绿豆遗传连锁图谱构建及抗豆象基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿豆是我国传统的食用豆类作物,也是我国传统出口创汇产品,具有良好的食用和药用价值。随着人们生活水平提高和膳食结构的改变,绿豆的市场需求也日益增加。然而目前绿豆遗传育种研究相对落后,现代分子标记技术在育种中还鲜有应用。加强绿豆重要性状的遗传和现代分子生物学研究,对高产高抗优质新品种的培育具有重要指导意义。本研究以绿豆基因组SSR标记开发与评价为基础,利用野生绿豆和栽培绿豆杂交衍生的RIL群体,开展了绿豆遗传连锁图谱的构建,并进一步对抗豆象基因进行了精细定位,同时开展了绿豆重要农艺性状的QTL发掘,为进一步开展基因克隆等后续研究奠定了基础。
     主要研究结果如下:
     1.新开发的2240对绿豆基因组SSR引物中有1205对在绿豆材料中能有效扩增,选取绿豆、小豆、豇豆及饭豆材料各3份,分析1205对新开发的绿豆基因组SSR引物在这些材料中的扩增效果,结果显示绿豆基因组SSR引物在豇豆、小豆和饭豆中的通用性比率分别为50.0%、73.3%和81.6%;多态性比率分别为4.1%、1.7%和1.5%;有469对引物在4个种间均可通用。
     2.以高抗豆象澳大利亚野生绿豆ACC41和高感豆象美国栽培绿豆Berken为亲本构建的重组自交系F10为实验群体,利用264对在亲本间表现多态的SSR和STS标记对群体进行分析,结合前人的199个分子数据,构建了一张含有419个标记(333个SSR标记、74个RFLP标记、9个STS标记和3个RAPD标记)和一个抗豆象基因位点Br1的绿豆遗传图谱,图谱总长735.0cM,含11个连锁群,标记平均间距1.75cM。各连锁群长度在17.5cM~120.3cM之间,标记位点数9~76个之间,各连锁群标记分布较均匀,是迄今为止国内外标记最多、密度最高的绿豆遗传图谱。
     3.利用上述图谱将抗豆象基因Br1基因定位于第9连锁群上2.6cM的区间内,距离其两侧的SSR标记P2-627和C220均只有1.3cM。
     4.基于上述图谱,在4个环境下,对绿豆的株高、主茎节数、荚长、荚宽、单荚粒数和百粒重进行QTL定位,6个产量相关性状共检测到了62个QTL,分布在除第3连锁群以外的10个连锁群上, QTL贡献率在2.89%-30.19%之间,6个性状均检测到5-18个QTL。有7个QTL在2个或2个以上不同环境中都检测到,具有环境稳定性。
Mungbean [Vigna radiata (L.) Wilczek] is an important legume crop in China, which serve theirroles as cash crops for farmers and as protein sources for consumers. It is a traditional crop in China andhas a long history of cultivation. China is the number one export country of mungbean in the world.Bruchid (Callosobruchus spp.) is a serious pest during storage of seeds of mungbean and other Vignaspecies. Breeding for bruchid-resistance is a major goal in mungbean improvement. In order to set upthe foundation of the molecular marker assisted breeding of bruchid-resistance and molecular designbreeding, we need to initiate the construction of a high-density genetic linkage map, genetic research ofobjective traits and gene location. At present, SSR markers for genetic analysis of these legumes aremuch limited. Transferability analysis of primers has the vital significance to reduce their developmentcost and improve their development efficiency. In this study, we evaluated the transferability ofmungbean Genomic-SSR markers in other Vigna species and constructed a high-density genetic linkagemap of mungbean using SSR and STS markers we developed. The bruchid-resistance gene Br1we finemapped using a Recombine-inbred-lines (RIL) population from the cross between Berken and ACC41.We analyzed the QTLs for Plant height, Number of nod, Pod length, Pod width, Seed per pod and100-seed weight yield-related traits. The results are as follow:
     1.1205SSRs primers were tested for their transferability and polymorphism by PCRamplification with the genomic DNA of four Vigna species, cowpea, adzuki bean, mungbean and ricebean. The results indicated that the transferability rate of mungbean genomic-SSR in cowpea, adzukibean and rice bean was50.0%,73.3%, and81.6%, and the ratio of polymorphism SSR primers in thesecrops was4.1%,1.7%, and1.5%, whereas32.0%in mungbean. A total of469mungbean genomic-SSRprimers were detected to be highly transferable among different species of Vigna. The transferability ofmungbean genomic-SSR was higher in adzuki bean and rice bean than in cowpea. These transferablemarkers are useful for further genetic and breeding studies in these species.
     2. A molecular genetic map of mungbean was constructed with a190F10recombinant inbred linepopulation from a cross of a highly bruchid-susceptible cultivar Berken and a highly bruchid-resistancewild mungbean ACC41, by using SSR, STS, RFLP and RAPD markers. The total length of the map,which comprised11linkage groups, spanned735cM with an average distance between markers of1.75cM and a maximum distance between linked markers of9.7cM. The new genetic linkage map wasconstructed with419genetic markers(included333SSR markers,74RFLP markers,9STS markers and3RAPD markers). The lengths of the linkage groups ranged from17.5cM to120.3cM, and the numberof loci varied from9to76per linkage group. This genetic map is fundamental to gene localization,comparative genomics and QTL mapping of important agronomic traits.
     3. Bruchid-resistant locus Br1was mapped to a2.6cM segment between two SSR markers onlinkage group9. Two markers P2-627and C220are closest to the bruchid-resistence gene,approximately1.3cM away.
     4. A total of62QTLs were identified for yield-related traits under the4environments.Contribution of single QTL to phenotypic variation varied from2.89%to30.19%.Of these,7QTLswere common under2or more than2environments.21QTLs were up to10%of the phenotypicvariation.
引文
1.陈方景,梁璧元,程义华.浙西南山区景宁县绿豆象的发生规律及综合防治技术.农资科技,2004,3:22-23
    2.陈军方,任正隆,高丽锋等.从小麦EST序列中开发新的SSR引物.作物学报,2005,31(2):154-158
    3.陈树林,王沛政,胡保民.陆地棉EST-SSRs在向日葵中的通用性研究.西北植物学报,2006,26(3):502-506
    4.程须珍,王素华,金达生,杨又迪,吴绍宇,周吉红.绿豆抗豆象遗传的初步研究.植物遗传资源科学,2001:12-15
    5.程须珍,童玉娥,Koizumi.中国绿豆产业发展与科技应用.北京:中国农业出版社,2002:12
    6.程须珍,王素华,王丽侠.(主编).绿豆种质资源描述规范和数据标准.北京:中国农业出版社,2005:13-27
    7.崔秀敏,侯喜林,董玉秀.不结球白菜SSR引物的高效开发及其通用性研究.科技导报,2005,23(11):20-23
    8.董玉琛,刘旭.中国作物及及其野生近缘植物.北京:中国农业出版社,2006:1
    9.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2000:22-23
    10.高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179
    11.韩健.果梅nSSR、cpSSR引物在核果类果树上通用性分析及其在果梅遗传多样性上的应用.[硕士学位论文].南京:2008,南京农业大学
    12.洪彦彬,陈小平,刘海燕,周桂元,李少雄,温世杰,梁炫强.源于大豆EST的花生属(Arachis)同源SSR标记的开发及利用.作物学报,2010,36(3):410-421
    13.黄建国.绿豆象的生物学的研究.郑州工程学院学报,1980,1:24-30
    14.荆赞革,唐征,罗天宽,张小玲,楼珏,刘庆,朱世杨,叶珍.甘蓝SSR标记在近缘种青花菜的通用性及其应用.基因组学与应用生物学,2010,29(4):685-690
    15.金文林,谭瑞娟,王进忠,张志勇,刘长安,濮绍京,赵波.田间小豆绿豆象卵空间分布型初探.植物保护,2004,30(6):34-36
    16.兰进好,李新海,高树仁,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析.作物学报,2005,31(10):253-1259.
    17.李妲.马尾松SSR引物开发.[硕士学位论文],南京:2007.南京林业大学
    18.李红英,李康琴,胥猛,李火根.北美鹅掌楸EST-SSR跨属间通用性.东北林业大学学报,2011,39(2):28-30,42
    19.李宏伟,刘曙东,高丽锋,贾继增.小麦EST-SSRs的通用性研究.植物遗传资源学报,2003,4(3):252-255
    20.李小白,张明龙,崔海瑞.油菜EST-SSR标记的建立.分子细胞生物学报,2007,40(2):137-144
    21.刘长友,程须珍,王素华,王丽侠,孙蕾,梅丽.用于绿豆种质资源遗传多样性分析的SSR及STS引物的筛选.植物遗传资源学报,2007,8(3):298-302
    22.刘峰,李建波.绿豆主要农艺性状的遗传参数分析.2010,2:81-83
    23.梅丽,王素华,王丽侠,刘长友,孙蕾,徐宁.重组近交系群体定位绿豆抗绿豆象基因.作物学报,2007,33(10):1601-1605
    24.梅丽.绿豆Berken/Acc41重组近交系豆象抗性及重要农艺性状的QTL分析.[硕士学位论文].北京:2007,中国农业科学院
    25.穆瑞荷.绿豆高产栽培技术.现代农业科技,2010,(15):107
    26.宿俊吉,柴守诚,刘伟华,杨欣明,李立会.普通小麦SSR和EST-SSR引物对冰草通用性的比较分析.西北植物学报,2007,27(7):1311-1316
    27.忻雅,崔海瑞,张明龙,姚艳玲,卢美贞,金基强,林容杓,崔水莲,白菜EST-SSR标记的通用性.细胞生物学杂志,2006,28(2):248-252
    28.孙蕾.抗豆象基因等位性鉴定及栽培绿豆V2709抗豆象遗传与分子标记.[硕士学位论文].北京:2007,中国农业科学院
    29.孙蕾,程须珍,王素华,王丽侠,刘长友,梅丽,徐宁.栽培绿豆V2709抗豆象特性遗传及基因初步定位.中国农业科学,2008,41(5):1291-1296
    30.向闱,宁祖林,康明,黄宏文.中国板栗EST-SSR信息分析及其通用性,热带亚热带植物学报2010,18(6):665-669
    31.王丽侠,程须珍,王素华,刘长友,梁辉.小豆SSR引物在绿豆基因组中的通用性分析,作物学报,2009,35(5):816-820
    32.王黎明,李兴锋,刘树兵,王洪刚.小麦微卫星标记在中间偃麦草中通用性研究.华北农学报,2007,22(6):50-52
    33.王小国,梁红艳,张薇.来自小麦基因组的SSR标记在早熟禾亚科植物中的通用性分析.华北农学报,2007,22(4):155-157
    34.徐雁鸿,关建平,宗绪晓.豇豆种质资源SSR标记遗传多样性分析.作物学报,2007,33(7):1206-1209
    35.张增翠,侯喜林. SSR分子标记开发策略及评价.遗传,2004,26(5):763-768
    36.郑丽珊,石玉真,王静毅,等.棉花基因组SSR分子标记在香蕉中通用性的研究.分子植物育种,2007,5(5):667-762
    37.郑丽珊,石玉真,王静毅,黄秉智,冀小蕊,张保才,袁有禄,武耀廷.棉花EST-SSRs在香蕉中的通用性.中国农学通报,2008,24(1):33-37
    38.赵丹,程须珍,王丽侠,王素华,马燕玲.绿豆遗传连锁图谱的构建.作物学报,2010,36(6):932-939
    39.郑卓杰(主编).中国食用豆类学.北京:中国农业出版社,1997:3
    40.朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报,1999,33:327-335
    41.朱成松,王付华,王建飞,李广军,张红生,章元明.回交DH和RIL偏分离群体遗传图谱的重新构建.科学通报,2007,52(8):918-922
    42.邹玉婷.小麦EST-SSR标记对小麦及其近缘种属的遗传多样性研究.[硕士学位论].成都2010,四川农业大学
    43. Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant MolBio Reporter,1991,9:8-18
    44. Austin D F, Lee M. Detection of quantitative trait loci for grain yield and yield components inmaize across generations in stress and nonstress environments.Crop Sci,1998,38(5):1296-1308
    45. Barreneche T, Casasoli M, Russell K et a1. Comparative mapping between Quercus andCastanea using simple-sequence repeats (SSRs). Theor Appl Genet,2004,108:558-566
    46. Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucl Acids Res,1999,27:573-580
    47. Boutin S R, Young N D, Olsen T C, Yu Z H. Shoemaker RC, Vallejos C E. Genome conservationamong three legume genera detected with DNA markers. Genome,1995,38:928-937
    48. Burgess T, Wingfield M J, Wingiield B W,2001,Simple sequence repeat markers distinguishamong morphotypes of Sphaeropsis strpinea, Applied and Environmental Microbiology,67(1):354-362
    49. Castelo A T, Martins W, Gao G R. TROLL-tandem repeat occurrence locator. Bioinformatics,2002,18:634-636
    50. Casasoli M, Derory J, Morera-Dutrey C. Comparison of quantitative trait loci for adaptive traitsbetween oak and chestnut based on an expressed sequence tag consensus map. Genetics,2006,172:533-546
    51. Chaitieng B, Kaga A, Han O K, Wang X W, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA. Mapping a new source of resistance to powdery mildew in mungbean. Plant Breeding,2002,121:521-525
    52. Chen H M, Li L Z, Wei X Y, Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S. Development,chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull,2005,50:2328-2336
    53. Cheng R, Saito A, Takano Y and Ukai Y. Estimation of the position and effect of a lethal factorlocus on a molecular marker linkage map. Theor Appl Genet,1996,93:494-502
    54. Cherdsak L A, Caroe R, Yousryaei K. Single-copy species-transferable microsatellite markersdeveloped from loblolly pine ESTs. Theor App1Genet,2004,109:361-369
    55. Cho Y G, Ishii T, Tenmykla S. Diversity of microsatellites derived from genomic libraries andGenBank sequences in rice(Oryrta sativa L.). Theor Appl Genet,2000,100:713-722
    56. Choudhary S, Sethy N K, Shokeen B, Bhatia S. Development of chickpea EST-SSR markers andanalysis of allelic variation across related species. Theor Appl Genet,2009,118:591-608
    57. Doria R C, Raros R S. Varietal resistance of mungo to the bean weevil, Callosobruchus chinensis.(Linn.) and some characteristics of field infestation. Philippine Entomologist,1973,2:399-408
    58. Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem Bull,1987,19:11-15
    59. Eujayl I, Sedge M K, Wang L. Medicago truncatula EST-SSRs reveal cross-species geneticmarkers for Medlcago spp. Theor Appl Genet,2004,108:414-422
    60. Fatokun C A, Menancio-Hautea D I, Danesh D, Young N D. Evidence for orthologous seedweight genes in cowpea and mungbean based on RFLP mapping. Genetics,1992,132:841-846
    61. Fujii K, Miyazaki S. Infestation resistance of wild legumes (Vigna sublobata) to azuki beanweevil, Callosobruchus chinensis (L.)(Coleoptera: Bruchidae) and its relationship withcytogenetic classification. Applied Entomology and Zoology,1987,22(2):229-230
    62. Fujii K, Ishimoto M, Kitamura K. Patterns of resistance to bean weevils (Bruchidae) in Vignaradiata-mungo-sublobata complex inform the breeding of new resistant varieties. AppliedEntomology and Zoology,1989,24(1):126-132
    63. Fischer D, Bachmann K. Microsatellite enrichment in organisms with large genomes (Alliumcepa L.), Biotechniques,1998,24:796-802
    64. Fisher P J, Gardner R C, Richardson T E. Single locus microsatellites isolated using5’anchoredPCR. Nucleic Acids Research,1996,24(21):4369-4371
    65. Gaspero D G, Peterlunger E, Testolin R, Ewards K J, Cipriani G. Conservation of microsatelliteloci within the genus Vitis. Theor Appl Genet,2000,101:301-308
    66. Gupta P K, Balyan H S, Sharma P C. Microsatellite in plants: a new class of molecular markers.Curr Sci,1996,70:45-54
    67. Gupta S K, Gopalakrishna T. Development of unigene-derived SSR markers in cowpea (Vignaunguiculata) and their transferability to other Vigna spcies. Genome,2010,53:508-523
    68. Gutierrez M V, Vaz Patto M C, Huguet T, Cubero J I, Moreno M T, Torres A M. Cross-speciesamplification of Medicago truncatula microsatellites across three major pulse crops.2005,110(7):1210-1217
    69. Han O K, Kaga A, Isemura T, Wang X W, Tomooka N, Vaughan D A. A genetic linkage map forazuki bean [Vigna angularis (Willd.) Ohwi&Ohashi]. Theor Appl Genet,2005,111:1278~1287
    70. Hayden M J, Sharp P J. Sequence-tagged microsatellite profiling(STMP): a rapid technique fordeveloping SSR markers. Nucleic Acids Research,2001,29(8):43
    71. Hayden M J, Sharp P J. Targeted development of informative microsatellite(SSR) markers.Nucleic Acids Research,2001,29(8):44
    72. He G T, Woullard F E, Marong I, Guo B Z. Transferability of Soybean SSR Markers in Peanut(Arachis hypogaea L.) Peanut Science,2006,33(1):29-34
    73. Humphry M E, Konduri V, Lambrides C J, Magner T, McIntyre C L, Aitken E.A.B, et al.Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab(Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor ApplGenet,2002,105:160-166
    74. Humphry M E, Magner T, McIntyre C L, Aitken E A B, Liu C J. Identification of a major locusconferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L.Wilczek) by QTL analysis. Genome,2003,46:738-744
    75. Humphry M E, Konduri V, Lambrides C J, Magner T, McIntyre C L, Aitken E A B. Relationshipsbetween hard-seededness and seed weight in mungbean (Vigna radiata) assessed by QTLanalysis. Plant Breed,2005,124:292-298
    76. Imrie B C, Williams R W, Lawn R J. Breeding for resistance to weather damage in mungbean.Proceedings of the Second International Symposium on Mungbean. AVRDC, Taiwan,1988,130-135.
    77. Kandpal R P, Kandpal G, Weissman S M. Construction of libraries enriched for sequence repeatsand jumping clones, and hybridization selection for region-specific markers. Proc Natl Acad SciUSA,1994,91:88-92
    78. Kantety R V, La Rota M, Matthews D E, Sorrells M E. Data mining for simple sequence repeatsin expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol,2002,48:501-510
    79. Kaga A, Ishimoto M. Genetic localization of a bruchid resistance gene and its relationship toinsecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata (L.) Wilczek).Mol Genet Genomics,1998,258:378-384
    80. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics,1999,152:1203-1216
    81. Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map: Linkagearrangements among various populations and evolutionary implications. Theor Appl Genet,1992,84:544-554
    82. Kitamura K, Ishmoto M, Sawa M. Inheritance of resistance to infestation with azuki bean weeilin Vigna sublobata and successful in corporation to V. radiata. Japan of Breed,1988,38:459-464
    83. Knapp S J, Bridges W C, Birkes U. Mapping quantitative trait loci using molecular marker maps.Theor Appl Genet,1990,79:583-592
    84. Lambrides C J, Imrie B C. Susceptibility of mungbean varieties to the bruchid speciesCallosobruchus maculatus (F.), C. phaseoli (Gyll.), C. chinensis (L.), and Acanthoscelidesobtectus (Say.)(Coleoptera:Chrysomelidae). Australian Journal of Agricultural Research,2000,51:85-89
    85. Li L Z, Wang J J, Guo Y, Jiang F S, Xu Y F, Wang Y Y, Pan H T, Han G Z, Li R J, Li S S.Development of SSR markers from ESTs of gramineous species and their chromosome locationon wheat. Prog Nat Sci,2008,18:1485-1490
    86. Lian C, Miwa M, Hogetsu T,2000, Isolation and characterization of microsatellite loci from theJapanese red pine. Pinus densiflora,9(8):1186-1188
    87. Liang X Q, Chen X P, Hong Y B, Liu H Y, Guo B Z. Utility of EST-derived SSR in cultivatedpeanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol,2009,9:35
    88. Lima M L A, Souza C L, Bento D A V Souza A P, Carlini-Garcia L A.Mapping QTL for GrainYield and Plant Traits in a Tropical Maize Population.Molecular Breeding,2006,17:227-239.
    89. Lin C, Chen C S, Horng S B. Characterization of resistance to Callosobruchus maculatus(Coleoptera Bruchidae) in mungbean variety VC6089A and its resistance-associated proteinVrD1. Journal of Economic Entomology,2005,4:1369-1373
    90. Lorieux M, Goffinet B, Perrier X, Gonzalez D de L, Lanaud C. Maximum-likelihood models formapping genetic markers showing segregation distortion1. Backcross populations. Theor ApplGenet.1995a,90:73-80
    91. Lorieux M, Perrier X, Goffinet B, Lanaud C and Gonzalez D de L. Maximum-likelihood modlesfor mapping genetic markers showing segregation distortion2. F2populations. Theor Appl Genet,1995b,90:81-89
    92. Lu C, Shen L, Tan Z. Comparative mapping of QTLs for agronomic traits of rice envimnmentsusing a population. Theor Appl Genet.1996,13:1211-1217
    93. Lu H, Romero-Severson J and Bernardo R. Chromosomal regions associated with segregationdistortion in maize. Theor Appl Genet,2002,105:622-628
    94. Luchezar K, Iveta D K, Verne M C. Construction of random small-insert genomic libraries highlyenriched for simple sequence repeats. Nucleic Acids Research,1993,21(16):3911-3912
    95. Lunt D H, Hutchinson F, and Carvalho G R,1999, An efficient method for PCR-based isolationof microsatellite arrays(PIMA), Molecular Ecology,8(5):891-893
    96. Ma Y, Yang T, Guan J P, Wang S M, Wang H F, Sun X L, Zong X X. Development andcharacterization of21EST-derived microsatellite markers in Vicia Faba(faba bean). AmericanJournal of Botany.2011,98:22-24
    97. MacRitchie D, Sun G L.Evaluating the potential of barley and wheat mierosatellite markers forgenetic analysis of Elymus trachycaulus complex species. Theoretical and Applied Genetics,2004,108:720-724
    98. Mei l, Cheng X Z, Wang S H, Wang L X, Liu C J, Sun L, Xu N, Humphry M E, Lambrides C J,Li H B. Relationship between bruchid resistance and seed mass in mungbean based on QTLanalysis. Genome,2009,52:589-596
    99. Menancio-Hautea D, Fatokun C A, Kumar L, Danesh D, Young N D. Comparative genomeanalysis of mungbean (Vigna radiata (L.) Wilczek) and cowpea(V. unguiculata L.) Walpers usingRFLP mapping data. Theor Appl Genet,1993,86:797-810
    100. Miyatake T, Mat sumura F. Intraspecific variation in female remating in Callosobruchuschinensis and C maculates. Insect Physiol,2004,50(5):403-408
    101. Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J. Construction of bacterialartificial chromosome libraries and their application in developing PCR-based markers closelylinked to a major locus conditioning bruchid resistance in mungbean. Theor Appl Genet,2004,110:151-156
    102. Murigneux A, Baud S, Beckert M. Molecular and morphological evaluation of doubled-haploidlines in maize.2. Comparison with single-seed descent lines. Theor Appl Genet.1993,87:278-287
    103. Ostrander E A, Jong P M, Rine J, Duyk G. Construction of small-insert genomic DNA librarieshighly enriched for microsatellite repeat sequences. Proe Natl Acad Sci,1992,89(8):3419-3423
    104. Ostrander E A, Jong P M, Rine J, Duyk G. Construction of small-insert genomic DNA librarieshighly enriched for microsatellite repeat sequences. Proc Natl Acad Sci,1992,89:3419-3423
    105. Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLPmap of cotton, Gossypium hirsutum×Gossypium barbadense: Chromosome organization andevolution in a disomic polyploid genome. Genetics,1994,138:829-847
    106. Rossetto M, Mcnally J, Henry R J. Evaluating the potential of SSR flanking regions forexamining taxonomic relationships in Vitaceae. Theor Appl Genet,2002,104:61-66
    107. Rossi M, Araujo P G, Paulet F, Garsmeur O, Dias V M, Chen H, Van Sluys M A, D’Hont A.Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) insugarcane. Mol Genet Genomics,2003,269:406-419
    108. Shanmugasundaram S. Exploit mungbean with valueadded products. Acta Horticulturae,2007,752:99-102
    109. Somta P, Ammaranan C, Ooi P A C, Srinives P. Inheritance of seed resistance to bruchids incultivated mungbean (Vigna radiata L.Wilczek). Euphytica,2007,155:47-55
    110. Somta C, Somta P, Tomooka N, Ooi P A C, Vaughan D A, Srinives P. Characterization of newsources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp.(Coleoptera: Bruchidae). Journal of Stored Products Research,2008,44:316-321
    111. Soto-cerda B J, Urbina S H, Navarro N C, Mora O P. Characterization of novel genic SSRmarkers in Linum usitatissimum (L.) and their transferability across eleven Linum species.Electronic Journal of Biotechnology,2011,14(2):1-11
    112. Stuck S, Campbell L, Henderson K. Development of EST derived micro-satellite markers formapping and germplasm analysis in wheat. Plant Animal Genome Vlll:The InternationalConference on the Status of Plant Animal Genome Research. San Diego State Univesity.2000:227
    113. Talekar N S, Lin C L. Characterization of Callosobruchus chinensis(Coleoptera: Bruchidae)resistance in mungbean. Journal of Economic Entomology,1992,85:1150-1153
    114. Tuberosa R, Salvi S, Sanguineti M C. Mapping QTL regulating morpho-phyiological traits andyield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot,2002,89:941-963
    115. Ueno S, Aoki K, Tsumura Y.Generation of expressed sequence tags and development ofmicrosatellite markers for Castanopsis sieboldii var.sieboldii(Fagaceae).Ann Forest Sci,2009,66:509-509
    116. Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: Features andapplications. Trends Biotechnol,2005,23:48-55
    117. Vogl C, Xu S. Multipoint mapping of viability of segregation distoriting loci using molecularmarkers. Genetics,2000,155:1439-1447
    118. Xu Y, Zhu L, Xiao J, Huang N, McCoueh S R. Chromosomal regions associated with segregationdistortion of molecular markers in F2, backcross doubled haploid, and recombinant inbredpopulations in rice(Oryza sativa L.). Mol Gen Genet.1997,253:535-545
    119. Yasm n Z F, Amalia C, Ana M T, Miguel A B, Victoriano V, Amparo M, Jose F, Sanchez S, IraidaA. Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and theirtransferability across the Rosoideae subfamily, Mol Breeding,2011,27:137-156
    120. Young N D, Kumar L, Menancio D, Hautea. RFLP mapping of a major bruchid resistance gene inmungbean (Vigna radiate (L.) Wilczek). Theor Appl Genets,1992,84:839-844
    121. Young N D, Danesh D, Menancio-Hautea D, Kumar L. Mapping oligogenic resistance topowdery mildew in mungbean with RFLPs. Theor Appl Genet,1993,87:243-249
    122. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q E, Saghai Maroof M A. Importanceof epistasis as the genetic basis of heterosis in an elite rice hybrid. PNAS,1997,94:9226~9231
    123. Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B, Sorrells M E. Development and mappingof EST-derived simple sequence repeat (SSR) markers for hexaploid wheat. Genome,2004,47:805-818
    124. Zane L, Bargelloni L, Patarnello T. Strategies for mierosatellite isolation: a review. MolecularEcology,2002,11(1):1-16
    125. Zeng Z B. Theoretical basis ofseparation ofmultiple linked gene effects on mapping quantitativetrait loci. Proc Natl Acad Sci USA,1993,90:10972-10976
    126. Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet.1997,95:799-808
    127. Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L. Analysis on additive effects andadditive-by-additive epistatic effects of QTLs for yieldtraits in a recombinant inbred linepopulation office.Theor Appl Genet,2002,105(8):1137-1145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700