31P核磁共振和低温透视电子显微镜(cryo-TEM)都证明了这些精细微观结构的演变,并从能量和临界堆积参数理论解释了这两个体系中囊泡结构转变。改变盐浓度控制聚集体结构类型的转变为表面活性剂聚集体的转变提供新的理解,并有望能够为开展稀土元素囊泡相中的萃取和控制释放做出理论贡献。
     在第四章和第五章中,研究了卵磷脂参与构筑无盐阴/阳离子表面活性剂复配体系和卵磷脂与无盐阴/阳离子表面活性剂复配体系的相互作用以及结构演变。在第四章中,考察了卵磷脂/TTAOH/水体系,通过改变混合比率r可以观察到丰富的相行为。Cryo-TEM能够直观地观察到聚集结构,流变学实验测量了这些聚集结构的流变学性质,并证明这些结构的存在,同时1H和31P核磁共振谱图提供了卵磷脂与TTAOH相互作用的重要信息。在已有的研究结果中,卵磷脂与离子表面活性剂相互作用的研究集中在含水量少的条件下。这些体系形成的结构主要是层状相和浓密的多层囊泡相(尺寸大于5μm)。而在本章研究的体系中观察到了棒状胶束和单层囊泡的存在。有趣的是我们发现卵磷脂可以结合一些单链表面活性剂TTAOH形成囊泡,因此这个体系为在特殊条件下(比如碱性)在脂质体内封装药物提供了可能性。
     在第五章中,研究了卵磷脂与无盐阴/阳离子表面活性剂体系十四烷基三甲基氢氧化铵/正十四酸/水(TTAOH/MA/H2O)的相互作用。随卵磷脂与TTAM混合比例和表面活性剂总浓度的变化,体系卵磷脂/TTAM/H2O形成的聚集体结构不同,分别是六角相H,层状相L,和两相层状相/H2O和六角相/层状相。卵磷脂和TTAM在水溶液中都容易形成层状相或囊泡相,卵磷脂在水含量较低且温度较高时形成反相六角相,而混合体系卵磷脂/TTAM/H2O在水含量较多时室温下即能够形成六角相,这与卵磷脂和TTAM在水中的相行为不同。通过小角X射线散射结果,计算出层状相的双分子层厚度,从而推出在层状相中卵磷脂和TTAM分子的排列;对于六角相,利用SAXS能得知晶格参数,并推导出柱状聚集体之间的距离及其疏水区域的半径。此研究丰富了含卵磷脂体系的溶致液晶相种类,在生物技术尤其是DNA转染方面有着潜在的应用。
The study on the self-assembly, structural transition and properties of surfactants in aqueous solutions is the focus of colloid and interface science. In most cases, the mixed systems of surfactants usually have more excellent performance than the single surfactant solutions. The cationic and anionic surfactants mixture system, called catanionic systems, is a typical example, which has unique characteristics. The catanionic systems display a large diversity of phases. An outstanding property of theses systems is their ability to spontaneously form catanionic vesicles which can remain stable for years. The addition of salts can affect the properties of surfactant solution. Lecithin is the best known of all natural surfactants. It is widely distributed in living nature, being a basic structural component of the lipid matrix of biological membranes and membranous organelles. And it widely uses in food industries, cosmetics, pharmacology, and biotechnology as an effective dispersive and emulsifying agent. All this explains the keen interest of investigators from different fields of science in s lecithin. The research on interaction between lecithin and the catanionic surfactant systems can provide fundamental knowledge for the nano materials, biotechnology and pharmaceutical technology.
     In this thesis we investigated that the phase transition of surfactant aggregates in salt solution and the catanionic surfactant systems with lecithin. The outline and contents of this doctoral thesis are as follows:
     Chapter Ⅰ is a brief introduction of basic knowledge of the research background, in which surfactant science are reviewed, especially we conferred about the general features concerning the catanionic systems. The object and scientific significance of this thesis are also discussed at the end of this chapter.
     In Chapter Ⅱ, we determined the solubility of three commercially available inorganic salts, NaBr, NaCl, and KBr in cationic tetradecyltrimethylammonium bromide (TTABr) and anionic sodium dodecyl sulfate (SDS) solutions from298.15K to353.15K, respectively. The data show that the solubility of three salts in SDS and TTABr solution increase progressively with temperature increasing, which is similar to those in water. The solubility of NaBr, NaCl and KBr in surfactant aqueous solutions with concentration below the critical micelle concentration (cmc) of TTABr or SDS is higher than those with concentrations above TTABr or SDS cmc. The solubility of NaCl and NaBr in SDS are much lower than those in water and increase slowly along with the temperature increasing. For the case of KBr and NaBr in TTABr, it becomes more complicated. When temperature is below T=312.15K, the solubility of KBr and NaBr are much lower than those in water. But the solubility become higher when temperature is above T=340.15K. And the data are similar to those in water between312.15K and340.15K. The solubility of inorganic salts in surfactant aqueous solutions is very important parameter in scientific research and industry. The data and the results of inorganic salts in surfactant aqueous solutions should provide the basic data and make for understanding for inorganic and surfactant industries.
     In Chapter Ⅲ, the phase behavior induced by adding NaBr in two systems of cationic and anionic (catanionic) mixtures with same surfactant components but salt-free and saline in water, i.e.,(ⅰ) an excellent extractant of rare-earth metal ions, di-(2-ethylhexyl) phosphate (HDEHP, commercial name:P204), mixing with a cationic trimethyltetradecylammonium hydroxide (TTAOH) and (ⅱ) the sodium salt of HDEHP, NaDEHP (HDEHP+NaOH→NaDEHP+H2O), mixing with tetradecyltrimethylammonium bromide (TTABr), were studied. With adding NaBr, the salt-free system was transferred from an original two-phase Lα/L1to single Lα phase consisting of vesicles, the saline system from a two-phase Lα/L1to single Lα phase of vesicles, too. A very interesting finding is that the both finally single Lα phases of the two systems contain vesicles having different hyperfine structures which could be induced by much higher ionic strength because of the addition of NaBr. For the salt-free system, the densely deformed and packed vesicles are transferred to smooth and spherical ones with the addition of NaBr. However, for the saline system, the spherical vesicles with a high spontaneous curvature are changed to be largely, densely, and remarkably deformed ones. The hyperfine vesicle evolvement was demonstrated by polarization observations, rheology measurements, deuterium and phosphorus nuclear magnetic resonance spectra (2H and31P NMR), and cryogenic transmission electron microscopy (cryo-TEM) images. The theoretical considerations of vesicle evolvement in the two systems were discussed from energy and packing parameter. This control over aggregate shape with salt concentration may provide an understanding of transmutation of surfactant aggregates originating from different surfactant systems.
     In Chapter Ⅳ the phase behavior, structures, and properties of lecithin/tetradecyltrimethylammonium hydroxide (TTAOH)/water systems were investigated by cryo-TEM, polarization optical microscope,1H and31P NMR spectra, surface tension and rheological measurements. With the variation of mixing molar ratio and concentration of lecithin and TTAOH, the system exhibits the phase transition from micelles (L1phase) to vesicles (La Phase) through a phase separation region. The rod-like micelles, uni-and multilamellar vesicles were determined by means of cryo-TEM observations. The surface tension and rheological measurements were performed to follow the phase transition. The samples of L1phases behave as Newton fluids at a low concentration of lecithin. With increasing of the lecithin concentration, a shear-thinning L1phase at the shear rate80s-1was found. The samples of La phases show viscoelastic properties of typical vesicles. The interactions between lecithin and TTAOH were monitored by]H and31P NMR spectra. These results could contribute towards the understanding of the basic function of lecithin in biological membranes and membranous organelles.
     In Chapter V, the phase equilibria in mixtures of lecithin and the salt-free catanionic system TTAOH/MA (Myristic acid)/H2O were studied with particular emphasis on the behavior of the lamellar and hexagonal liquid crystal. The solvent corner of this system features an extensive lamellar and hexagonal phase and which we have characterized by means of polarization optical microscope, small-angle X-ray scattering and rheology. The findings from X-ray scattering determine the structural parameters of lamellar and hexagonal phase, which indicate the arrangement of surfactant molecules in lamellar and hexagonal phase.
引文
1. Lindman, B.; Wennerstrom, H., Topics in current chemistry.1980; Vol.87, p1.
    2. Schick, M. J., Nonionic surfactants:physical chemistry. CRC Press, Florida: 1987; Vol.23.
    3. Shinoda, K.; Nakagawa, T.; Tamamushi, B. I.; Isemura, T., Colloidal surfactants: some physicochemical properties. Academic Press, New York:1963; Vol.12.
    4. Gunnarsson, G.; Joensson, B.; Wennerstroem, H., Surfactant association into micelles. An electrostatic approach. The Journal of Physical Chemistry 1980,84 (23), 3114-3121.
    5. Schwartz, A. M.; Perry, J. W.; Bartell, F., Surface Active Agents. The Journal of Physical Chemistry 1949,53 (9),1467-1467.
    6. Baeckstroem, K.; Lindman, B.; Engstroem, S., Removal of triglycerides from polymer surfaces in relation to surfactant packing. Ellipsometry studies. Langmuir 1988,4 (4),872-878.
    7. Malmsten, M.; Lindman, B., Ellipsometry studies of cleaning of hard surfaces. Relation to the spontaneous curvature of the surfactant monolayer. Langmuir 1989,5 (4),1105-1111.
    8. Holmberg, K.; Jonsson, B.; Kronberg, B.; Lindman, B., Surfactants and polymers in aqueous solution. Wiley, New York:2004.
    9. Israelachvili, J. N., Intermolecular and surface forces. Academic press, New York: 2011.
    10. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics 1976,72,1525-1568.
    11. Mitchell, D. J.; Ninham, B. W., Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics 1981, 77(4),601-629.
    12. Seddon, J. M., Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochimica et biophysica acta 1990,1031 (1),1.
    13. Hyde, S., Microstructure of bicontinuous surfactant aggregates. The Journal of Physical Chemistry 1989,93 (4),1458-1464.
    14. Anderson, D. M.; Gruner, S. M.; Leibler, S., Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proceedings of the National Academy of Sciences 1988,85 (15),5364.
    15. Charvolin, J.; Sadoc, J., Periodic systems of frustrated fluid films and <> cubic structures in liquid crystals. Journal de Physique 1987,48 (9), 1559-1569.
    16. Sadoc, J.; Charvolin, J., Frustration in bilayers and topologies of liquid crystals of amphiphilic molecules. Journal de Physique 1986,47 (4),683-691.
    17. Mackay, A. L., Periodic minimal surfaces. Nature 1985,314 (18),604-606.
    18. Longley, W.; McIntosh, T. J., A bicontinuous tetrahedral structure in a liquid-crystalline lipid. Nature 1983,303(16),612-614.
    19. Scriven, L., Equilibrium bicontinuous structures. Micellization, solubilization, and microemulsions 1977,2,877-893.
    20. Scriven, L., Equilibrium bicontinuous structure. Nature 1976,263,123-125.
    21. Andersson, S.; Hyde, S.; Larsson, K.; Lidin, S., Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers. Chemical Reviews 1988,88 (1),221-242.
    22. Mariani, P.; Luzzati, V.; Delacroix, H., Cubic phases of lipid-containing systems:: Structure analysis and biological implications. Journal of molecular biology 1988, 204(1),165-189.
    23. Charvolin, J., Crystals of interfaces:the cubic phases of amphiphile/water systems. Le Journal de Physique Colloques 1985,46 (C3),3-3.
    24. Li, X.; Kunieda, H., Catanionic surfactants:microemulsion formation and solubilization. Current opinion in colloid & interface science 2003,8 (4-5),327-336.
    25. Koehler, R. D.; Raghavan, S. R.; Kaler, E. W., Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. The Journal of Physical Chemistry B 2000,104 (47),11035-11044.
    26. Raghavan, S. R.; Fritz, G.; Kaler, E. W., Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 2002,18 (10), 3797-3803.
    27. Dubois, M.; Zemb, T., Swelling limits for bilayer microstructures:the implosion of lamellar structure versus disordered lamellae. Current opinion in colloid & interface science 2000,5 (1-2),27-37.
    28. Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989,245 (4924),1371-1374.
    29. Khan, A., Phase science of surfactants. Current opinion in colloid & interface science 1996,1 (5),614-623.
    30. Horbaschek, K.; Hoffmann, H.; Hao, J., Classic La phases as opposed to vesicle phases in cationic-anionic surfactant mixtures. The Journal of Physical Chemistry B 2000,104(13),2781-2784.
    31. Kaler, E. W.; Herrington, K. L.; Murthy, A. K.; Zasadzinski, J. A. N., Phase behavior and structures of mixtures of anionic and cationic surfactants. The Journal of Physical Chemistry 1992,96 (16),6698-6707.
    32. Herrington, K. L.; Kaler, E. W.; Miller, D. D.; Zasadzinski, J. A.; Chiruvolu, S., Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). The Journal of Physical Chemistry 1993,97 (51), 13792-13802.
    33. Kondo, Y.; Uchiyama, H.; Yoshino, N.; Nishiyama, K.; Abe, M., Spontaneous vesicle formation from aqueous solutions of didodecyldimethylammonium bromide and sodium dodecyl sulfate mixtures. Langmuir 1995,11 (7),2380-2384.
    34. Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A., Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS). The Journal of Physical Chemistry 1996,100 (14),5874-5879.
    35. Soderman, O.; Herrington, K. L.; Kaler, E. W.; Miller, D. D., Transition from micelles to vesicles in aqueous mixtures of anionic and cationic surfactants. Langmuir 1997,13(21),5531-5538.
    36. Iampietro, D. J.; Kaler, E. W., Phase behavior and microstructure of aqueous mixtures of cetyltrimethylammonium bromide and sodium perfluorohexanoate. Langmuir 1999,15 (25),8590-8601.
    37. Jung, H.-T.; Lee, S. Y.; Kaler, E. W.; Coldren, B.; Zasadzinski, J. A., Gaussian curvature and the equilibrium among bilayer cylinders, spheres, and discs. Proceedings of the National Academy of Sciences 2002,99 (24),15318-15322.
    38. Jokela, P.; Joensson, B.; Khan, A., Phase equilibria of catanionic surfactant-water systems. Journal of Physical Chemistry 1987,91 (12),3291-3298.
    39. Jonsson, B.; Jokela, P.; Khan, A.; Lindman, B.; Sadaghiani, A., Catanionic surfactants:phase behavior and microemulsions. Langmuir 1991,7 (5),889-895.
    40. Jokela, P.; Joensson, B.; Eichmueller, B.; Fontell, K., Phase equilibria in the sodium octanoate-octylammonium octanoate-water system. Langmuir 1988,4 (1), 187-192.
    41. Hao, J.; Liu, W.; Xu, G.; Zheng, L., Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 2003,19 (26),10635-10640.
    42. Li, H.; Jia, X.; Li, Y.; Shi, X.; Hao, J., A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C60 in water. The Journal of Physical Chemistry B 2006,110 (1),68-74.
    43. Song, A.; Dong, S.; Jia, X.; Hao, J.; Liu, W.; Liu, T., An Onion Phase in Salt-Free Zero-Charged Catanionic Surfactant Solutions. Angewandte Chemie International Edition 2005,44 (26),4018-4021.
    44. Zemb, T.; Dubois, M.; Deme, B.; Gulik-Krzywicki, T., Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 1999,283 (5403), 816-819.
    45. Glinel, K.; Dubois, M.; Verbavatz, J. M.; Sukhorukov, G. B.; Zemb, T., Determination of pore size of catanionic icosahedral aggregates. Langmuir 2004,20 (20),8546-8551.
    46. Dubois, M., et al, Shape control through molecular segregation in giant surfactant aggregates. Proceedings of the National Academy of Sciences of the United States of America 2004,101 (42),15082.
    47. Dubois, M., et al, Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 2001,411,672-675.
    48. Safran, S.; Pincus, P.; Andelman, D.; MacKintosh, F., Stability and phase behavior of mixed surfactant vesicles. Physical Review A 1991,43 (2),1071.
    49. Safran, S. A., Statistical thermodynamics of surfaces, interfaces, and membranes. Addison-Wesley Reading, MA:1994.
    50. Safran, S.; Pincus, P.; Andelman, D., Theory of spontaneous vesicle formation in surfactant mixtures. Science 1990,248 (4953),354-356.
    51.安红.粉状及高卵磷脂含量的大豆磷脂的制备及表面物性研究.大连理工大学,2002.
    52.周景春;田原,大豆油,水分和铁对大豆磷脂酸值和碘值的影响.中国生化药物杂志2001,22(2),90-92.
    53. Johnson, M.; Saunders, L., Time dependent interfacial tensions of a series of phospholipids. Chemistry and Physics of Lipids 1973,10 (4),318-327.
    54. Ogino, K.; Yamauchi, H.; Ueno, Y., Studies on the Behavior of Natural Surfactant at the Oil-Water Interface. Ⅱ. Behavior of Natural Surfactant at the Oil-Water Interface. Bulletin of the Chemical Society of Japan 1981,54 (12),3846-3849.
    55. Rydhag, L.; Wilton, I., The function of phospholipids of soybean lecithin in emulsions. Journal of the American Oil Chemists' Society 1981,58 (8),830-837.
    56. Tanford, C, The Hydrophobic Effect:Formation of Micelles and Biological Membranes 2d Ed. Wiley. New York:1980.
    57. Schchipunov, Y. A., Hydrophobic and electrostatic interactions in adsorption of surface-active substances. Tetraalkylammonium salts. Advances in colloid and interface science 1987,28,135-195.
    58. Tanford, C., Hydrophobic free energy, micelle formation and the association of proteins with amphiphiles. Journal of molecular biology 1972,67 (1),59-74.
    59. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of lipid bilayers and vesicles. Biochimica et biophysica acta 1977,470 (2),185.
    60. Rusanov, A., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg:Khimiya 1992, 280.
    61. Gibbs, J. W., The collected works of J. Willard Gibbs. Longmans, Green:1928; Vol.1.
    62. Rusanov, A., The Formation of Micelles in Solutions of Surface-Active Compounds. Petersburg:Khimiya 1992,280.
    63. Langevin, D., Micelles and microemulsions. Annual Review of Physical Chemistry 1992,43 (1),341-369.
    64. Israelachvili, J.; Marcelja, S.; Horn, R. G., Physical principles of membrane organization. Quarterly Reviews of Biophysics 1980,13 (2),121-200.
    65. Cevc, G.; Marsh, D., Phospholipid bilayers:physical principles and models. Wiley, New York:1987; Vol.5.
    66. Small, D. M.; Hanahan, D. J., The physical chemistry of lipids:from alkanes to phospholipids. Plenum Press New York:1986.
    67. Walde, P.; Giuliani, A. M.; Boicelli, C. A.; Luisi, P. L., Phospholipid-based reverse micelles. Chemistry and Physics of Lipids 1990,53 (4),265-288.
    68. Shchipunov, Y. A.; Kolpakov, A. F., Phospholipids at the oil/water interface: adsorption and interfacial phenomena in an electric field. Advances in colloid and interface science 1991,35,31-138.
    69. Elworthy, P., The adsorption of water vapour by lecithin and lysolecithin, and the hydration of lysolecithin micelles. Journal of the Chemical Society 1961, (0), 5385-5389.
    70. Kumar, V.; Kumar, C.; Raghunathan, P., Studies on lecithin reverse micelles: Optical birefringence, viscosity, light scattering, electrical conductivity, and electron microscopy. Journal of Colloid and Interface Science 1984,99 (2),315-323.
    71. Fontell, K., Phase equilibria in the system soybean lecithin/water. Progress in Colloid & Polymer Science 1983,68,48-52.
    72. Dickinson, E., Food polymers, gels and colloids:based on the proceedings of an International Symposium organized by the Food Chemistry Group of the Royal Society of Chemistry at Norwich from 28th-30th March 1990. Royal Society of Chemistry:1991.
    73. Brown, G. H.; Wolken, J. J., Liquid crystals and biological structures. Academic Press New York:1979.
    74. Bangham, A.; Home, R., Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of molecular biology 1964,8,660.
    75. Poste, G.; Papahadjopoulos, D., The influence of vesicle membrane properties on the interaction of lipid vesicles with cultured cells. Annals of the New York Academy of Sciences 1978,308 (1),164-184.
    76. Lasic, D. D., The mechanism of vesicle formation. Biochemical Journal 1988, 256(1),1.
    77. Cullis, P.; Hope, M., Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature 1978,271, 672-674.
    78. Green, D. E., Membrane proteins:a perspective. Annals of the New York Academy of Sciences 1972,195 (1),150-172.
    79. Lucy, J., The fusion of biological membranes. Nature 1970,227,815-817.
    80. Aloia, R. C.; Boggs, J. M., Membrane fluidity in biology:Disease processes. Academic Press, New York:1985; Vol.3.
    81. Verkleij, A. J., Lipidic intramembranous particles. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1984,779 (1),43-63.
    82. Lindblom, G. O. R.; Sjolund, M.; Rilfors, L., Effect of n-alkanes and peptides on the phase equilibria in phosphatidylcholine—water systems. Liquid Crystals 1988,3 (6-7),783-790.
    83. Sjolund, M.; Lindblom, G.; Rilfors, L.; Arvidson, G., Hydrophobic molecules in lecithin-water systems. I. Formation of reversed hexagonal phases at high and low water contents. Biophysical journal 1987,52 (2),145-153.
    84. Sjoelund, M.; Rilfors, L.; Lindblom, G., Reversed hexagonal phase formation in lecithin-alkane-water systems with different acyl chain unsaturation and alkane length. Biochemistry 1989,28 (3),1323-1329.
    85. Binks, B. P., Modern characterization methods of surfactant systems. CRC Press, Florida:1999; Vol.83.
    86. Regev, O.; Guillemet, F., Various bilayer organizations in a single-tail nonionic surfactant:unilamellar vesicles, multilamellar vesicles, and flat-stacked lamellae. Langmuir 1999,15 (13),4357-4364.
    87. Fukada, K.; Kawasaki, M.; Kato, T.; Maeda, H., Structure of Lyotropic Liquid Crystals of the Dodecyldimethylamine Oxide-HCl-Water System. Langmuir 2000,16 (6),2495-2501.
    88. Bass, M., Handbook of optics. McGraw-Hill:2001; Vol.1.
    89. Yamashita, Y.; Savchuk, K.; Beck, R.; Hoffmann, H., Vesicle phases from alkyldimethylaminoxides and strong acids. The Hofmeister series of anions and the L1/Lα phase transition. Current opinion in colloid & interface science 2004,9 (1), 173-177.
    90. Hoffmann, H., Fascinating phenomena in surfactant chemistry. Advanced Materials 1994,6 (2),116-129.
    91. Padday, J., Surface and colloid science. Vol. I.Wiley, New York:1969.
    92. Hartland, S., Surface and interfacial tension:measurement, theory, and applications. CRC Press, Florida:2004; Vol.119.
    93. Schowalter, W. R., Mechanics of non-Newtonian fluids. Pergamon press, New York:1978.
    94. Zana, R., Surfactant solutions new methods of investigations. Marcel Dekker Inc., New York:1987.
    95. Rehage, H.; Hoffmann, H., Viscoelastic surfactant solutions:model systems for rheological research. Molecular Physics 1991,74 (5),933-973.
    96. Hoffmann, H.; Rauscher, A.; Gradzielski, M.; Schulz, S., Influence of ionic surfactants on the viscoelastic properties of zwitterionic surfactant solutions. Langmuir 1992,8 (9),2140-2146.
    97. Cates, M., Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). Journal of Physical Chemistry 1990,94 (1),371-375.
    98.江龙,胶体化学概论.科学出版社:2002.
    99. Bylund, G., Dairy processing handbook. Tetra Pak Processing Systems AB:1995.
    100. Reiner, M., The deborah number. Physics Today 1964,17,62.
    101. Hoffmann, H.; Thunig, C.; Schmiedel, P.; Munkert, U.; Ulbricht, W., The rheological behaviour of different viscoelastic surfactant solutions:systems with and without a yield stress value. Tenside, surfactants, detergents 1994,31 (6),389-400.
    102. Schramm, G.; Haake, G., A practical approach to rheology and rheometry. Haake:1994.
    103. Silverstein, R.; Bassler, G. C.; Morrill, T. C., Spectrometric identification of organic compounds. Wiley, New York:1991.
    104. Hubbard, P. L.; McGrath, K. M.; Callaghan, P. T., Orientational anisotropy in the polydomain lamellar phase of a lyotropic liquid crystal. Langmuir 2006,22 (9), 3999-4003.
    105. Borne, J.; Nylander, T.; Khan, A., Microscopy, SAXD, and NMR studies of phase behavior of the monoolein-diolein-water system. Langmuir 2000,16 (26), 10044-10054.
    106. Mele, S.; Ninham, B. W.; Monduzzi, M., Phase behavior of homologous perfluoropolyether surfactants:NMR, SAXS, and optical microscopy. The Journal of Physical Chemistry B 2004,108 (46),17751-17759.
    107. Dvinskikh, S. V.; Castro, V.; Sandstrom, D., Efficient solid-state NMR methods for measuring heteronuclear dipolar couplings in unoriented lipid membrane systems. Physical Chemistry Chemical Physics 2005,7 (4),607-613.
    108. 李干佐;曾宪诚,2H-NMR法研究C14BE/正丁醇/正庚烷/水体系中的液晶结构.科学通报1994,39(16),1478-1481.
    109. Gustafsson, J.; Oradd, G.; Lindblom, G.; Olsson, U.; Almgren, M., A defective swelling lamellar phase. Langmuir 1997,13 (4),852-860.
    110.Halle, B.; Wennerstrom, H., Interpretation of magnetic resonance data from water nuclei in heterogeneous systems. The Journal of Chemical Physics 1981,75,1928.
    111.Lukaschek, M.; Muller, S.; Hasennindl, A.; Schmidt, C.; Grabowski, D., Lamellar lyomesophases under shear as studied by deuterium nuclear magnetic resonance. Colloid & Polymer Science 1996,274(1),1-7.
    112.Gorenstein, D. G., Non-biological aspects of phosphorus-31 NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 1984,16,1-98.
    113.Dubinnyi, M. A.; Lesovoy, D. M.; Dubovskii, P. V.; Chupin, V. V.; Arseniev, A. S., Modeling of 31P-NMR spectra of magnetically oriented phospholipid liposomes:A new analytical solution. Solid State Nuclear Magnetic Resonance 2006,29 (4), 305-311.
    114.Miller, D.; Bellare, J.; Evans, D.; Talmon, Y.; Ninham, B., Meaning and structure of amphiphilic phases:inferences from video-enhanced microscopy and cryotransmission electron microscopy. Journal of Physical Chemistry 1987,91 (3), 674-685.
    115.Talmon, Y.; Mohwald, H., Editorial overview. Current Opinion in Colloid & Interface Science 1996,1 (2),241-242.
    116.Swanson-Vethamuthu, M.; Dubin, P. L.; Almgren, M.; Li, Y, Cryo-TEM of polyelectrolyte-micelle complexes. Journal of Colloid and Interface Science 1997, 186 (2),414-419.
    117.Knoblich, B.; Gerber, T., The arrangement of fractal clusters dependent on the pH value in silica gels from sodium silicate solutions. Journal of non-crystalline solids 2001,296 (1),81-87.
    1. Pinho, S. P.; Macedo, E. A., Experimental measurement and modelling of KBr solubility in water, methanol, ethanol, and its binary mixed solvents at different temperatures. The Journal of Chemical Thermodynamics 2002,34 (3),337-360.
    2. Rard, J. A.; Archer, D. G., Isopiestic Investigation of the Osmotic and Activity Coefficients of Aqueous NaBr and the Solubility of NaBr·2H2O(cr) at 298.15 K: Thermodynamic Properties of the NaBr+H2O System over Wide Ranges of Temperature and Pressure. Journal of Chemical & Engineering Data 1995,40 (1), 170-185.
    3. Wagner, K.; Friese, T.; Schulz, S.; Ulbig, P., Solubilities of Sodium Chloride in Organic and Aqueous—Organic Solvent Mixtures. Journal of Chemical & Engineering Data 1998,43(5),871-875.
    4. Swearingen, L.; Florence, R. T., The Solubility of Sodium Bromide in Acetone. The Journal of Physical Chemistry 1934,39 (5),701-708.
    5. Pinho, S. P.; Macedo, E. A., Solubility of NaCl, NaBr, and KCl in Water, Methanol, Ethanol, and Their Mixed Solvents. Journal of Chemical & Engineering Data 2004,50(1),29-32.
    6. Linke, W. F.; Seidell, A., Solubilities, inorganic and metal organic compounds:a compilation of solubility data from the periodical literature.4th ed.; American Chemical Society Washington,1958.
    7. Aswal, V. K.; Goyal, P. S., Dependence of the size of micelles on the salt effect in ionic micellar solutions. Chemical Physics Letters 2002,364 (1-2),44-50.
    8. de Melo Filho, A. A.; Amadeu, N. S.; Fujiwara, F. Y., The phase diagram of the lyotropic nematic mesophase in the TTAB/NaBr/water system. Liquid Crystals 2007, 34(6),683-691.
    9. Hayashi, S.; Ikeda, S., Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions. The Journal of Physical Chemistry 1980,84 (7),744-751.
    10. Vijayan, S.; Woods, D. R.; Vaya, H., Bulk and interfacial physical properties of aqueous solutions of sodium lauryl sulphate and lauryl alcohol with air and benzene system:Part I:Aqueous solutions of sodium lauryl sulphate. The Canadian Journal of Chemical Engineering 1977,55 (6),718-731.
    11. Bhat, P. A.; Dar, A. A.; Rather, G. M., Solubilization Capabilities of Some Cationic, Anionic, and Nonionic Surfactants toward the Poorly Water-Soluble Antibiotic Drug Erythromycin. Journal of Chemical & Engineering Data 2008,53 (6), 1271-1277.
    12. Corrin, M. L.; Harkins, W. D., The Effect of Salts on the Critical Concentration for the Formation of Micelles in Colloidal Electrolytesl. Journal of the American Chemical Society 1947,69 (3),683-688.
    1. Hoffmann, H.; Thunig, C.; Schmiedel, P.; Munkert, U., Surfactant Systems with Charged Multilamellar Vesicles and Their Rheological Properties. Langmuir 1994,10 (11),3972-3981.
    2. Gennis, R. B., Biomembranes:molecular structure and function. Springer-Verlag New York:1989.
    3. Hao, J.; Liu, W.; Xu, G.; Zheng, L., Vesicles from Salt-Free Cationic and Anionic Surfactant Solutions. Langmuir 2003,19 (26),10635-10640.
    4. Abdel-Rahem, R.; Gradzielski, M.; Hoffmann, H., A novel viscoelastic system from a cationic surfactant and a hydrophobic counterion. Journal of Colloid and Interface Science 2005,288 (2),570-582.
    5. Hao, J.; Hoffmann, H.; Horbaschek, K., A Novel Cationic/Anionic Surfactant System from a Zwitterionic Alkyldimethylamine Oxide and Dihydroperfluorooctanoic Acid. Langmuir 2001,17 (14),4151-4160.
    6. Shen, Y.; Hao, J.; Hoffmann, H., Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles. Soft Matter 2007,3(11).
    7. Petrache, H. I.; Zemb, T.; Belloni, L.; Parsegian, V. A., Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proceedings of the National Academy of Sciences 2006,103 (21),7982-7987.
    8. Hassan, P. A.; Raghavan, S. R.; Kaler, E. W., Microstructural Changes in SDS Micelles Induced by Hydrotropic Salt. Langmuir 2002,18 (7),2543-2548.
    9. Sun, W.; Shen, Y.; Hao, J., Phase Behavior and Rheological Properties of Salt-Free Catanionic TTAOH/DA/H2O System in the Presence of Hydrophilic and Hydrophobic Salts. Langmuir 2010,27 (5),1675-1682.
    10. Michina, Y, et al., Ripening of Catanionic Aggregates upon Dialysis. Langmuir 2008,25 (2),698-706.
    11. Zhai, L.; Zhao, M.; Sun, D.; Hao, J.; Zhang, L., Salt-Induced Vesicle Formation from Single Anionic Surfactant SDBS and Its Mixture with LSB in Aqueous Solution. The Journal of Physical Chemistry B 2005,109 (12),5627-5630.
    12. Robinson, B. H.; Bucak, S.; Fontana, A., On the Concept of Driving Force Applied to Micelle and Vesicle Self-Assembly. Langmuir 2000,16 (22),8231-8237.
    13. Grillo, I.; Kats, E. I.; Muratov, A. R., Formation and Growth of Anionic Vesicles Followed by Small-Angle Neutron Scattering. Langmuir 2003,19 (11),4573-4581.
    14. Jung, H. T.; Coldren, B.; Zasadzinski, J. A.; Iampietro, D. J.; Kaler, E. W., The origins of stability of spontaneous vesicles. Proceedings of the National Academy of Sciences 2001,98 (4),1353-1357.
    15. Safran, S. A.; Pincus, P.; Andelman, D., Theory of Spontaneous Vesicle Formation in Surfactant Mixtures. Science 1990,248 (4953),354-356.
    16. Bergstrom, M., Thermodynamics of Vesicle Formation from a Mixture of Anionic and Cationic Surfactants. Langmuir 1996,12 (10),2454-2463.
    17. Safran, S., Curvature elasticity of thin films. Advances in Physics 1999,48 (4), 395-448.
    18. Freyssingeas, E.; Nallet, F.; Roux, D., Measurement of the membrane flexibility in lamellar and "sponge" phases of the C12E5/hexanol/water system. Langmuir 1996, 12 (25),6028-6035.
    19. Jung, H.-T.; Lee, S. Y.; Kaler, E. W.; Coldren, B.; Zasadzinski, J. A., Gaussian curvature and the equilibrium among bilayer cylinders, spheres, and discs. Proceedings of the National Academy of Sciences 2002,99 (24),15318-15322.
    20. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics 1976,72,1525-1568.
    21. Yuan, Z.; Yin, Z.; Sun, S.; Hao, J., Densely Stacked Multilamellar and Oligovesicular Vesicles, Bilayer Cylinders, and Tubes Joining with Vesicles of a Salt-Free Catanionic Extractant and Surfactant System. The Journal of Physical Chemistry B 2008,112 (5),1414-1419.
    22. Yuan, Z.; Dong, S.; Liu, W.; Hao, J., Transition from Vesicle Phase to Lamellar Phase in Salt-Free Catanionic Surfactant Solution. Langmuir 2009,25 (16), 8974-8981.
    23. Ritcey, G.; Ashbrook, A., Part Ⅰ, Solvent Extraction:Principles and Applications to Process Metallurgy. Elsevier Scientific Co.:Amsterdam,1984.
    24. Escalante, J. I.; Gradzielski, M.; Hoffmann, H.; Mortensen, K., Shear-Induced Transition of Originally Undisturbed Lamellar Phase to Vesicle Phase. Langmuir 2000, 16(23),8653-8663.
    25. Van der Werff, J.; De Kruif, C., Hard-sphere colloidal dispersions:the scaling of rheological properties with particle size, volume fraction, and shear rate. Journal of Rheology 1989,33,421.
    26. de Haas, K. H.; Blom, C.; van den Ende, D.; Duits, M. H. G.; Haveman, B.; Mellema, J., Rheological Behavior of a Dispersion of Small Lipid Bilayer Vesicles. Langmuir 1997,13 (25),6658-6668.
    27. Lukaschek, M.; Muller, S.; Hasennindl, A.; Schmidt, C.; Grabowski, D. A., Lamellar lyomesophases under shear as studied by deuterium nuclear magnetic resonance. Colloid & Polymer Science 1996,274 (1),1-7.
    28. Bergmeier, M.; Gradzielski, M.; Hoffmann, H.; Mortensen, K., Behavior of Ionically Charged Lamellar Systems under the Influence of a Shear Field. The Journal of Physical Chemistry B 1999,103 (9),1605-1617.
    29. Bergmeier, M.; Gradzielski, M.; Hoffmann, H.; Mortensen, K., Behavior of a Charged Vesicle System under the Influence of a Shear Gradient:□ A Microstructural Study. The Journal of Physical Chemistry B 1998,102 (16),2837-2840.
    30. Montalvo, G.; Valiente, M.; Khan, A., Shear-Induced Topology Changes in Liquid Crystals of the Soybean Lecithin/DDAB/Water System. Langmuir 2007,23 (21), 10518-10524.
    31. Bergenholtz, J.; Wagner, N. J., Formation of AOT/Brine Multilamellar Vesicles. Langmuir 1996,12 (13),3122-3126.
    32. Gorenstein, D. G., Phosphorous-31 NMR, Principles and Applications. Academic Press:New York,1984.
    33. Muller, S.; Borschig, C.; Gronski, W.; Schmidt, C.; Roux, D., Shear-Induced States of Orientation of the Lamellar Phase of C12E4/Water. Langmuir 1999,15 (22), 7558-7564.
    34. Burgemeister, D.; Schmidt, C., Shear flow of lamellar polymer surfactants Molecular Organisation on Interfaces. Lagaly, G, Ed. Springer Berlin/Heidelberg: 2002; Vol.121, pp 95-100.
    35. Seelig, J.; Borle, F.; Cross, T. A., Magnetic ordering of phospholipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1985,814 (1),195-198.
    36. Bergstrom, M., Thermodynamics of unilamellar vesicles:influence of mixing on the curvature free energy of a vesicle bilayer. Journal of Colloid and Interface Science 2001,240(1),294-306.
    37. Brasher, L. L.; Herrington, K. L.; Kaler, E. W., Electrostatic Effects on the Phase Behavior of Aqueous Cetyltrimethylammonium Bromide and Sodium Octyl Sulfate Mixtures with Added Sodium Bromide. Langmuir 1995,11 (11),4267-4277.
    1. Gunstone, F. D.; Harwood, J. L.; Padley, F. B., The Lipid Handbook Chapman and Hall London; New York 2007.
    2. Wendel, A.; Kirk, R.; Othmer, D., Encyclopedia of Chemical Technology. John Wiley & Sons:New York,1995.
    3. Khan, A.; Joensson, B.; Wennerstroem, H., Phase equilibria in the mixed sodium and calcium di-2-ethylhexylsulfosuccinate aqueous system. An illustration of repulsive and attractive double-layer forces. The Journal of Physical Chemistry 1985, 89(24),5180-5184.
    4. Thurmond, R. L.; Lindblom, G.; Brown, M. F., Effect of bile salts on monolayer curvature of a phosphatidylethanolamine/water model membrane system. Biophysical journal 1991,60 (3),728-732.
    5. Fontell, K., Phase equilibria in the system soybean lecithin/water. Progress in Colloid & Polymer Science 1983; Vol.68, pp 48-52.
    6. Cohen, D. E.; Thurston, G. M.; Chamberlin, R. A.; Benedek, G B.; Carey, M. C., Laser Light Scattering Evidence for a Common Wormlike Growth Structure of Mixed Micelles in Bile Salt- and Straight-Chain Detergent-Phosphatidylcholine Aqueous Systems:Relevance to the Micellar Structure of Bile. Biochemistry 1998,37 (42), 14798-14814.
    7. Edwards, K.; Almgren, M., Surfactant-induced leakage and structural change of lecithin vesicles:effect of surfactant headgroup size. Langmuir 1992,8 (3),824-832.
    8. Li, C.-Y.; Wiedmann, T. S., Concentration-Dependent Diffusion of Bile Salt/Phospholipid Aggregates. The Journal of Physical Chemistry 1996,100 (47), 18464-18473.
    9. Luk, A. S.; Kaler, E. W.; Lee, S. P., Structural Mechanisms of Bile Salt-Induced Growth of Small Unilamellar Cholesterol-Lecithin Vesicles. Biochemistry 1997,36 (19),5633-5644.
    10. Pedersen, J. S.; Egelhaaf, S. U.; Schurtenberger, P., Formation of Polymerlike Mixed Micelles and Vesicles in Lecithin-Bile Salt Solutions:A Small-Angle Neutron-Scattering Study. The Journal of Physical Chemistry 1995,99 (4), 1299-1305.
    11. Walter, A.; Vinson, P. K.; Kaplun, A.; Talmon, Y., Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition. Biophysical journal 1991,60 (6),1315-1325.
    12. Arleth, L.; Bauer, R.; (?)gendal, L. H.; Egelhaaf, S. U.; Schurtenberger, P.; Pedersen, J. S., Growth Behavior of Mixed Wormlike Micelles:□ a Small-Angle Scattering Study of the Lecithin-Bile Salt System. Langmuir 2003,19 (10), 4096-4104.
    13. Leng, J.; Egelhaaf, S. U.; Cates, M. E., Kinetics of the Micelle-to-Vesicle Transition:Aqueous Lecithin-Bile Salt Mixtures. Biophysical journal 2003,85 (3), 1624-1646.
    14. Singh, J.; Unlu, Z.; Ranganathan, R.; Griffiths, P., Aggregate Properties of Sodium Deoxycholate and Dimyristoylphosphatidylcholine Mixed Micelles. The Journal of Physical Chemistry B 2008,112 (13),3997-4008.
    15. Subuddhi, U.; Mishra, A., Effect of sodium deoxycholate and sodium cholate on DPPC vesicles:A fluorescence anisotropy study with diphenylhexatriene. Journal of Chemical Sciences 2007,119 (2),169-174.
    16. Sun, C.; Sano, Y.; Kashiwagi, H.; Ueno, M., Characterization of aggregate structures of phospholipid in the process of vesicle solubilization with sodium cholate using laser light scattering method. Colloid & Polymer Science 2002,280 (10), 900-907.
    17. Tung, S. H.; Huang, Y. E.; Raghavan, S. R., A New Reverse Wormlike Micellar System:□ Mixtures of Bile Salt and Lecithin in Organic Liquids. Journal of the American Chemical Society 2006,128 (17),5751-5756.
    18. Ulmius, J., et al., Molecular organization in the liquid-crystalline phases of lecithin-sodium cholate-water systems studied by nuclear magnetic resonance. Biochemistry 1982,21 (7),1553-1560.
    19. Funasaki, N.; Ishikawa, S.; Neya, S., Binding of Short-Chain Lecithin by β-Cyclodextrin. Langmuir 2002,18 (5),1786-1790.
    20. Montalvo, G.; Khan, A., Self-Assembly of Mixed Ionic and Zwitterionic Amphiphiles:□ Associative and Dissociative Interactions between Lamellar Phases. Langmuir 2002,18 (22),8330-8339.
    21. Montalvo, G.; Valiente, M.; Khan, A., Shear-Induced Topology Changes in Liquid Crystals of the Soybean Lecithin/DDAB/Water System. Langmuir 2007,23 (21), 10518-10524.
    22. Chonn, A.; Cullis, P. R., Recent advances in liposomal drug-delivery systems. Current Opinion in Biotechnology 1995,6 (6),698-708.
    23. Margalit, R., Liposome-mediated drug targeting in topical and regional therapies. Critical reviews in therapeutic drug carrier systems 1995,12 (2-3),233.
    24. Zierenberg, O.; Betzing, H., Pharmacokinetics and metabolism of im injected polyenylphosphatidylcholine liposomes. Arzneimittel-Forschung 1979,29 (3),494.
    25. Cui, H., et al., Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter 2007,3 (8).
    26. Takajo, Y.; Matsuki, H.; Matsubara, H.; Tsuchiya, K.; Aratono, M.; Yamanaka, M., Structural and morphological transition of long-chain phospholipid vesicles induced by mixing with short-chain phospholipid. Colloids and Surfaces B:Biointerfaces 2010,76(2),571-576.
    27. Dong, S.; Xu, G.; Hoffmann, H., Aggregation Behavior of Fluorocarbon and Hydrocarbon Cationic Surfactant Mixtures:A Study of 1H NMR and 19F NMR. The Journal of Physical Chemistry B 2008,112 (31),9371-9378.
    28. Gustafsson, J.; Oradd, G.; Lindblom, G.; Olsson, U.; Almgren, M., A Defective Swelling Lamellar Phase. Langmuir 1997,13 (4),852-860.
    29. Martinez-Landeira, P.; Ruso, J. M.; Prieto, G.; Sarmiento, F., Surface Tensions, Critical Micelle Concentrations, and Standard Free Energies of Micellization of C8-Lecithin at Different pHs and Electrolyte Concentrations. Journal of Chemical & Engineering Data 2002,47(4),1017-1021.
    30. Li, H.; Hao, J., Phase Behavior and Rheological Properties of a Salt-Free Catanionic Surfactant TTAOH/LA/H2O System. The Journal of Physical Chemistry B 2008,112(34),10497-10508.
    31. Cates, M. E.; Candau, S. J., Statics and dynamics of worm-like surfactant micelles. Journal of Physics:Condensed Matter 1990,2 (33),6869.
    32. Yu.A, S., Lecithin organogel:A micellar system with unique properties. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2001,183-185 (0), 541-554.
    33. Escalante, J. I.; Gradzielski, M.; Hoffmann, H.; Mortensen, K., Shear-Induced Transition of Originally Undisturbed Lamellar Phase to Vesicle Phase. Langmuir 2000, 16(23),8653-8663.
    34. Hoffmann, H.; Thunig, C.; Schmiedel, P.; Munkert, U., Surfactant Systems with Charged Multilamellar Vesicles and Their Rheological Properties. Langmuir 1994,10 (11),3972-3981.
    35. Coldren, B. A.; Warriner, H.; van Zanten, R.; Zasadzinski, J. A.; Sirota, E. B., Zero Spontaneous Curvature and Its Effects on Lamellar Phase Morphology and Vesicle Size Distributions. Langmuir 2006,22 (6),2474-2481.
    36. Jung, H. T.; Coldren, B.; Zasadzinski, J. A.; Iampietro, D. J.; Kaler, E. W., The origins of stability of spontaneous vesicles. Proceedings of the National Academy of Sciences 2001,98 (4),1353-1357.
    37. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics 1976,72 (0),1525-1568.
    1. Fontell, K., Phase equilibria in the system soybean lecithin/water. Progress in Colloid & Polymer Science 1983,68,48-52.
    2. Angelico, R.; Ceglie, A.; Colafemmina, G.; Delfine, F.; Olsson, U.; Palazzo, G., Phase behavior of the lecithin/water/isooctane and lecithin/water/decane systems. Langmuir 2004,20 (3),619-631.
    3. Angelico, R.; Ceglie, A.; Olsson, U.; Palazzo, G., Phase diagram and phase properties of the system lecithin-water-cyclohexane. Langmuir 2000,16 (5), 2124-2132.
    4. Shchipunov, Y. A.; Mezzasalma, S.; Koper, G.; Hoffmann, H., Lecithin organogel with new rheological and scaling behavior. The Journal of Physical Chemistry B 2001, 105(43),10484-10488.
    5. Robertson, D.; Hellweg, T.; Tiersch, B.; Koetz, J., Polymer-induced structural changes in lecithin/sodium dodecyl sulfate-based multilamellar vesicles. Journal of Colloid and Interface Science 2004,270 (1),187-194.
    6. Gustafsson, J.; Oradd, G.; Lindblom, G.; Olsson, U.; Almgren, M., A defective swelling lamellar phase. Langmuir 1997,13 (4),852-860.
    7. Oradd, G.; Gustafsson, J.; Almgren, M., Intermediate phases in the system egg lecithin/CTAC/brine. SAXS and NMR studies. Langmuir 2001,17(11),3227-3234.
    8. Gliss, C.; Casalta, H.; Bayerl, T. M., Surfactant-Induced Alterations of Lecithin Molecular Dynamics in Bilayers Studied by Quasielastic Neutron Scattering and Solid-State NMR. The Journal of Physical Chemistry B 1999,103 (42),8908-8914.
    9. Arleth, L.; Bauer, R.; (?)gendal, L. H.; Egelhaaf, S. U.; Schurtenberger, P.; Pedersen, J. S., Growth behavior of mixed wormlike micelles:a small-angle scattering study of the lecithin-bile salt system. Langmuir 2003,19 (10),4096-4104.
    10. Shchipunov, Y. A., Lecithin organogel::A micellar system with unique properties. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2001,183, 541-554.
    11. Montalvo, G.; Khan, A., Self-assembly of mixed ionic and zwitterionic amphiphiles:Associative and dissociative interactions between lamellar phases. Langmuir 2002,18 (22),8330-8339.
    12. Ichimori, H.; Hata, T.; Matsuki, H.; Kaneshina, S., Barotropic phase transitions and pressure-induced interdigitation on bilayer membranes of phospholipids with varying acyl chain lengths. Biochimica et Biophysica Acta (BBA)-Biomembranes 1998,1414(1-2),165-174.
    13. Laughlin, R. G., The aqueous phase behavior of surfactants. Academic Press: London,1994; Vol.6.
    14. Laughlin, R., Equilibrium vesicles:fact or fiction? Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997,128 (1-3),27-38.
    15. Rydhag, L.; Gabran, T., Phase quilibria in the system dimyristoylphosphatidyl choline/N-hexadecyl-N,N,N,-trimethylammoniumbromide/water at 30℃. Swelling behaviour of the lamellar phase with different electrolyte solutions. Chemistry and Physics of Lipids 1982,30 (4),309-324.
    16. Khan, A.; Marques, E., Catanionic surfactants. Specialist Surfactants 1997, 37-76.
    17. Marques, E. F.; Regev, O.; Khan, A.; da Graca Miguel, M.; Lindman, B., Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-water. The anionic-rich side. The Journal of Physical Chemistry B 1998,102 (35), 6746-6758.
    18. Hao, J.; Liu, W.; Xu, G.; Zheng, L., Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 2003,19 (26),10635-10640.
    19. Hunt, A. N.; Clark, G. T.; Attard, G S.; Postle, A. D., Highly Saturated Endonuclear Phosphatidylcholine Is Synthesizedin Situ and Colocated with CDP-choline Pathway Enzymes. Journal of Biological Chemistry 2001,276 (11), 8492-8499.
    20. Corsi, J.; Dymond, M. K.; Ces, O.; Muck, J.; Zink, D.; Attard, G. S., DNA that is dispersed in the liquid crystalline phases of phospholipids is actively transcribed. Chemical Communications 2008, (20),2307-2309.
    21. Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M., The structure of DNA-liposome complexes. Journal of the American Chemical Society 1997,119 (4),832-833.
    22. Koynova, R.; Tenchov, B., Cationic phospholipids:structure-transfection activity relationships. Soft Matter 2009,5 (17),3187-3200.
    23. McLoughlin, D., et al., Surface complexation of DNA with insoluble monolayers. Influence of divalent counterions. Langmuir 2005,21 (5),1900-1907.
    24. McManus, J. J.; Radler, J. O.; Dawson, K. A., Does calcium turn a zwitterionic lipid cationic? The Journal of Physical Chemistry B 2003,107 (36),9869-9875.
    25. Farago, O.; Gr(?)nbech-Jensen, N., Simulation of Self-Assembly of Cationic Lipids and DNA into Structured Complexes. Journal of the American Chemical Society 2008,131 (8),2875-2881.
    26. Li, H.; Hao, J., Phase Behavior and Rheological Properties of a Salt-Free Catanionic Surfactant TTAOH/LA/H2O System. The Journal of Physical Chemistry B 2008,112 (34),10497-10508.
    27. Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A., Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS). The Journal of Physical Chemistry 1996,100(14),5874-5879.
    28. Thalberg, K.; Lindman, B.; Karlstroem, G., Phase behavior of a system of cationic surfactant and anionic polyelectrolyte:the effect of salt. The Journal of Physical Chemistry 1991,95 (15),6004-6011.
    29. Brasher, L. L.; Herrington, K. L.; Kaler, E. W., Electrostatic effects on the phase behavior of aqueous cetyltrimethylammonium bromide and sodium octyl sulfate mixtures with added sodium bromide. Langmuir 1995,11 (11),4267-4277.
    30. Spicer, P. T.; Small, W. B.; Lynch, M. L.; Burns, J. L., Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). Journal of Nanoparticle Research 2002,4 (4),297-311.
    31. Ferry, J. D., Viscoelastic properties of polymers. John Wiley & Sons Inc:1980.
    32. Barnes, H. A.; Non-Newtonian, I. o.; Mechanics, F., A handbook of elementary rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics Aberystyth,, England:2000.
    33. Bergmeier, M.; Gradzielski, M.; Hoffmann, H.; Mortensen, K., Behavior of a charged vesicle system under the influence of a shear gradient:a microstructural study. The Journal of Physical Chemistry B 1998,102 (16),2837-2840.
    34. Abdel-Rahem, R.; Gradzielski, M.; Hoffmann, H., A novel viscoelastic system from a cationic surfactant and a hydrophobic counterion. Journal of Colloid and Interface Science 2005,288 (2),570-582.
    35. Lauger, J.; Weigel, R.; Berger, K.; Hiltrop, K.; Richtering, W., Rheo-small-Angle-Light-Scattering Investigation of Shear-Induced Structural Changes in a Lyotropic Lamellar Phase. Journal of Colloid and Interface Science 1996,181 (2),521-529.
    36. Nemeth, Z.; Halasz, L.; Palinkas, J.; Bota, A.; Horanyi, T., Rheological behaviour of a lamellar liquid crystalline surfactant-water system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998,145 (1-3),107-119.
    37. Robles-Vasquez, O., et al., Rheology of Lyotropic Liquid Crystals of Aerosol OT: Ⅱ. High Concentration Regime. Journal of Colloid and Interface Science 1993,160 (1),65-71.
    38. Warriner, H. E., et al., Lamellar biogels comprising fluid membranes with a newly synthesized class of polyethylene glycol-surfactants. The Journal of Chemical Physics 1997,107,3707.
    39. Montalvo, G.; Rodenas, E.; Valiente, M., Phase and rheological behavior of the dodecyl tetraethylene glycol/benzyl alcohol/water system at low surfactant and alcohol concentrations. Journal of Colloid and Interface Science 1998,202 (2), 232-237.
    40. Hoffmann, H.; Thunig, C.; Schmiedel, P.; Munkert, U., Surfactant systems with charged multilamellar vesicles and their rheological properties. Langmuir 1994,10 (11),3972-3981.
    41. Hoffmann, H.; Munkert, U.; Thunig, C.; Valiente, M., The lyotropic mesophases in dilute surfactant mixtures of tetradecyldimethylaminoxide, tetradecyltrimethylammonium bromide, and hexanol:the influence of ionic charge on the mesophases. Journal of Colloid and Interface Science 1994,163 (1),217-228.
    42. Montalvo, G.; Valiente, M.; Rodenas, E., Rheological properties of the L phase and the hexagonal, lamellar, and cubic liquid crystals of the CTAB/benzyl alcohol/water system. Langmuir 1996,12 (21),5202-5208.
    43. Diat, O.; Roux, D.; Nallet, F., Effect of shear on a lyotropic lamellar phase. Journal de Physique Ⅱ1993,3 (9),1427-1452.
    44. Candau, F.; Regalado, E. J.; Selb, J., Scaling behavior of the zero shear viscosity of hydrophobically modified poly (acrylamide) s. Macromolecules 1998,31, 5550-5552.
    45. Herve, P.; Roux, D.; Bellocq, A. M.; Nallet, F.; Gulik-Krzywicki, T., Dilute and concentrated phases of vesicles at thermal equilibrium. Journal de Physique Ⅱ1993,3 (8),1255-1270.
    46. Zipfel, J.; Richtering, W.; Lindner, P., Shear induced order and disorder in lyotropic lamellar phases. Trends in Colloid and Interface Science Ⅻ1998,139-143.
    47. Zipfel, J.; Nettesheim, F.; Lindner, P.; Le, T.; Olsson, U.; Richtering, W., Cylindrical intermediates in a shear-induced lamellar-to-vesicle transition. Europhysics Letters 2001,53,335.
    48. Kunieda, H.; Kabir, H.; Aramaki, K.; Shigeta, K., Phase behavior of mixed polyoxyethylene-type nonionic surfactants in water. Journal of Molecular Liquids 2001,90(1),157-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700