硅橡胶中电树枝的生长机理与抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅橡胶凭借其良好的热、机械和绝缘性能,广泛应用于高压电力电缆附件的应力锥和绝缘主体。电缆附件结构复杂,因此不可避免的存在电应力集中现象,且预制式附件在生产、安装过程中会产生或引入缺陷,使得硅橡胶绝缘长期处于较严峻的运行环境。这些因素都会加速硅橡胶绝缘的老化,引发电树枝,最终导致绝缘故障。
     本文以硅橡胶中电树枝现象为研究对象,分别制备了不同质量分数的纳米SiO_2/硅橡胶试样,采用典型的针-板电极结构得到了环境温度、施加电压频率以及SiO_2纳米颗粒等因素对硅橡胶中电树枝特性的影响规律,并结合硅橡胶的分子结构和物理特性探讨了各种因素的作用机理。主要研究工作和结论如下:
     1.本文采用针-板电极结构研究了温度对室温硫化硅橡胶中电树枝特性的影响规律。发现硅橡胶中电树枝都是白色的树枝状通道。典型的电树枝结构有四种,分别为:树枝状、丛林状、松枝状和丛林-松枝混合状,不同结构的电树出现概率受温度影响较大,其中丛林状电树所占比重随着温度的升高逐渐增大。硅橡胶中电树枝起始时间随着环境温度的上升而增加。其累积击穿概率却随着环境温度的升高而呈下降趋势。
     2.本文采用变频电源研究了施加电压频率对硅橡胶中电树特性的影响。结果表明在高频下(≥2kHz)出现了藤枝状电树,其生长速度明显大于工频电压下的电树。一定电压下,硅橡胶中电树枝起始时间随着施加电压频率的升高而减少。其主要电树结构的平均分形维数随着施加电压频率的增加而呈线性增加趋势,范围在1.2~1.8之间。硅橡胶中电树枝累积击穿概率随施加电压频率的升高而增加。
     3.本文自行制备不同质量分数的纳米硅橡胶试样,研究了SiO_2纳米颗粒对硅橡胶中电树枝的抑制作用。随着纳米颗粒含量的增加,相同时间内电树枝的累积起始概率明显呈下降趋势,树枝通道宽度随着纳米颗粒含量的上升而明显呈减小趋势。在纳米颗粒含量在0~3%范围内,树枝通道的数目随着纳米颗粒含量的增加而增加;电树枝的分形维数平均值随着纳米颗粒含量的增加而明显呈上升趋势;其累积击穿概率在该范围内呈下降趋势。
Silicone rubber has been widely used in high-voltage cross-linked polyethylene(XLPE) power cables as stress cone and main insulation of prefabricated attachmentsfor its excellent thermal, mechanical and insulation properties. The existence of stressconcentration is inevitable in the cable attachments due to its complicated structure,and defects will be produced or introduced during the process of production andinstallation. All these factors mentioned above will accelerate the deterioration ofsilicone rubber in long-term running, and causing the appearance of electrical tree,which eventually leads to insulation failure. Therefore, the research on thephenomenon of electrical tree in silicone rubber has a very important theoretical andpractical value.
     The phenomenon of electrical tree in silicon rubber is investigated by using thetypical needle-plate electrode, both pure and nano-structured silicone rubberspecimens were prepared to study the effect of ambient temperature, power frequency,and SiO_2nano particles on the treeing characteristics. Combined with the molecularstructure and physical properties of silicone rubber, the action mechanism of eachfactor is explained. Main conclusions are as follows:
     The influence of ambient temperature on the treeing characteristics in roomtemperature vulcanizing silicone rubber was studied. It is found that all the electricaltrees in silicon rubber are white dendritic channel. There are four typical electricaltree structures, namely branch-like, bush-like, pine-like and bush-pine mixed. Theappearance probability of different structures is obviously affected by the ambienttemperature, in which the proportion of bush-like tree increases with ambienttemperature gradually. The initiation time of the electrical tree increases with theambient temperature, while the cumulative probability of treeing breakdowndecreases with it.
     A variable frequency power supply was employed to study the influence ofpower frequency on the characteristics of electrical tree in silicone rubber. Obtainedresults show that a new structure bine-like tree appears at high frequencies (≥2kHz),its growth rate is greater than other types. The initiation time decreases with theincrease of power frequency, and the average fractal dimension of dominant structure at each frequency, which varies in the range of1.2~1.8, shows a linear increasingtrend with the increase of frequency. The cumulative breakdown probability increaseswith frequency, which is related to the increase of frequency of bothelectro-mechanical stress nearby the tip and the discharge in tree channel.
     In order to investigate the inhibition mechanism of SiO_2nanoparticles onelectrical tree in silicon rubber, specimens with different quality of SiO_2particles isprepared. With the increase content of nanoparticles, the cumulative initiationprobability within the same applying time decrease obviously, and the width of branchchannel also reduce with it. In the range of0to3%, the number of branch channels,the average fractal dimension both increase with the nanoparticle content, accordingly,the cumulative breakdown probability decrease with it. Nano-SiO_2particles canimprove the trap depth of silicone rubber, thus inhibiting the injection of the electronsfrom the needle electrode, the interaction with the Si-O bond will increase theelasticity modulus of silicone rubber, moreover, the resistance performance todischarge of nanoparticles also plays an important role in obstructing the developmentof electrical trees, all the above reasons have relation to the inhibitory effect on theelectrical tree in nano-structured silicon rubber.
引文
[1]应启良,面临二十一世纪我国超高压与特高压电力电缆发展预期[C],中国电工技术学会电线电缆专委会98学术年会论文集,海南,1999,223~231.
    [2]杨黎明,中国电缆及附件现状与超高压附件的发展[C],全国第八次电力电缆运行经验交流会论文集,杭州,2008,1~5.
    [3]曹晓珑,刘英.我国电力电缆及其敷设技术现状[J].电力设备,2007,8(4),110-112.
    [4]江日洪,交联聚乙烯电力电缆线路,中国电力出版社(第一版),1997:7~12.
    [5]吴倩,刘毅刚,高压交联聚乙烯电缆绝缘老化及其诊断技术述评[J],广东电力,2003,16(4),1~6.
    [6]国家电网公司2009年电缆专业总结报告,2009.
    [7]朱宝宗,高压交联聚乙烯电力电缆及生产[J],电线电缆,1998,(3):2~6.
    [8] Li Yexiiao,Liang Zhenlin,Recent Progress of Power Application ofSuperconductor in China[J],IEEE Transactions on Applied Superconductivity,2007,17(2):2355~2360.
    [9]黄其励,21世纪电力发展的必由之路——高效、环保及可持续性发展[J],国际电力,2001,(1):4~9.
    [10]高小庆,姜芸等,XLPE电力电缆过负荷温升与早期损坏机理的研究[J],高电压技术,1997(2):62~64.
    [11]朱晓辉,交联工艺对交联聚乙烯绝缘特性的影响:[博士学位论文],天津:天津大学,2010.
    [12]李华春,周作春,陈平,110kV及以上高压交联电缆系统故障分析[J],电力设备,2004,5(8):9~13.
    [13]罗俊华,国外高压电力电缆应用技术现状,全国第八次电力电缆运行经验交流会论文集,浙江:国家电网公司电力科学研究院2008,990~1008.
    [14]刘子玉,王惠明,电力电缆结构设计原理,西安:西安交通大学出版社,1995,120~124.
    [15] D. Muto,S. Kobayashi,S. Tanaka and M. Suetsugu,Development ofCold-shrinkable Joints with Silicone Rubber Sleeve for110-230kV XLPECables[C], Proc. IEEE Power Eng. Soc. Trans. Distrib. Conf., Yokahama,Japan,2002,(2):1077-1082
    [16] T. Kubota,Y. Takahashi,T. Hasegawa,H. Noda,M. Yamaguchi andM. Tan,Development of500-kV XLPE Cables and Accessories for Long DistanceUnderground Transmission Lines-Part II: Jointing Techniques[J], IEEE Trans.Power Delivery,1994,9(4):1750-1759,.
    [17] Y. Nakanishi,A. Fujimori,S. Fukunaga,T. Tanabe,M. Kobayashi,N.Shiseki and K. Ando,Development of Prefabricated Joint for275kV XLPE Cable[J],IEEE Trans. Power Delivery,1995,10(3):1139-1147.
    [18] D. W. Kitchin,O. S. Pratt,Treeing on Polyethylene as a Prelude toBreakdown[J],AIEE Trans. Power Apparatus and Systems,1958,77(Part Ⅲ):180-186.
    [19] F. Noto and N. Yoshimura,Voltage and Frequency Dependence of TreeGrowth in Polyethylene[C], IEEE Conf. Elctri. Insul. Dielectr.Phenomena(CEIDP),1974:206-217.
    [20] R. J. Densley,An Investigation into the Growth of Electrical Trees inXLPE Cable Insulation[J],IEEE Trans. Dielectr. Electr. Insul.,1979,14(3):148-158.
    [21] C. Laurent and C. Mayoux,Analysis of the Propagation of ElectricalTreeing Using Optical and Electrical Methods[J],IEEE Trans. Dielectr. Electr.Insul.,1980,15(1):33-42.
    [22] M. Ieda and M. Nawata,Consideration of Treeing in Polymers[C],IEEEConf. Elctri. Insul. Dielectr. Phenomena(CEIDP),1972:143-150.
    [23] Champion J. V.,Dodd S. J.,Vaughan A. S.,et al,The effect of voltage,temperature and morphology on electrical treeing in polyethylene blends [C],Proceedings of Dielectric Materials, Measurement and Applications, IEEConference. Edinburgh,UK,2000:35-40.
    [24] Y. Sekii,Initiation and Growth of Electrical Trees in LDPE Generated byImpulse Voltage[J],IEEE Trans. Dielectr. Electr. Insul.,1998,5(5):748-753.
    [25] L. A. Dissado, Predicting Electrical Breakdown in PolymericInsulators[J],IEEE Trans. Dielectr. Electr. Insul.,2002,9(5):860-875.
    [26] Y. X. Zhou,Q. Nie,L. X. Jiang,Y. X. Chen,H. H. Chen,X. L.Xing,X. D. Liang and Zh. Ch. Guan,Influence of Curvature Radius of Needle Tipon Characteristics of Electrical Treeing in Silicone Rubber[C],Proceedings of theChinese Society of Electrical Engineering,2008,(28):27-32.
    [27] Y. Jiang,H. Min,J. H. Luo,Y. Li,X. J. Jiang,R. Xia,and W. J.Li, Partial Discharge Pattern Characteristic of HV Cable Joints with TypicalArtificial Defect[C],Asia-Pac. Power Energy Eng. Conf.,Chengdu,China,2010,1:1-4.
    [28] T. N. Stringer and L. A. Kojovic,Prevention of Underground Cable SpliceFailures[J],IEEE Trans. Ind. Appl.,2001,37(1):230-239.
    [29] G. Chen and C. H. Tham,Electrical Treeing Characteristics in XLPEPower Cable Insulation in Frequency Range Between20and500Hz[J],IEEE Trans.Dielectr. Electr. Insul.,2009,16(1):179-188.
    [30] A. Cavallini,M. Conti,G. C. Montanari,C. Arlotti and A. Contin,PDInference for the Early Detection of Electrical Treeing in Insulation Systems,IEEETrans. Dielectr. Electr. Insul.,2003,11(4):724-735.
    [31] N. Shimizu and C. Laurent,Electrical Tree Initiation[J],IEEE Trans.Dielectr. Electr. Insul.,1998,5(5):651-659.
    [32] R. Huuva,V. Englund,S. M. Gubanski and T. Hjertberg,A VersatileMethod to Study Electrical Treeing in Polymeric Materials[J],IEEE Trans. Dielectr.Electr. Insul.,2009,16(1):171-178.
    [33] T. Tanaka, Aging of Polymeric and Composite Insulating MaterialsAspects of Interfacial Performance in Aging[J], IEEE Trans. Dielectr. Electr.Insul.,2002,9(5):704-716.
    [34] Y. Kamiya, Y. Muramoto and N. Shimizu, Influence of VacuumEvacuation on Electrical Tree Initiation in Silicone Rubber[C],Conf. Electr. Insul.Dielectr. Phenom.,Kansas City,United states,2006:712-715.
    [35] Y. Kamiya,Y. Muramoto and N. Shimizu,Effect of Gas Impregnation inSilicone Rubber on Electrical Tree Initiation[C], Conf. Electr. Insul. Dielectr.Phenom.,Vancouver,BC,Canada,2007:53-56,.
    [36] Q. Nie,Y. X. Zhou,Z. Z. Chen and H. H. Chen,Effect of Frequency onElectrical Tree Characteristics in Silicone Rubber[C],Proc. IEEE Int. Conf. Prop.Appl. Dielectr. Mater.,Harbin,China,2009,(2):513-516,.
    [37] M. Fujii,S. Ohmori and J. Maeda,Development of Electrical Trees inTwo-and Three-Dimensional Silicone Rubbers[C],Proc. Int. Symp. Electr. Insul.Mater.,Kitakyushu,Japan,2005,3:544-547.
    [38] Y. Ogawa,F. Sugino,H. Ihori and M. Fujii,First Stage of2-D ElectricalTree in Silicone Rubber[C],Proc Int. Symp. Electr. Insul. Mater.,Yokkaichi,Japan,2008,2:657-660.
    [39] B. X. Du,Z. L. Ma and Y. Gao,Phenomena and Mechanism of ElectricalTree in Silicone Rubber[C],Proc. IEEE Int. Conf. Prop. Appl. Dielectr. Mater.,Harbin, China,2009,1:37-40.
    [40] B. X. Du,Z. L. Ma,Y. Gao and T. Han,Effect of ambient temperatureon electrical treeing characteristics in Silicone Rubber [J],IEEE Trans. Dielectr.Electr. Insul.,2011,18(2):401-407.
    [41] B. X. Du,Z. L. Ma and Y. Gao,Effect of temperature on electrical tree inSilicone Rubber, International Conference on Solid Dielectrics, Potsdam,Germany,2010:1-4.
    [42] T. J. Lewis,Nanometric Dielectrics[J],IEEE Transactions on ElectricalInsulation,1994,1(5):812-825.
    [43] B. Venkatesulu,M. J. Thomas,Corona Aging Studies on Sillione RubberNanocomposites[J],IEEE Transactions on Electrical Insulation,2010,17(2):625-634.
    [44]李盛涛,郑晓泉,聚合物电树枝化,北京:机械工业出版社,2006:24-56.
    [45]张秀阁,贺景亮,等,工频电压下XLPE绝缘的电树枝老化实验研究[J],高电压技术,1998,24(4):57-74.
    [46]郑晓泉,CHEN G,等,XLPE电缆绝缘中的电树枝种类及其影响因素[J],电工电能新技术,2003,22(4):21-24.
    [47] Fujii M,Watanabe M,Kitani I,et al, Fractal Character of dc Trees inPolymethylmethacrylate [J],IEEE Transactions on Electrical Insulation,1991,26(6):1159-1162.
    [48] Dissado L. A.,Understanding Electrical Tree in Solids:From Experimentto Theory [J],IEEE Transactions on Dielectrics and Electrical Insulation,2002,9(4):483-495.
    [49] Eichhorn R. M.,Treeing in Solid Extruded Electrical Insulation [J],IEEETransactions on Electrical Insulation,1944,EI-12(1):2-18.
    [50] Odwyer J. J.,Breakdown in Solid Dielectrics [J],IEEE Transactions onElectrical Insulation,1982,EI-17(6):484-487.
    [51]王志钧,吴炯,500kV XLPE电缆绝缘中树枝化现象的评述[J],电线电缆,2001(2):16-20.
    [52]谢安生,郑晓泉,李盛涛,G Chen, XLPE电缆绝缘中的电树枝结构及其生长特性[J],高电压技术,2007,33(6):168-173.
    [53]王以田,郑晓泉,G Chen,A E Davies,聚合物聚集态和残存应力对交联聚乙烯中电树枝的影响[J],电工技术学报,2004,19(7):44-48.
    [54]郑晓泉,G CHEN,A E DAVIES,交联聚乙烯电缆绝缘中的双结构电树枝特性及其形态发展规律[J],中国电机工程学报,2006,26(3):79-85.
    [55]郑晓泉,G CHEN,A E DAVIES,交联聚乙烯电缆绝缘中的电树枝与绝缘结构亚微观缺陷[J],电工技术学报,2006,21(11):28-33.
    [56]郑晓泉,G CHEN,A E DAVIES,结晶状态对XLPE电缆绝缘中电树枝的影响[J],高电压技术,2003,19(3):6-9.
    [57]郑晓泉,G CHEN,A E DAVIES,XLPE电缆绝缘中的电树枝种类及其影响因素[J],电工电能新技术,2003,22(4):21-24.
    [58] Xiaoquan Zheng and George Chen,Propagation Mechanism of ElectricalTree in XLPE Cable[J],IEEE Transactions on Dielectrics and Electrical Insulation,2008,15:800-807.
    [59] N. Shimizu,Y. Shibata,K. Ito,K. Imai and M. Nawata,Electrical Treeat High Temperature in XLPE and Effect of Oxygen[C],Conf. Electr. Insul. Dielectr.Phenom.,Victoria,BC,Canada,2000,1:329-332.
    [60] R. Jongen,E. Gulski,and J. Smit,Failures of Medium Voltage CableJoints in Relation to The Ambient Temperature[C],IET Conf. Publ.,Prague,Czech Republic,2009:1-4.
    [61]朱爱荣,曹晓珑,不同交联方式对交联聚乙烯电缆结晶形态影响的研究[J],绝缘材料,2005,(3):38-40.
    [62] Xiang Zhang,Estimation of the Lifetime of the Electrical Components inDistribution Networks[J],IEEE Transactions on power delivery,2007,22(1):515-522.
    [63] Chandrasekar S.,Cavallini A. and Montanari G. C.,Bandwidth andSensitivity Issues in PD Detection in Power Cables[J],IEEE Transactions onDielectrics and Electrical Insulation,2007,14(3):735-743.
    [64] Vahedy V,Polymer insulated high voltage cables[J],IEEE ElectricalInsulation Magazine,2006,22(3):13-18.
    [65] Salahk K M, International Research and Development Trends andProblems of HVDC Cables with Polymeric Insulation[J],IEEE Electrical InsulationMagazine,1997,13(6):35-47.
    [66]屠德民,从工程电介质进展看前沿课题[J],电工技术学报,2005,20(1):8-15.
    [67]日本電気学会,海外における送電用ケーブルの技術動向[R],電気学会技術報告,2000:767-770.
    [68] Hanley T L,Burford R O, Fleming R J,et al,A general review ofpolymeric insulation for use in HVDC cable[J], IEEE Electrical InsulationMagazine,2003,19(1):13-24.
    [69] Yaworski, H G,Silicone gel joints for power cable applications[J],IEEETransmission and Distribution Conference and Exposition,2003,3(2):921-925.
    [70] F. Guastavino,L. Centurioni,G. Coletti,A. Dardano and E. Torello,An experimental study about the treeing phenomena in XLPE subjected to distortedvoltages, IEEE Conf. Elctri. Insul. Dielectr. Phenomena(CEIDP),2003:600-603.
    [71] H. Z. Ding and B. R. Varlow,Electrical treeing studies on the AralditeLY/HY5052epoxy resin over a wide range of stressing voltage,IEEE Conf. Elctri.Insul. Dielectr. Phenomena(CEIDP),2004:306-309.
    [72] G. C. Stone,R. G. Van Heeswijk and R. Bartnikas,Electrical aging andelectroluminescence in epoxy under repetitive voltage surges,IEEE Transactions onElectrical Insulation,1992,27(1):233-244.
    [73] G. C. Montanari,I. Ghinello and D. Fabiani,Accelerated degradation ofcapacitor PP films under voltage distortion,IEEE Conf. Elctri. Insul. Dielectr.Phenomena(CEIDP),1998:686-689.
    [74] T. Tanaka and A.Greenwood,Effects of Charge Injection and Extractionon Tree Initiation in Polyethylene,IEEE Transactions on Power Apparatus andSystems,1978,PAS-97(5):1749-1759.
    [75] G. C. Montanari and D. Fabiani,The effect of non-sinusoidal voltage onintrinsic aging of cable and capacitor insulating materials,IEEE Transactions onDielectrics and Electrical Insulation,1999,6(3):798-802.
    [76] Michael G. Danikas and Toshikatsu Tanaka, Nanocomposites—AReview of Electrical Treeing and Breaksown [J]. IEEE Electrical InsulationMagazine,2009,25(4):19-24.
    [77] Toshikatsu Tanaka, Dielectrics Nanocomposites with InsulatingProperties,IEEE Trans. Dielectr. Electr. Insul.,2005,12(5):914-928.
    [78] T. Tanaka,A. Matsunawa,Y. Ohki,et al,Treeing Phenomena inEpoxy/Alumina Nanocomposite and Interpretation by a Multi-core Model[J],IEEJTrans. FM,2006,126(11):1128-1135.
    [79] Tomonori Iizuka,Toshikatsu Tanaka,Effects of Nano Silica Filler Sizeon Treeging Breakdown of Epoxy Nanocomposites[J],IEEJ Trans. FM,2010,130(9):836-842.
    [80] Toshikatsu Tanaka,Buds for Treeing in Epoxy Nanocomposites and theirPossible Interaction with Nano Fillers, International Conference on SolidDielectrics,Potsdam,Germany,2010:1-4.
    [81] Rudi Kurnianto,Yoshinobu Murakami,Naohiro Hozumi and YoshinaoMurata, Treeing Breakdown in Inorganic–filler/LDPE Nano-compositeMaterial[J],IEEJ Trans. FM,2007,127(1):29-34.
    [82] J. K. Nelson and Y. Hu,The Impact of Nanocomposite Formulations onElectrical Voltage Endurance, International Conference on Solid Dielectrics,2004,No.7p-10:832-835.
    [83] Y. Murata,Y. Murakami,M. Nemoto,Y. Sekiguchi,Y. Inoue,M.Kanaoka,N. Hozumi and M. Nagao,Effects of Nano-sized Mgo-filler on ElectricalPhenomena under DC Voltage Application in LDPE,IEEE Conf. Elctri. Insul.Dielectr. Phenomena(CEIDP),2005:158-161.
    [84] N. Shimizu, Y. Shibata, K. Ito, K. Imai and M.Nawata, Electrical Tree atHigh Temperature in XLPE and Effect of Oxygen, Conf. Electr. Insul. Dielectr.Phenom. CEIDP Annu. Rep., Victoria, BC, Canada,2000:329-332,
    [85] R. Jongen, E. Gulski, J. Smit, Failures of medium voltage cable joints inrelation to the ambient temperature, IET Conf. Publ., Prague, Czech Republic,2009:1-4.
    [86]曹晓珑,刘英,500kV超高压大容量交联电缆系统产品需求趋势与技术性能要求概述[J],电气技术,2005,1:10-16.
    [87]中出雅彦,酸化劣化に着目したCVケーブルの寿命推定,电气学会论文志B,2002,122(1):34-37.
    [88] Carlos Katz,et al,Service Aged69and115kV XLPE Cables[J],IEEETPD,1999,14(3):685-689.
    [89]李光亮,有机硅高分子化学[M],北京:科学出版社,1998,147-161.
    [90]黄文润,液态硅橡胶[M],四川:四川科技出版社,2009,336-340.
    [91]张玉龙,齐贵亮,硅橡胶改性技术[M],北京:机械工业出版社,2006,248-289.
    [92]赵文元,赵文明,王亦军,聚合物材料的电学性能及其应用[M],北京,化学工业出版社,2006,87-106.
    [93]陈平,唐传林,聚合物的结构与性能[M],北京:化学工业出版社,2005,19-34.
    [94]何平笙,新编聚合物的结构与性能[M],北京:科技出版社,2009,217-231.
    [95]吴其胜,蔡安兰,杨亚群,材料物理性能[M],上海:华东理工大学出版社,2006,224-227.
    [96]龙毅,李庆奎,强文江,材料物理性能[M],长沙:中南大学出版社,2009,154-165.
    [97]曹全喜,雷天民,黄云霞等,固体物理基础[M],西安:西安电子科技大学出版社,2008,168-223.
    [98]杨彪,聚合物纳米复合材料[M],北京:机械工业出版社,2010,248-266.
    [99]陈宇飞,郭艳宏,戴亚杰,聚合物基复合材料[M],北京:化学工业出版社,2010,296-304.
    [100]朱诚身,聚合物结构分析[M],北京:科学出版社,2004,469-473.
    [101]朱华,姬翠翠,分形原理及其应用[M],北京:科学出版社,2009,24-32.
    [102] K. Kudo,Fractal Analysis of Electrical Trees,IEEE Trans. Dielectr.Electr. Insul,1998,5(5):713-727.
    [103]李长明,高分子绝缘材料化学基础[M],哈尔滨:哈尔滨工业大学出版社,2007,2-6.
    [104]陈长乐,固体物理学[M],北京:科学出版社,2006,4-5.
    [105]焦剑,雷渭媛,高聚物结构、性能与测试[M],北京:化学工业出版社,2005,300-34.
    [106]朱毅,电力系统谐波对电气设备的影响[J],水利科技,2003,4:53-54.
    [107]郭汉桥,罗乾超,褚丽丽,电力系统中谐波的产生、危害及综合治理[J],电气开关,2008,2:55-57.
    [108]赵安临,电力谐波对电力系统的危害分析[J],山西煤炭管理干部学院学报,2011,24(4):108-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700