手臂康复机器人系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
康复机器人是近年出现的一种新型机器人,康复训练机器人的主要功能是帮助患者完成各种运动功能恢复训练。从工作原理上看,康复机器人是一种人机合作机器人,它必须适合人的运动特点,满足人的运动要求。为此本文设计了一种通过机械手带动患者的患肢运动,模拟日常生活中的手臂运动规律,通过计算机控制实现手臂各个关节的运动训练、肌肉锻炼以及神经功能恢复训练的上肢康复训练机器人。
     本文深入分析了手臂康复机器人国内外的发展现状,讨论了康复医学理论中关于康复训练的方法、过程,总结出对康复机器人设计的要求。按照此要求,并根据作业空间分析结果,设计了一种新型的手臂康复机器人。该机器人具有五个自由度,与人手臂的运动相适应。根据中国成年人手臂的运动范围确定了康复机器人的结构尺寸,并留有一定余量,以适应不同身高的患者。根据康复机器人与人合作的特点,采用轨迹控制及阻抗控制两种控制方式。
     利用D-H法分别对手臂及康复机器人进行了运动学分析,得到了手臂及康复机器人的正逆运动学方程。利用Matlab/SimMechanics对所推导的机器人运动学正、逆分析的结果进行检验,仿真结果表明了运动学分析结果正确性,同时也验证了本文所设计的康复机器人满足手臂康复对工作空间的要求。对手臂康复人机系统进行了运动规划和仿真分析。
     研究手臂和机器人的动力学特性。建立了手臂和机器人力学模型,利用虚功原理求解了广义力。应用拉格朗日方法建立了手臂和机器人的动力学方程。通过机构建模方法对手臂和机器人进行了动力学建模。针对复合康复训练的平面“8字形”和圆期望运动轨迹进行了仿真分析,仿真结果表明手臂惯性并没有引起机器人驱动力的突变和大幅度增加。
     研究了机器人柔顺控制策略。对手臂康复训练机器人的运动训练模式和手臂肌力训练模式进行了研究。运动训练模式采用基于位置外环的阻抗控制方式,手臂肌力训练模式采用基于力外环的阻抗控制方式。建立了基于MATLAB/Simulink的仿真模型,仿真结果表明,所设计的控制器能够分别实现机器人末端运动轨迹控制和力控制,并且具有一定的柔顺性。通过调整阻抗控制器参数,可以得到不同的柔顺特性。
     研制了两自由度康复机器人样机,基于dSPACE平台建立了康复机器人实验系统。进行了轨迹控制实验、刚度控制实验、阻抗控制等实验。研究了阻抗控制器参数对控制效果的影响。实验结果证明了理论分析的正确性及本文设计的康复机器人的可行性。
The rehabilitation robots are a new kind of robots appeared recently. The major function of rehabilitation robots is to help patient complete rehabilitation training of all athletic functions. According to the principle of work, rehabilitation robots are a human-machine cooperation robot. The rehabilitation robots must be suitable for movement characteristics of people, and meet movement demand of people. A type of arm rehabilitation robots is designed in this dissertation. The robot is used to drive arm of patients move through manipulator. And it can be simulated the arm movements rules of daily life. The athletic training, muscles exercises and neurological recovery training of each joint arm are realized through computer control.
     The developing situation at home and abroad of arm rehabilitation robots is deeply analyzed in this dissertation. And the method and process of rehabilitation training in Rehabilitation Medicine are discussed. The demand of rehabilitation robots design is summarized. On the basic of that and the analyzed conclusion of working space, a new type of arm rehabilitation robots is designed. The robots have 5 DOF, which is in keeping with the movement of reality. Based on the arm movement range of Chinese adults, the physical dimension of rehabilitation robots is defined and the definite allowance is retained to satisfy the patient with different heights. According to the characteristics of cooperation between robots and human, path control and impedance control are both used as control mode.
     The kinematics analysis of arm and rehabilitation robots is analyzed separately by using D-H method. The forward kinematics equation and inverse kinematics equation of arm and rehabilitation robot are obtained. The result of forward and inverse kinematics analysis is tested by using Matlab/SimMechanics. The correctness of kinematics analysis is validated through simulation results. At the same time it is also validated that the rehabilitation robot designed in this dissertation meet the working space requirements of arm rehabilitation. The motion planning and simulation analysis of arm rehabilitation man-machine system are also done in this dissertation.
     The dynamic properties of arm and robots are studied. The mechanical models of arm and robots are established. The generalized force is solved by using principle of virtual work. The dynamical equation is established with the Lagrange methods. The dynamical modeling of arm and robots is also established through mechanism modeling method. The "8" form path and cycle desired path of the surface motion with rehabilitation training are analyzed separately through simulation. The catastrophe and vast scale increment of robots driving force are not caused by the inertia of arm through the simulation results.
     The compliance control strategy of robots is studied. The athletic training mode and arm muscle strength training mode of arm rehabilitation robots are researched. Motion training mode is studied by taking the impedance control mode of position control in external loop. Arm muscle strength mode is studied by taking the impedance control mode of force control in external loop. Based on the MATLAB/Simulink, the simulation model is established. The motion path control of robot's end and force control are separately realized by the designed controller through the simulation results. And it is of definite compliance. The different compliance characteristics are obtained by adjusting the parameters of impedance controller.
     The prototype of 2-DOF rehabilitation robots is developed. The experimental system of rehabilitation robots is built up based on dSPACE. And the experiments of path control, stiffness control and impedance control are done. The effects between impedance control parameters and control effect are also studied. The correctness of theoretical analysis and feasibility of rehabilitation robots designed in this dissertation are verified through the experimental results.
引文
[1]张付祥,付宜利,王树国.康复机器人研究进展.河北工业科技.2005,22(2):100-105页
    [2]金德闻,季林红,、张济川.康复工程研究的新进展.中国康复医学杂志.2001,16(6):328-330页
    [3]吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析.哈尔滨工业大学学报.2004,6(9):1224-1227页
    [4]Dai.J.S, Zhao.T and Nester. C. Sprained Ankle Physiotherapy Based MechanismSynthesis and Stiffness Analysis of a Robotic Rehabilitation Device. Autonomous Robots,2004,16:207-218P M. Whittaker. HANDY1 Robotic Aid to Eatitlg:A Study in Social Impact. Proc. RESNA Int,1992: 589-594
    [5]Sumio Ishii Shinji Tanaka Fumiaki Hiramatsu. Meal Assistance Robot for Severely Handicapped People[A]. The 8th Rehabilitation Technology Conference, Japanese:Intelligent Systems laboratory SECOM Co. Ltd,1993: 563-566
    [6]Lum PS, Burgar CG, Shor PC, et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil,2002,83(7): 952-959
    [7]Mike Topping BA Cert. Ed, Jane Smith BA Hons. The development of HANDY1, a robotic system to assist the severely disabled[EB]. http://www. resna.org/ProfResources/Publications/Proceedings/2000/SpecialPopulation/Ha ndyl.php
    [8]世界上最成功的康复机器人-Handyl[EB].维普资讯.http://www.cqvip. com/asp/vipsearch.asp
    [9]K. Kawamura et. al. Intelligent Robotic Systems in Service of the Disabled. IEEE Trans. Rehabil. Eng,1995,3(1):14-21P
    [10]Mr. Mike Topping BA Cert.Ed, Dr. Helmut Heck, Professor Gunnar Bolmsjo An overview of the BIOMED 2 RAIL (Robotic Aid to Independent Living). Studies in Health Technology and Informatics,1993,9(2):108-112P
    [11]C.T.Freeman, A.-M.Hughes, J.H.Burridge, P.H.Chappell, P.L.Lewin, E.Rog-ers, A robotic workstation for stroke rehabilitation of the upper extremity using FES, Medical Engineering & Physics,31 (2009) 364-373
    [12]Lure P S. Lehman S L. The bimanual lifting rehabilitator:an adaptive machine for therapy of stroke patients[J]. IEEE Transactions on Rehabilitation Engineering,1995,3(2):166-174
    [13]ZHANG Xiufeng, JI Linhong. GUO Liyun. A novel robot neuro-rehabilitation for upper limb motion [C]. In:Proceedings of the 27th International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai International Convention Center, Shanghai,2005:5040-5043
    [14]王耀兵,季林红,黄靖远.一种神经康复机器人的研制.机械科学与技术.2005,24(2):139-141页
    [15]寄婧,王兴武,杨瑞芳.被动训练对脑卒中恢复期患者运动功能的影响.中国临床康复.2003,7(16):2380页
    [16]Nef T, Riener R. ARM in-design of a novel arm rehabifita-rehabilitation robot[C]. In:Proceeding of the 9th conference on Rehabilitation Robotics Chicago,2005:57-60
    [17]姜杉,杨志永,李佳.医用机器人研究应用与发展.机床与液压.2005(5):1-5页
    [18]张济川,金德闻.新技术在康复工程中应用和展望.中国康复医学杂志.2003,18(6):352-354页
    [19]孙立宁,何富君等.辅助型康复机器人技术的研究与发展.机器人ROBOT.2006,28(3):355-360页
    [20]王田苗,张大朋,刘达.医用机器人的发展方向.中国医疗器械志.2008,32(4)235-238
    [21]杜志江,孙传杰,陈艳宁.康复机器人研究现状.中国康复医学志.2003,18(5):293-294页
    [22]陈梦东,王田苗,张启先.医疗外科机器人系统的研究和发展.国外医
    学生物医学工程分册.1998,21(4):193-201页
    [23]于海波.并联式踝环节康复训练机器人系统设计.燕山大学工学硕士学位论文.2006:2页
    [24]B.Preising,T.Hsia,B.Mittelstadt.A Literature Review:Robots in Medicine. IEEE Engineering in Medicine and Biology,1991,10(2):13-22
    [25]李庆玲,孙立宁,杜志江.上肢康复机器人发展现状的分析与研究.机械设计.2008,25(9):1-3,70页
    [26]李会军.上肢康复训练机器人的研究进展及前景.机器人技术与应用.2006,(4):32-36页
    [27]Pedowitz, Gershuni, Crenshaw, Petras, Danzig, Hargens,Intraarticular pressu-re during continuous passive motion of the human knee, Journal of Orthopaedic Research,2008,7 (4):530-537
    [28]Rasyid, Mengko, Soegijoko, Tjandra Pramudito, Design and realization of personal computer-based continuous passive motion device to prevent shoulder joint stiffness, IEEE Asia-Pacific Conference on Circuits and Systems, Procee-dings, APCCAS,2004,1:573-576
    [29]Miyaguchi, Shota; Matsunaga,Nojiri,Kawaji, Shigeyasu, Impedance control of CPM device with flex-/extension and pro-/supination of upper limbs, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM,2007
    [30]Loureiro R, Amirabdollahian F, Topping M, et al. Upper limb robot mediated stroke therapy Gentle/s approach. Autonomous Robots,2003(15): 35-51
    [31]R C V Loureiro, C F Collin, W S Harwin. Robot aided therapy:challenges ahead for upper limb stroke rehabilitation. Proc.5th Intl Conf. Disability, Virtual Reality & Assoc. Tech., Oxford, UK,2004:33-39
    [32]Roberto Colombo, Fabrizio Pisano, Silvestro Micera, et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transaction on Neural Systems and Rehabilitation Engineering,2005, 13(3):311-324
    [33]M. Casadio et al., Measuring functional recovery of hemiparetic subjects during gentle robot therapy, Measurement(2008), doi:10.1016/j.measurement. 2008.09.012
    [34]Schmidt H, Hesse S, Werner C, Bardeleben A. Upper and lower extremity robotic devices to promote motor recovery after stroke-recent developments. Proceeding of the 26th Annual International Conference of the IEEE EMBS, 2004:4825-4828
    [35]Krebs HI, Hogan N, Aisen ML, et al.Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering,1998,6(1):75-87
    [36]Volpe BT, Krebs HI, Hogan N, et al. A novel approach to stroke rehabilitation:Robot-aided sensorimotor stimulation. Neurology,2000, 54(10):1938-1944
    [37]Volpe BT, Krebs HI, Hogan N. Robot-aided sensorimotor training in stroke rehabilitation. Adv Neurol,2003(92):429-433
    [38]D. J.Williams, H. Krebs, N. Hogan. A robot for wrist rehabilitation.2001 Proceedings of the 23rd Annual EMBS International Conference, October 25-28, P1336-1339
    [39]Steven K. Charles, Hermano I. Krebs. Wrist Rehabilitation Following Stroke: Initial Clinical Results. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. June 28-July 1,2005
    [40]L.Masia,Hermano.Iga Krebs, et al. Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke. IEEE asme transactions on mechatronics,2007,12(4)
    [41]Krebs.HI,james.C,et al.Robot-Aided Neurorehabillitation:A Robot for Wrist Rehabilitation.IEEE Transactions on neural systems and rehabilitation engineering,2007,15(3)
    [42]Dustin JW,Hermano IK,et al.A robot for wrist rehabilitation.2001 Proceedings of the 23rd Annual EMBS International Conference, Istanbul,2001
    [43]Reinkensmeyer DJ, Kahn LE, Averbuch M, et al. Understanding and treating treating arm movement impairment after chronic brain injury:Progress with the ARM guide. Rehabil. Res.Dev,2000,37(6):653-662P
    [44]David J. Reinkensmeyer, Julius P.A.Dewald, and William Zev Rymer. Guidance-Based Quantification of Arm Impairment Following Brain Injury:A Pilot Study. IEEE Transactions on Rehabilitation Engineering, Vol. 7, No.1, March 1999
    [45]Burgar CG, Lum PS, Shor PC, et al. Development of robot for rehabilitation therapy:The PALO Alto VA/Stanford experience. J Rehabil Res Der 2000, 37(6):663-673
    [46]Lum PS, Burgar CG, Shor PC, et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys.Med.Rehabil.2002,83(7): 952-959
    [47]Johannes Feuser, Oleg Ivlev, Axel Graser. Collision prevention for rehabilitation robots with mapped virtual reality. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics,2005: 461-464
    [48]Robert Richardson, Michael Brown, et al. Impedance control for a pneumatic robot-based around pole-placement, joint space controllers. Control Engine-ering Practice,2005(13):291-303
    [49]Toshiro Noritsugu, Toshihiro Tanaka. Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE,1997,2(4):259-267
    [50]Ken'ichi Koyanagi, Yusuke Imada, Junji Furusho, et al.3-D rehabilitation robot system for upper limbs and its force display techniques. ICAT, 2003:56-65
    [51]Alexandre Deneve, Said Moughamir. Control system design of a 3-DOF upper limbs rehabilitation robot. computer methods and programs in biome-dicine.89(2008) 202-214
    [52]Takehito Kikuchi,Junji Furusho,et al.Development of a 6-DOF Rehabilita-tion Robot and its Software for Clinical Evaluation Based on Virtual Reality.IEEE International Conference on Comples Medical Engineering, 2007:1285-1288
    [53]Tobias Nef, Robert Riener. ARMin-design of a novel arm rehabilitation robot. Proceedings of the 9th International Conference on Rehabilitation Robotics,2005:57-60
    [54]Joel C.Perry,Jacob Rosen,et al.Upper-Limb Powered Exoskeleton Design. IEEE Asmetransactions on mechatronics,2007,12(4)
    [55]Stephen J.Ball,Ian E.Brown and Stephen H.Scott.A planar 3DOF robotic exoskeleton for rehabilitation and assessment. Proceedings of the 29th Annual international Conference of the IEEE EMBS tice internationale. france,2007:4024-4027
    [56]Jacob Rosen, Joel C. Perry, Nathan Manning. The Human Arm Kinematics and Dynamics During Daily Activities-Toward a 7 DOF Upper Limb Powered Exoskeleton. The 12th International Conference on Advanced Robotics. July 2005
    [57]Gang Song,Shuxiang Guo.Development of a Novel Tele-rehabilitation System.Proceedings of the 2006 IEEE international Conference on Robotics and Biominetics.China,2006
    [58]Giulio Rosati,Paolo Gallina,Stefano Masiero.Design Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation.IEEE Transactions on neural systems and rehabilitation engineering.2007,15(4)
    [59]Giulio Rosati,Paolo Gallina,et al.Design of a new 5 d.o.f. wire-based robot for rehabilitation.9th international Conference on Rehabilitation Robotics. USA,2005
    [60]S. McCombe Waller a,*, W. Liu a,b, J. Temporal and spatial control following bilateral versus unilateral training. Whitall a Human Movement Science 27 (2008) 749-758
    [61]Robert A. Scheidt, David J.Reinkensmeyer, etc. Persistence of Motor Adaptation During Constrained Multi-Joint, Arm Movements. The American Physiological Society.2000
    [62]Andre Schiele and Frans C. T. van der Helm. Kinematic Design to Improve Ergonomics in Human Machine Interaction. IEEE Transactions on neural systems and rehabilitation engineering, Vol.14, No.4, December 2006
    [63]Susan Coote, Emma K. Stokes. Effect of robot-mediated therapy on upper extremity dysfunction post-stroke-a single case study. Physiotherapy.91 (2005) 250-256
    [64]Prabir Mukhopadhyay, Leonard O'Sullivan. Estimating upper limb discomfort level due to intermittent isometric pronation torque with various combinations of elbow angles, forearm rotation angles, force and frequency with upper arm at 90 abduction. International Journal of Industrial Ergonomics.37 (2007) 313-325
    [65]Peter Culmer, Andrew Jackson, Rob Richardson et al, Development of a Dual Robotic System for Upper-Limb Stroke Rehabilitation. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. June 28-July 1,2005:61-65
    [66]Cozens J A. Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on Rehabilitation Engineering,1999,7(2):254-256
    [67]J.A. Cozens, Robotic assistance of an active upper limb exercise in neurologically impaired patients, IEEE Trans.Rehabil. Eng.7 (2) (1999) 254-256.
    [68]R. Riener, T. Nef, G. Colombo, Robot-aided neurorehabilitation of the upper extremities, Med. Biol. Eng. Comput.43 (1) (2005) 2-10
    [69]Lum P S, Reinkensmeyer D J. Robotic assist devices for bimanual physical therapy:Preliminary experiments. IEEE Transactions on Rehabilitation Engineering,1993,1(3):185-191
    [70]http://www.lfk.com.cn/cp/Index.asp?ClassName=关节康复器
    [71]刘星,张德文.CPM机在小儿髋关节术后功能康复中的应用.中国矫形外科杂志.2001,8:1236-1237页
    [72]胡宇川,季林红.从医学角度探讨偏瘫上肢康复训练机器人的设计.中国临床康复.2004,8(34):7754-7756页
    [73]胡宇川.偏瘫上肢复合运动康复训练机器人的研制.清华大学工学硕士论文.2004:3-10页
    [74]胡宇川,季林红.从医学角度探讨偏瘫上肢康复训练机器人的设计.中国临床康复.2004,8(34):7754-7756页
    [75]任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究.清华大学工学硕士论文.2004:16-22页
    [76]胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人.机械设计与制造.2004(6):47-49页
    [77]Ming-Shaung Ju,Chou-Ching K.et al.A Rehabilitation Robot With Force-Position Hybred Fuzzy Controller:Hybrid Fuzzy Control of Rehabilit-ation Robot.IEEE transacions on neural systems and rehabilitation engineering, 2005,13(3)
    [78]范宏竹,钟高基.设计发展机器手臂辅助系统与中风病人的上肢治疗训练.台南:国立成功大学医学工程研究所.2004
    [79]王理研,宫奕,宋爱国.基于Internet的远程控制康复训练机械臂.测控技术.2007,26(6):53-56页
    [80]杨勇,张立勋,谭爱华,伊永峰.由单片机实现的多功能手臂康复训练器.自动化技术与应用.2004,23(2):55-57页
    [81]张蕊,张佳帆,张文蔚.可穿戴式柔性外骨骼人机智能系统安全性设计评价.机电工程.2008,25(12):85-88页
    [82]张蕊,张佳帆,江灏.可穿戴式柔性外骨骼人机智能系统可靠性及应用伦理问题研究.机电产品开发与创新.2008,21(5):19-21页
    [83]Zhang Jia-Fan*, Yang Can-Jun, Chen Ying, Zhang Yu, Dong Yi-Ming. Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton.Mechatronics 18 (2008) 448-457
    [84]张儒,万军.智能手部康复训练机器人.机械与电子.2008,(12):53-55页
    [85]王东岩,李庆玲,杜志江,孙立宁.外骨骼式上肢康复机器人及其控制方法研究.哈尔滨工程大学学报.2007,28(9):1008-1013页
    [86]王东岩,李庆玲,杜志江等.5DOF穿戴式上肢康复机器人控制方法研究.哈尔滨工业大学学报.2007,39(9):1383-1387页
    [87]张秀峰,季林红,王景新.辅助上肢运动康复机器人技术研究.清华大学学报(自然科学版).2006,46(11):1864-1867页
    [88]王耀兵.偏瘫患者上肢单关节康复训练机器人的设计与研究.清华大学学位论文.2004
    [89]王理研,官奕,宋爱国.基于Internet的远程控制康复训练机械臂.测控技术.2007,26(6):53-56页
    [90]毕胜.偏瘫患者上肢康复训练机器人的研制与临床应用.首都医科大学学位论文.2006
    [91]Erwin de Vlugt, Alfred C. Schouten. Quantification of intrinsic and reflexive properties during multijoint arm posture. Journal of Neuroscience Methods 155 (2006)328-349
    [92]杨磊,高晓辉,何平,刘宏.HIT机器人灵巧手基关节位置/力矩控制.电机与控制学报.2005.5:275~279页
    [93]Yung-Tien Liu, Rong-Fong Fung. Precision position control using combined piezo-VCM actuators. Precision Engineering, October 2005:411-422
    [94]Yo Kobayashi, Jun Okamoto, Masakatsu G. Fujie. Position control of needle tip with force feedback and liver model. International Congress Series, May 2005:719-724
    [95]于兑生.偏瘫康复治疗技术图解.第2版.北京:华夏出版社.2005:2页
    [96]张笃超,李湘奇.运动损伤康复学.北京:人民军医出版社.2008:143页
    [97]大熊繁(日).机器人控制,科学出版社,OHM社.2002.3:116页
    [98]杨廷力.机器人机构拓扑结构学.机械工业出版社.2004,3:10页
    [99]Nevile Hogan. Impedance control an approach to manipulation Ⅰ Ⅱ Ⅲ [J]. ASME.J.DSMC.1985,107:1-24P
    [100]J.A.Maples, J.J.Becker. Experiments in force control of robotics manipulators. Proc IEEE Conf on Robotics & Automation, 1986(11):1108-1114P
    [101]王耀南.机器人智能控制工程.第一版.科学出版社.2004:41-45页
    [102]Alin Albu-Achaffer, Gerd Hirzinger. Cartesian impedance control techniques for torque controlled light-weight robots. IEEE,2002:657-663P
    [103]Chien-Chern Cheah. Danwei Wang. Learning impedance control for robotic manipulators. IEEE,1998,14(3):452-465P
    [104]吴进华,刘洪兴,史贤俊.dSPACE仿真平台的实时仿真原理研究及其 应用.电子测量与仪器学报.2004:720-724页
    [105]潘峰,薛定宇,徐心和.基于dSPACE半实物仿真技术的伺服控制研究与应用.系统仿真学报.2004,16(5):936-939页
    [106]张立勋,董玉红,王怀军.基于半物理仿真技术的机电伺服系统模型辨识研究.机电一体化.2006(2):30-32页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700