基于工业摄影和机器视觉的三维形貌与变形测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维形貌与变形测量在产品质量控制、逆向设计、材料与工程结构测试、生物医学、文物保护等众多领域中的需求日益增加。过去传统的测量内容和测量方法已经不能满足需要,物体的三维尺寸、表面形貌和运动变形数据的获取成为测量领域的研究热点和前沿课题。本文针对目前光学三维形貌与变形测量研究中存在的不足,采用理论分析和实验研究相结合的研究方法,综合机械工程、光学电子、计算机视觉、数字图像处理和摄影测量学等多个学科对三维形貌与变形测量关键技术进行了系统、深入的研究。主要研究内容和研究成果如下:
     (1)讨论了光学三维形貌与变形测量技术原理和优缺点,对研究现状和发展趋势进行了系统的分析。研究了工业摄影测量和机器视觉中坐标转换、摄影几何约束、空间交汇和三维重建的基本理论。为本文的研究工作提供基本的理论依据。
     (2)机器视觉系统参数标定是三维测量技术中的关键问题之一,其标定精度直接决定后续三维重建的精度。为进一步提高视觉系统测量精度,提出了一种基于工业摄影测量的相机柔性标定方法,给出了相机成像模型和十参数镜头畸变模型,并进行了相机标定实验及重投影误差分析。该方法使用不同尺寸的标定板和标定十字架,无需标定物世界坐标,可以对不同视场单个或者多个相机进行标定。标定参数初始值由摄影测量中相对定向和直接线性变换方法得到,然后使用捆绑调整算法整体优化物方坐标及相机内外参数。实验结果表明,标定重投影误差小于0.05像素,标准尺(221.001±0.003mm)平均测量误差0.03mm,与传统方法相比,标定精度有较大提高。
     (3)系统地研究了单相机、双相机和多相机的高精度三维重建方法,推导了在不同情况下的三维重建方程。提出了基于外插多频相移的双目面结构光测量方法,并进行了精度实验验证和误差分析。基于外插多频相移的相位展开算法,相位展开过程主要依赖不同频率正弦光栅图像的相位主值,对被测物体表面颜色不敏感,无需表面处理,计算过程更稳定,且可对每种频率的相移均进行相位展开,后续三维重建时使用多个连续的相位值进行平均计算,提高了三维重建的精度。
     (4)针对大型结构件变形,提出了一种基于工业摄影测量的三维静态变形测量方法。该方法可以方便地获得大型结构件在不同载荷条件下的整体位移场信息。研究了同名点匹配和搜索算法,改进了坐标配准算法,提高了坐标配准的效率,并实现了静态变形测量数据中变形点的匹配,从而计算出实际的位移变形场。提出了一种相关拼合的算法,通过使用相关点进行坐标配准和相同变形点匹配,提高了相同变形点匹配的效率。
     (5)针对全场位移和应变测量,结合双目立体视觉,提出了一种基于数字图像相关的三维应变测量方法。研究了数字图像相关方法的基本原理,涉及的关键技术包括相关系数、相关搜索、相关区域校正和位移场数据的平滑等。通过引入盒滤波思想,改进了整像素相关搜索算法,提高了匹配效率,对影响测量精度的因素进行了分析并提出了散斑图像光照不均匀的校正方法。
     在上述理论与技术的基础上,将研制的双目面扫描系统、静态变形测量系统、动态变形测量系统在大型飞机全尺寸形貌测量、汽车钣金件、电力塔架真型试验、薄板焊接变形试验、材料拉伸试验中进行了应用和实验,并取得了良好的效果。
In recent years, 3D shape and deformation measurement has become more and more important in many fields, such as quality control, reverse engineering, material testing, biomedicine, cultural relics protection and so on. As we all know, the traditional measuring content and measuring method can not meet the needs of practice. Acquisition of three dimensional geometry, surface shape and deformation data has already been the hot topics in the industrial measurement fields. The key technologies of 3D shape and deformation measurement are deeply and systematically researched in this thesis by means of combining theoretical analysis and experimental study, which are based on mechanical engineering, optical electronics, computer vision, digital image processing, photogrammetry and other disciplines. The main contents and achievements are listed as follows:
     (1) The technical principle, advantages and disadvantages, the present research and development trends of the 3D shape and deformation measurement are reviewed and discussed. The fundamental theory of computer vision and close range photogrammetry including coordinate transformation, photography geometric constraints, space intersection and three-dimensional reconstruction are explored in detail, which provide a good theoretical basis for our research.
     (2) Camera calibration in the computer vision system is one of the key technologies in 3D measurements. The calibration precision directly determines the accuracy of the 3D reconstruction. A flexible calibration method is proposed based on photogrammetry technique in order to improve the precision of the computer vision system. A cross-shaped calibration pattern which is portable and easy to be manufactured is designed. The cross target can be used to calibrate stereo vision systems with large measurement volume and obtain higher measurement precision conveniently. The mathematical model of the stereo vision system with 10 distortion parameters for each camera is presented. The calibration initial values are computed using the relative orientation method and the Direct Linear Transform (DLT) method of photogrammetry. The bundle adjustment algorithm is used to optimize the calibration parameters as well as the 3D coordinates of the feature points. Experiment results show that the RMS error of the reprojection in our method is less than 0.05 pixels and the distance measurement error is 0.031 mm with a high precision scale bar which length is 221.001±0.003mm.
     (3) A high accuracy method for 3D reconstruction is deeply researched which can be used to single-camera measuring, dual-camera measuring and multi-camera measuring. The 3D reconstruction equations in different situations are derived respectively. A stereo vision system is proposed based on digital fringe projection. A heterodyne multiple frequency phase-shifting algorithm is employed for overcoming the unwrapping problem of phase functions and for a reliable unwrapping procedure. According to the phase unwrapping algorithm of the heterodyne multiple frequency phase-shift technology, the phase unwrapping process is mainly dependent on phase principal value of the different frequency sinusoidal grating images. It is not sensitive to object surface color and needs no surface treatment. The redundant phase information is used to increase the accuracy of the 3D reconstruction.
     (4) According to large-scale structure deformation, a method of 3D static deformation measurement is presented. A correspondence points matching algorithm is researched in detail. The coordinate registration algorithm is improved to increase the efficiency and accuracy of the coordinate registration. A matching method based on correlation principle is proposed, which can realize coordinate registration and deformation points matching with good efficiency. Moreover, the deformation points matching of the static deformation measurement is implemented, which can be used to displacement field measurement.
     (5) According to 3D displacement and strain measurement, the principles and key technologies of the digital image correlation method (DICM) are systematically researched including correlation coefficient, correlation search, correlation area model and displacement field smoothing. A method of uneven illumination correction is proposed. It can be used to improve the accuracy of dynamic deformation measurement. The speckle matching and detection methods are implemented with high efficiency based on the improved DICM.
     According to above theories and technologies, the systems we developed including binocular surface scanning system, static deformation measurement system, the dynamic deformation measurement system have been used in 3D shape measurement for large airplane, automobile panel inspection, real-sized transmission tower loading test, welding deformation measurement of sheet metal, tensile test, and the results are encouraging.
引文
[1]单成祥,牛彦文,张春.传感器原理与应用[M].北京:国防工业出版社, 2006: 98-103.
    [2]冯文灏.工业测量[M].武汉:武汉大学出版社, 2004: 221-232.
    [3]叶声华,王仲,曲兴华.精密测试技术展望[J].机电一体化, 2001, 15 (06): 6-8.
    [4]王仕蟠.信息光学理论与应用[M].北京:北京邮电大学出版社, 2004: 312-325.
    [5]叶声华,王仲,曲兴华.精密测试技术展望[J].中国机械工程, 2000, 11 (3): 262-264.
    [6] Kingslake R. Applied optics and optical engineering[M]: New York: Academic Press, 1965-1969.
    [7] Lowe D. Distinctive Image Features from Scale-Invariant Keypoints[J]. Distinctive Image Features from Scale-Invariant Keypoints, 2004, 60 (2): 91-110.
    [8] Liang H. Review of research on interactions between deepwater steel catenary risers and soft clay seabeds[J]. Journal of Marine Science and Application, 2009, 8 (2): 163-167.
    [9]贾云得.机器视觉[M].北京:科学出版社, 2000: 146-158.
    [10] Abate AF, Nappi M, Riccio D, et al. 2D and 3D face recognition: A survey[J]. Pattern Recognition Letters, 2007, 28 (14): 1885-1906.
    [11] Abdul-Rahman HS, Gdeisat MA, Burton DR, et al. Three-dimensional Fourier Fringe Analysis[J]. Optics and Lasers in Engineering, 2008, 46 (6): 446-455.
    [12] Abidov A, Slomka PJ, Nishina H, et al. Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: Initial description of a new variable[J]. Journal of Nuclear Cardiology, 2006, 13 (5): 652-659.
    [13] Abramowicz JS, Sheiner E. Ultrasound of the Placenta: A Systematic Approach. Part I: Imaging[J]. Placenta, 2008, 29 (3): 225-240.
    [14] Acosta O, Bourgeat P, Zuluaga MA, et al. Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps[J]. Medical Image Analysis, 2009, 13 (5): 730-743.
    [15] Adams WJ. Frames of reference for the light-from-above prior in visual search and shape judgements[J]. Cognition, 2008, 107 (1): 137-150.
    [16] Aguanno MV, Lakestani F, Whelan MP, et al. Heterodyne speckle interferometer for full-field velocity profile measurements of a vibrating membrane by electronic scanning[J]. Optics and Lasers in Engineering, 2007, 45 (6): 677-683.
    [17] Xiaobo C, Jun tong X, Tao J, et al. Research and development of an accurate 3D shape measurement system based on fringe projection: Model analysis and performance evaluation[J]. Precision Engineering, 2008, 32 (3): 215-221.
    [18] Lesage D, Angelini ED, Bloch I, et al. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes[J]. Medical Image Analysis, 2009, 13 (6): 819-845.
    [19]金国藩,李景镇.激光测量学[M].北京:科学出版社, 1998: 46-49.
    [20] Imanaka M, Ishikawa R, Sakurai Y, et al. Measurement of strain distributions near the steel/epoxy interface by micro-Raman spectroscopy under tensile load condition[J]. Strain, 2009, 44 (4): 976-984.
    [21] A.Gruen. Towards real-time photogrammetry[J]. Photogrammetria, 1988: 42(45-46):209-244.
    [22]邾继贵,叶声华.工业现场近景数字摄影视觉精密测量[J].地理空间信息, 2004, 02 (6): 11-14.
    [23]马燕.论摄影测量技术在遥感领域的应用[J].科教文汇(上半月), 2006, (12): 189-190.
    [24]李德仁.摄影测量与遥感的现状及发展趋势[J].武汉测绘科技大学学报, 2000, 25 (1): 1-6.
    [25]范金坪.数字散斑及其在形变测量中的应用研究[D].昆明:昆明理工大学, 2006: 12-15.
    [26]郑俊,赵红旺,朵兴茂.应力应变测试方法综述[J].汽车科技, 2009,21 (1): 5-8.
    [27]王之卓.摄影测量原理[M].北京:测绘出版社, 1979: 371-375.
    [28]江延川.解析摄影测量学[M].郑州:解放军测绘学院, 1990: 87-92.
    [29] Meng Q, Hu J. A review of shape memory polymer composites and blends[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40 (11): 1661-1672.
    [30] Thurley MJ, Andersson T. An industrial 3D vision system for size measurement of iron ore green pellets using morphological image segmentation[J]. Minerals Engineering, 2008, 21 (5): 405-415.
    [31] de Bruin PW, Kaptein BL, Stoel BC, et al. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration[J]. Journal of Biomechanics, 2008, 41 (1): 155-164.
    [32] Erf RK. Speckle Metrology[M]. New York Academic Press, 1978: 156-159.
    [33] Ackermann.F. High Precision Digital Image Correlation[C]. University of Stuttgart, 1983: 1523-1527.
    [34]李德仁,袁修孝.误差理论与可靠性理论[M].武汉:武汉大学出版社, 2002: 91-93.
    [35] J.D.E Beyon, Heidtmann DR. Charge-coupled devices and their application[M]. London:McGrawHill, 1980: 75-81.
    [36] Marovec.H. Rover visual obstacle avoidance[C]. Vancouver,Canada: Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1981: 785-790.
    [37] Rudolf F. A micromechanical capacitive accelerometer with a two point inertial mass suspension[J]. Sensors and Actuators A, 1983, 4 (2): 191-198.
    [38] A.Gruen. Data processing methods for amateur photographs[J]. Photogrammetric record, 1985, 11 (65): 567-579.
    [39] El-Hakim SF. A real-time system for object measurement with CCD cameras[J]. International archives of photogrammetry and remote sensing, 1986: 26(25):363-373.
    [40] J.Canny. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and machine Intelligence, 1986, PAMI-8 (Vol.6): 679-698.
    [41] Chu A. Zero shift of piezoelectric accelerometers in pyroshock measurements[J]. Endevco TP, 1987, 293: 71-80.
    [42] :Estrich C, Rangan K. An Automated Accelerometer Calibration Station. National Conference of Standard Laboratories: Colorado, 1989: 6-11.
    [43] Rudolf F, Jornod A, Bergqvist J, et al. Precision accelerometers with ug resolution[J]. Sensors and Actuators A, 1990, 21: 297-302.
    [44] Seidel H, Riedel H, Kolbeck R, et al. Capacitive silicon accelerometer with highly symmetrical design[J]. Sensors and Actuators A, 1990, 21 (1-3): 312-315.
    [45]何仑.加速度传感器在机械故障检测中的应用[J].仪表技术与传感器, 1990, 3: 17-20.
    [46] C.Fraser. Photogrammetric camera componet calibration-a review of analytical techniques[C]. Washingtion,D.C,USA, 1992: 842-845.
    [47] Maas H-G. Robust Automatic Surface Reconstruction with Structured Light[J]. International archives of photogrammetry and remote sensing, 1992, xxix (B5): 709-713.
    [48] Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1992, 14 (10): 965-980.
    [49]冯文灏.关于发展我国高精度工业摄影测量的几个问题[J].测绘学报, 1994, 23 (2): 120-125.
    [50] Abbaspour-Sani E, Huang R-S, Kwok CY. A novel optical accelerometer[J]. Electron Device Letters, IEEE, 1995, 16 (5): 166-168.
    [51] Beyer HA. Digital Phototgrammetry in Industrial Applications[J]. International archives of photogrammetry and remote sensing, 1995, 30 (5W1): 373-378.
    [52] Z Zhang, R Deriche, O Faugeras, et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J]. Artificial Intelligence, 1995, 78 (1-2): 87-119.
    [53] A.Gruen. Development of digital methodology and systems.[J]. Close range photogrammetry and machine vision, 1996: 78-105.
    [54] J.G.Fryer. Introduction(of photogrammetry)[J]. Close range photogrammetry and machine vision, 1996: 1-8.
    [55] M.A.R.Cooper, S.Robson. Theory of close range photogrammetry[J]. Close range photogrammetry and machine vision, 1996: 9-15.
    [56] Marioli D, Sardini E, Taroni A. A System for the Generation of Static and Very Low-Frequency Reference Accelerations[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1997, 46 (1): 27-30.
    [57] Ansel Y, Romanowicz B, Renaud P, et al. Global model generation for a capacitive silicon accelerometer by finite-element analysis[J]. Sensors and Actuators A, 1998, 67 (1-3): 153-158.
    [58] Kampen RV, Wolffenbuttel R. Modeling the mechanical behavior of bulk-micromachined silicon accelerometers[J]. Sensors and Actuators A, 1998, 64 (2): 137-150.
    [59] Puers R, Reyntjens S. Design and processing experiment of a new miniaturized capacitive triaxial accelerometer[J]. Sensors & Actuators A, 1998, 68: 324-328.
    [60] Schr?pfer G, Elflein W, Labachelerie Md, et al. Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation[J]. Sensors and Actuators A, 1998, 68 (1-3): 344-349.
    [61] Takao H, Matsunoto Y, Ishida M. Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers[J]. Sensors and Actuators A, 1998, 65 (1): 61-68.
    [62]叶声华,邾继贵,王仲等.视觉检测技术及应用[J].中国工程科学, 1999, 1 (1): 49-52.
    [63]许智钦,孙长库. 3D逆向工程技术[M]:中国计量出版社, 2002: 126-129.
    [64]黄桂平,李广云,王保丰等.单目视觉测量技术研究[J].计量学报, 2004, 25 (4): 314-317.
    [65]黄桂平.数字近景工业摄影测量关键技术研究与应用[D].天津:天津大学, 2005 : 45-51.
    [66]高文,陈熙霖.计算机视觉-算法与系统原理[M].北京:清华大学出版社, 1998: 93-95.
    [67]马颂德,张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社, 1998: 252-257.
    [68] Marr D. Artificial intelligence--A personal view[J]. Artificial Intelligence, 1977, 9 (1): 37-48.
    [69] Boesl U, Weinkauf R, Weickhardt C, et al. Laser ion sources for time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1994, 131: 87-124.
    [70] Keller M, Kolb A. Real-time simulation of time-of-flight sensors[J]. Simulation Modelling Practice and Theory, 2009, 17 (5): 967-978.
    [71] Ostrovskaya GV. Holographic interferometry of physical processes--the scientific legacy of Professor Yu. I. Ostrovsky[J]. Optics & Laser Technology, 1996, 28 (4): 237-249.
    [72] Goodman L, Melville LW, Tipson RS. Neighboring-Group Participation in Sugars. Advances in Carbohydrate Chemistry. Academic Press, 1967: 109-175.
    [73]金观昌.计算机辅助光学测量[M].北京:清华大学出版社, 2007: 174-178.
    [74] Lichti DD. A method to test differences between additional parameter sets with a case study in terrestrial laser scanner self-calibration stability analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63 (2): 169-180.
    [75] Savio E, De Chiffre L, Schmitt R. Metrology of freeform shaped parts[J]. CIRP Annals -Manufacturing Technology, 2007, 56 (2): 810-835.
    [76] Waits CM, Morgan B, Kastantin M, et al. Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching[J]. Sensors and Actuators A: Physical, 2005, 119 (1): 245-253.
    [77] Sayab M. Microstructural evidence for N-S shortening in the Mount Isa Inlier (NW Queensland, Australia): the preservation of early W-E-trending foliations in porphyroblasts revealed by independent 3D measurement techniques[J]. Journal of Structural Geology, 2005, 27 (8): 1445-1468.
    [78] Chambers JE, Wilkinson PB, Weller AL, et al. Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography: A case history from the East Pennine Coalfield, UK[J]. Journal of Applied Geophysics, 2007, 62 (4): 324-337.
    [79] Hezel DC. A model for calculating the errors of 2D bulk analysis relative to the true 3D bulk composition of an object, with application to chondrules[J]. Computers & Geosciences, 2007, 33 (9): 1162-1175.
    [80]方强,陈家壁.全息散斑计量学[M].北京:科学出版社, 1995: 324-328.
    [81] Ebalunode JO, Dong X, Ouyang Z, et al. Structure-based shape pharmacophore modeling for the discovery of novel anesthetic compounds[J]. Bioorganic & Medicinal Chemistry, 2009, 17 (14): 5133-5138.
    [82] Huang C-H, Chaing M-T. A three-dimensional inverse geometry problem in identifying irregular boundary configurations[J]. International Journal of Thermal Sciences, 2009, 48 (3): 502-513.
    [83] Latham J-P, Munjiza A, Garcia X, et al. Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation[J]. Minerals Engineering, 2008, 21 (11): 797-805.
    [84] Bertrand S, Laporte S, Parent S, et al. Three-dimensional reconstruction of the rib cage from biplanar radiography[J]. IRBM, 2008, 29 (4): 278-286.
    [85] Iyer N, Jayanti S, Lou K, et al. Three-dimensional shape searching: state-of-the-art review and future trends[J]. Computer-Aided Design, 2005, 37 (5): 509-530.
    [86] Hayashibe M, Suzuki N, Nakamura Y. Laser-scan endoscope system for intraoperative geometry acquisition and surgical robot safety management[J]. Medical Image Analysis, 2006, 10 (4): 509-519.
    [87] Furukawa R, Kawasaki H. Laser range scanner based on self-calibration techniques using coplanarities and metric constraints[J]. Computer Vision and Image Understanding, 2009, 113 (11): 1118-1129.
    [88] Sun J, Zhang G, Wei Z, et al. Large 3D free surface measurement using a mobile coded light-based stereo vision system[J]. Sensors and Actuators A: Physical, 2006, 132 (2): 460-471.
    [89] Zhang GX, Yao JW, Qiu ZR, et al. Large-scale space angle measurement[J]. CIRP Annals - Manufacturing Technology, 2008, 57 (1): 525-528.
    [90] Grossmann E, Santos-Victor J. Least-squares 3D reconstruction from one or more views and geometric clues[J]. Computer Vision and Image Understanding, 2005, 99 (2): 151-174.
    [91] Jiang H, Campbell G, Xi F. Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve[J]. Medical Engineering & Physics, 2005, 27 (2): 175-180.
    [92] Lee JH, Yang SH. Measurement of geometric errors in a miniaturized machine tool using capacitance sensors[J]. Journal of Materials Processing Technology, 2005, 164-165: 1402-1409.
    [93] Newlands NK, Porcelli TA. Measurement of the size, shape and structure of Atlantic bluefin tuna schools in the open ocean[J]. Fisheries Research, 2008, 91 (1): 42-55.
    [94] Harris C, Stephens M. A combined corner and edge detector[C]. Manchester, 1988.
    [95] Lindeberg T. Scale-space theory:A basic tool for analyzing structures at different scales[J]. Journal of Applied Statistics, 1994, 21 (2): 224-270.
    [96] Zhang Z. A flexible new technique for camera calibration[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22 (11): 1330-1334.
    [97] Torr P. Motion Segmentation and Outlier Detection[D]. UK: University of Oxford, 1995.
    [98] Schr?pfer G, Ballandras S, Labachelerie Md, et al. Fabrication of a new highly-symmetrical, in-plane accelerometer structure by anisotropic etching of (100) silicon[J]. Journal of Micromechanics and Microengineering, 1997, 7 (2): 71-78.
    [99] Lowe D. Object recognition from local scale-invariant features[C]. Kerkyra, Greece, 1999.
    [100] Lhuillier D. Evolution of the volumetric interfacial area in two-phase mixtures[J]. Comptes Rendus Mecanique, 2004, 332 (2): 103-108.
    [101] Boonsang S, Dewhurst RJ. A sensitive electromagnetic acoustic transducer for picometer-scale ultrasonic displacement measurements[J]. Sensors and Actuators A, 2006, 127 (2): 345-354.
    [102] Huang C-H, Chaing M-T. A transient three-dimensional inverse geometry problem in estimating the space and time-dependent irregular boundary shapes[J]. International Journal of Heat and Mass Transfer, 2008, 51 (21-22): 5238-5246.
    [103] Huang C-H, Chen C-A. A three-dimensional inverse geometry problem in estimating the space and time-dependent shape of an irregular internal cavity[J]. International Journal of Heat and Mass Transfer, 2009, 52 (7-8): 2079-2091.
    [104] Huang C-H, Shih C-C. A shape identification problem in estimating simultaneously two interfacial configurations in a multiple region domain[J]. Applied Thermal Engineering, 2006, 26 (1): 77-88.
    [105] Sansoni G, Docchio F. Three-dimensional optical measurements and reverse engineering for automotive applications[J]. Robotics and Computer-Integrated Manufacturing, 2004, 20 (5): 359-367.
    [106] Hu Q, Harding KG. Conversion from phase map to coordinate: Comparison among spatial carrier, Fourier transform, and phase shifting methods[J]. Optics and Lasers in Engineering, 2007, 45 (2): 342-348.
    [107] Rehn H, Kowarschik R. Real-time non-linear spatial filtering with a leaky OASLM[J]. Optics & Laser Technology, 1998, 30 (1): 39-47.
    [108] G.Frankowski MC, T. Huth. Real-time 3D shape measurement with digital stripe projection by Texas instruments micromirror devices DMD[C]: Proc. SPIE, 2000: 90-105.
    [109] Sugeng L, Weinert L, Lang RM. Real-time 3-Dimensional Color Doppler Flow of Mitral and Tricuspid Regurgitation: Feasibility and Initial Quantitative Comparison with 2-Dimensional Methods[J]. Journal of the American Society of Echocardiography, 2007, 20 (9): 1050-1057.
    [110] Qiu A, Miller MI. Multi-structure network shape analysis via normal surface momentum maps[J]. NeuroImage, 2008, 42 (4): 1430-1438.
    [111] Li R, Sclaroff S. Multi-scale 3D scene flow from binocular stereo sequences[J]. Computer Vision and Image Understanding, 2008, 110 (1): 75-90.
    [112] He Z, Sutton M, Ranson W, et al. Two-dimensional fluid-velocity measurements by use of digital-speckle correlation techniques[J]. Experimental Mechanics, 1984, 24 (2): 117-121.
    [113] Wu, W, Peters, et al. Basic mechanical properties of retina in simple elongation[M]. New York, NY, ETATS-UNIS: American Society of Mechanical Engineers, 1987: 135-138.
    [114] Zink AG, Davidson RW, Hanna RB. EFFECT OF COMPOSITE STRUCTURE ON STRAIN AND FAILURE OF LAMINAR AND WAFER COMPOSITES[J]. Mechanics of Composite Materials and Structures, 1997, 4 (4): 345 - 359.
    [115] Zink, A G, Hanna, et al. Measurement of Poisson's ratios for yellow-poplar[M]. Madison, WI, ETATS-UNIS: Forest Products Society, 1997: 276-279.
    [116] Sutton MA, Yan J, Deng X, et al. Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/IIIloading[J]. Optical Engineering, 2007, 46 (5): 051003-051017.
    [117]王勇,姜挺,江刚武等.基于单元四元数的单像空间后方交会[J].测绘科学技术学报, 2007, 24 (2): 133-135.
    [118] Abdel-Aziz Y.I., H.M K. Direct linear transfomation from comparator coordinates into object space coordinates in close-range photogrammetry.[J]. Proceeding of ASP symposium on close-range photogrammetry, 1971: 1-18.
    [119] K.P.Horn B. Close-form solution of absolute orientation using unit quaternions[J]. Optical Society of America, 1987, 4: 629-642.
    [120] D.C.Brown. Close-range camera calibration[J]. Photogrammetric Engineering, 1971, 37 (8): 855-866.
    [121] Fraser CS. Digital camera self-calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52 (4): 149-159.
    [122] Furukawa Y, Ponce J. Accurate camera calibration from multi-view stereo and bundle adjustment[C], 2008: 1-8.
    [123] Zhengyou Z. Camera calibration with one-dimensional objects[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26 (7): 892-899.
    [124] W.Faig. Calibration of close-range photogrammetric system:mathmatical formulation[J]. Photogrammetric Engineering and Remote Sensing, 1975, 41 (12): 1479-1486.
    [125] Tsai R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. Robotics and Automation, IEEE Journal of [legacy, pre - 1988], 1987, 3 (4): 323-344.
    [126] Brown DC. Decentering distortion of lenses[J]. Photogrammetric Engineering, 1996, 32 (2): 444-462.
    [127]陈希孺,王松桂.近代回归分析[M].合肥:安徽教育出版社, 1987: 45-49.
    [128]王娜,李霞.一种改进的Canny边缘检测算法[J].深圳大学学报理工版, 2005, 22 (2): 149-153.
    [129]刘亚威,杨丹,张小洪.基于空间矩的亚像素边缘定位技术的研究[J].计算机应用, 2003, 23 (2): 47-49.
    [130] K. Jensen, Anastassiou D. Subpixel edge localization and the interpolation of still images[C], 1995: 4(3):285-289.
    [131]章毓晋,傅卓.利用切线方向信息检测亚像素边缘[J].模式识别与人工智能, 1997: 10(11):60-74.
    [132] Hou C, Pettet MW, Vildavski VY, et al. Neural correlates of shape-from-shading[J]. Vision Research, 2006, 46 (6-7): 1080-1090.
    [133] Ping-Sing T, Shah M. Shape from shading using linear approximation[J]. Image and Vision Computing, 1994, 12 (8): 487-498.
    [134] Tandri S, Yang Y-H. Comparison of two shape-from-shading algorithms[J]. Pattern Recognition Letters, 1990, 11 (9): 637-642.
    [135] F.Ackermann. Digital imagee correlation:performance and potential application in photogrammetry[J]. Photogrammetric record, 1984, 11 (65): 567-579.
    [136] Sansoni G, Carocci M, Rodella R. Three-Dimensional Vision Based on a Combination of Gray-Code and Phase-Shift Light Projection: Analysis and Compensation of the Systematic Errors[J]. Appl Opt, 1999, 38 (31): 6565-6573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700