太西氧化煤难浮机理及其可浮性改善研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细粒氧化煤因其可浮性差,难以通过常规的浮选方法进行高效回收,干扰选煤厂的正常生产运行,直接影响了煤炭企业的经济效益,并造成煤炭资源的浪费。本论文以太西无烟煤为例,探究了氧化煤的形成机制和难浮机理,提出了氧化煤可浮性改善的有效策略并揭示了这种改善背后的原因,最后探讨了浮选过程优化对氧化煤浮选效果的作用及影响。论文主要的研究结论如下:
     1、通过在实验室条件下模拟太西新鲜煤样的氧化过程揭示了氧化煤的形成机制。煤的氧化过程按作用条件分为自然风化和高温氧化两大类。自然风化又分为室内风化和室外风化。煤炭在室内的风化过程缓慢,两年后,其表面性质仍类似于新鲜煤样;但煤炭在室外受到风吹、日晒、雨淋作用,风化过程迅速且剧烈,新鲜煤样在室外风化三个月,即可从本质上改变煤炭的表面性质,造成煤炭表面疏水性官能团迅速下降,亲水性官能团迅速增加,从而造成煤炭可浮性的迅速降低。煤炭受到高温氧化后,其表面的疏水性基团含量降低,亲水性基团含量相对增加,煤炭表面新生成大量孔洞、沟壑和裂隙,造成煤炭可浮性迅速下降;将经过高温氧化后的煤炭置入水中,在高温氧化煤的表面将会发生二次氧化的过程,进一步降低了高温氧化煤的可浮性。自然风化过程和高温氧化过程均能降低煤炭的表面疏水性,改变煤粒表面的微观形貌,导致煤炭可浮性下降。
     2、基于现场煤样物性特征的氧化煤难浮机理研究。太西选煤厂的氧化煤可分为风化煤和自燃煤(高温氧化煤)。在实验室条件下模拟得到的氧化煤,在物理化学性质上与现场氧化煤相似,证明实验室条件下模拟的两种氧化过程具有一定的代表性和可靠性。采用FTIR、XPS、SEM和接触角对现场氧化煤进行物性特征分析,结果表明:导致氧化煤表面亲水性强的原因主要为煤粒表面基团种类、含量和煤粒表面微观形貌。氧化煤表面亲水性含氧基团在水中容易和水分子发生弱氢键键合作用,致使氧化煤表面被较厚的水化膜覆盖,降低其可浮性。氧化煤表面孔洞、沟壑和裂隙在浮选矿浆中容易被水填充,进一步增加了水化膜的厚度,增强了水化膜的稳定性,造成氧化煤表面难以和捕收剂进行有效作用。因此,氧化煤可浮性差,采用常规油性捕收剂(煤油、柴油)难以实现其高效浮选回收。
     3、研磨预处理改善氧化煤的可浮性及其作用机制研究。风化煤由于表层受到风化作用,煤粒内部受风化作用影响小。研磨预处理可以将风化煤表层剥落,暴露出其内部的新鲜表面,从而改善风化煤的可浮性。自燃煤表面孔隙众多,在矿浆中迅速被水填充和覆盖,导致自燃煤表面水化膜厚且稳定。研磨虽然也可以暴露出自燃煤内部的较疏水性表面,但由于自燃煤的可浮性受到其表面形貌的影响较大,因而研磨并不能很好地改善自燃煤的可浮性;但研磨可以通过减小自燃煤的入浮粒度来促进其浮选回收,最佳的自燃煤浮选粒度范围应介于22~74微米。
     4、新型高效捕收剂增强自燃煤的可浮性及其作用原理研究。自燃煤经过研磨预处理后,采用生物柴油和氧化柴油可以显著增加自燃煤的浮选回收。FTIR结果表明:生物柴油和氧化柴油的碳氢链上均含有较多的含氧基团,可与自燃煤表面的含氧基团发生弱氢键键合作用,促进生物柴油、氧化柴油与自燃煤表面发生有效作用,从而增加自燃煤的可浮性。实验室制备的DCT捕收剂与生物柴油、氧化柴油具有性质上的相似性,DCT捕收剂的碳氢链上也含有较多的含氧官能团,同时DCT捕收剂含有较多的不饱和键。DCT捕收剂较普通柴油更能降低自燃煤表面的亲水性含氧基团含量,增加自燃煤表面的疏水性碳氢基团含量,从而DCT捕收剂较普通柴油更能改善自燃煤的可浮性。
     5、浮选过程优化改善自燃煤的浮选效果及其作用机制研究。预润湿时间对自燃煤的浮选影响显著。预润湿时间越短,自燃煤浮选回收效果越佳。当预润湿时间为零时,自燃煤浮选回收率最高。捕收剂调浆时间对自燃煤浮选回收的影响主要表现在:当预润湿时间为某一确定值时,存在着较为合适的捕收剂调浆时间。同时,合适的调浆强度和浮选搅拌强度对自燃煤的浮选至关重要。微波预处理可以显著降低原煤的水分含量,较低的原煤水分有利于自燃煤的浮选回收,原因可能在于:较低的原煤水分可以使得煤粒表面在浮选矿浆中不易迅速被水覆盖,使得水化膜厚度较薄,促进自燃煤表面与捕收剂的有效作用,因而有利于自燃煤的浮选回收。自燃煤表面的灰分矿物主要为硅酸盐类矿物(SiO2和Al2O3)。采用糊精作为抑制剂,HTAB作为捕收剂,即可在一定程度上实现自燃煤的反浮选回收。反浮选工艺尤其适合于较粗粒级自燃煤的浮选回收。
Fine oxidized coal is difficult to float using common flotation processes since thelow floatability of oxidized coal surface, which is a serious waste of coal resource.The economical loss of Taixi Coal Preparation Plant is caused by its low flotationrecovery of oxidized coal. This dissertation based on Taixi oxidized coal, is to find outboth the formation and difficult-to-float mechanisms of Taixi oxidized coal. Theimprovement strategies for oxidized coal flotation are proposed as well as theirimprovement principles are also revealed. The effects of flotation processesoptimization are also discussed. The main conclusions are as follows:
     Formation mechanism of Taixi oxidized coals is revealed by simulating freshcoal oxidation processes under laboratory conditions. Oxidation processes containnatural weathering and high temperature oxidation processes. Natural weatheringprocesses contain inside and outside weathering processes. Inside weatheringprocesses are more moderate than outside. Coal surface after two years insideweathering processes is similar to fresh coal surface. However, Coal surface after3months outside is changed greatly and the floatability is decreased qucikly. Hightemperature oxidation processes increases the number of holes and cracks anddecreases the floatability of coal surface. High temperature oxidized coal surface canbe oxidized into a further state by water immersion. Both natural weathering and hightemperature oxidation processes can reduce coal hydrophobicity and change surfacemicroscopic morphology, and hence reduce the floatability of coal surface.
     Difficult-to-float mechanism of Taixi oxidized coal is investigated based onphysicochemical characteristics. Taixi oxidized coal contains both weathered coal andspontaneous combustion coal. It is representative that simulated oxidized coalproperties under laboratory conditions are similar to Taixi oxidized coal. FTIR, XPS,SEM and contact angle measurements are used to indicate oxidized coal properties.Floatability of oxidized coal is determined by surface groups and surface morphology.Hydrophilic oxygen containing groups can be bonded with water molecules, whichcauses oxidized coal surface to be covered by a thick hydrated film. This thickhydrated film always makes oxidized coal difficult to float. The holes, ravines andfissures on oxidized coal surface can be also filled with water, and hence the thicknessof hydrated film can be further enhanced. It is difficult for oily collectors, such asdiesel and kerosene to contact with oxidized coal surface.
     Floatability of oxidized coals is improved by grinding pretreatment. Grindingcan expose fresh, hydrophobic surfaces. Therefore, the floatability of weathered coalcan be improved. There are many holes, ravines and fissures on spontaneouscombustion coal surface, and hence the hydrated film on spontaneous combustioncoal surface is very thick. The inner surface of spontaneous combustion coal can bealso exposed by grinding. However, it is disappointed that the floatability ofspontaneous combustion coal is primarily affected by surface morphology. Grindingpretreatment may improve spontaneous combustion coal flotation by reducing the sizecomposition of feeding. The suitable size range should be between22and74μm.
     Floatability of spontaneous combustion coal can be enhanced by new effectivecollectors. Biodiesel and oxidized diesel can improve the floatability of groundspontaneous combustion coal. FTIR results show that biodesel and oxidized sieselhave many oxygen containing groups which can be bonded with the same oxygencontaining groups on spontaneous combustion coal surface, and hence the floatabilityof spontaneous combustion coal is enhanced. DCT collector is made under laboratoryconditions. DCT collector also has the similar performance of the improvement in thefloatability of spontaneous combustion coal surface. XPS results show that DCTcollector can increase the floatability by reducing the content of oxygen containinggroups but increasing the content of hydrophobic hydrocarbon groups.
     Improved flotation processes promote the flotation recovery of spontaneouscombustion coal. The flotation performance is affected greatly by prewetting time.The shorter prewetting time, the higher flotation recovery is. Flotation recovery is thehigheset while prewetting time is zero. There is one suitable collector conditioningtime related to one prewetting time. The suitable condition intensity and impellerspeeds are very important during flotation processes. The moisture content ofspontaneous combustion coal samples can be reduced by microwave pretreatment.The decreasing of moisture content can improve the flotation of spontaneouscombustion coal. The main ash minerals are silicate (SiO2and Al2O3). Dextrin andHTAB were used as depressant and collector, respectively. Reverse flotation issuitable for the recovery of coarse oxidized coals.
引文
[1]申宝宏,雷毅,郭玉辉.中国煤炭科学技术新进展[J].煤炭学报,2011,36(11):1779-1783.
    [2]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.
    [3]国家能源局综合司.煤炭工业洁净煤工程技术研究中心[R]:能源数据,2011.
    [4]陈贵锋.―十二五‖期间我国洁净煤技术发展值得关注的方向[J].中国能源,2011,33(8):5-7.
    [5]全国职业培训教学工作指导委员会煤炭专业委员会.浮选[M].北京市:煤炭工业出版社,2004.
    [6] Zhenghe Xu, Jianjun Liu, J. W. Chounget al. Electrokinetic study of clay interactions withcoal in flotation[J]. International journal of mineral processing,2003,68(1):183-196.
    [7]桂夏辉,刘炯天,陶秀祥等.难浮煤泥浮选速率试验研究[J].煤炭学报,2011,36(11):1895-1900.
    [8] Gerald H. Luttrell, Rick Q. Honaker. Coal Preparation. Fossil Energy[M]: Springer,2013:343-387.
    [9] Frank F. Aplan. Coal flotation[J]. chapter,1976,45:1235-1264.
    [10] William J. Oats, Orhan Ozdemir, Anh V. Nguyen. Effect of mechanical and chemical clayremovals by hydrocyclone and dispersants on coal flotation[J]. Minerals Engineering,2010,2(35):413-419.
    [11] Maoming Fan, Daniel Tao, Rick Honakeret al. Nanobubble generation and its applicationsin froth flotation (part II): fundamental study and theoretical analysis[J]. Mining Science andTechnology (China),2010,20(2):159-177.
    [12] S. Muganda, M. Zanin, S. R. Grano. Influence of particle size and contact angle on theflotation of chalcopyrite in a laboratory batch flotation cell[J]. International Journal of MineralProcessing,2011,98(3):150-162.
    [13] Y. F. Li, W. D. Zhao, S. H. Xuet al. Changes of size, ash and density of coal particles on thecolumn axis of a liquid-solid fluidized bed[J]. POWDER TECHNOLOGY,2013,245:251-254.
    [14] Renhe Jia, Guy H. Harris, Douglas W. Fuerstenau. An improved class of universalcollectors for the flotation of oxidized and/or low-rank coal[J]. International journal of mineralprocessing,2000,58(1):99-118.
    [15] S. Kelebek, U. Demir, O. Sahbazet al. The effects of dodecylamine, kerosene and pH onbatch flotation of Turkey's Tuncbilek coal[J]. International Journal of Mineral Processing,2008,88(3):65-71.
    [16] Shobhana Dey. Enhancement in hydrophobicity of low rank coal by surfactants—A criticaloverview[J]. Fuel Processing Technology,2012,94(1):151-158.
    [17] D. W. Fuerstenau, KVS Sastry, J. S. Hansonet al. Coal surface control for advanced finecoal flotation[R]: California Univ., Berkeley, CA (USA); Columbia Univ., New York, NY (USA);Utah Univ., Salt Lake City, UT (USA); Praxis Engineers, Inc., Milpitas, CA (USA),1990.
    [18] Douglas Winston Fuerstenau, Jianli Diao. Surface properties of coal and their role in coalbeneficiation[R]: California Univ., Berkeley, CA (USA). Coll. of Engineering,1990.
    [19] G. H. Harris, JIANLI DIAO, D. W. Fuerstenau. Coal flotation with nonionic surfactants[J].Coal Perparation,1995,16(3-4):135-147.
    [20] J. S. Laskowski, J. D. Miller. New reagents in coal flotation[J]. Reagents in the MineralIndustry,1984:145-154.
    [21]舒新前.自燃煤有机地球化学特征研究[J].中国煤田地质,1995,7(4):52-56.
    [22]马成理.自燃煤矸石的材料性能试验研究[J].太原理工大学学报,2003,34(2):154-157.
    [23]韩德馨,孙俊民.中国煤的燃烧变质作用与煤层自燃特征[J].中国煤田地质,1998,10(4):15-16.
    [24]张双全.煤化学[M],徐州,中国矿业大学出版社,2004。
    [25] David C. Frost, W. Ross Leeder, Robert L. Tappinget al. An XPS study of the oxidation ofpyrite and pyrites in coal[J]. Fuel,1977,56(3):277-280.
    [26] Haihui Wang, Bogdan Z. Dlugogorski, Eric M. Kennedy. Coal oxidation at lowtemperatures: oxygen consumption, oxidation products, reaction mechanism and kineticmodelling[J]. Progress in Energy and Combustion Science,2003,29(6):487-513.
    [27] Haihui Wang, Bogdan Z. Dlugogorski, Eric M. Kennedy. Thermal decomposition of solidoxygenated complexes formed by coal oxidation at low temperatures[J]. Fuel,2002,81(15):1913-1923.
    [28] H. Wang, B. Z. Dlugogorski, E. M. Kennedy. Analysis of the mechanism of thelow-temperature oxidation of coal[J]. Combustion and Flame,2003,134(1-2):107-117.
    [29] D. Lopez, Y. Sanada, F. Mondragon. Effect of low-temperature oxidation of coal onhydrogen-transfer capability[J]. Fuel,1998,77(14):1623-1628.
    [30] Haihui Wang, Bogdan Z. Dlugogorski, Eric M. Kennedy. Examination of CO2, CO, andH2O formation during low-temperature oxidation of a bituminous coal[J]. Energy&fuels,2002,16(3):586-592.
    [31] Anthony H. Clemens, Trevor W. Matheson, Donald E. Rogers. Low temperature oxidationstudies of dried New Zealand coals[J]. Fuel,1991,70(2):215-221.
    [32]马秀欣,赵宏波.我国泥炭,褐煤和风化煤的资源优势及其应用领域[J].中国煤炭,2004,30(9):47-49.
    [33] J. M. Kuchta, V. R. Rowe, David S. Burgess. Spontaneous combustion susceptibility of UScoals[M]: US Department of the Interior, Bureau of Mines,1980
    [34] M. J. Gouws, T. P. Knoetze. Coal self-heating and explosibility[J]. Journal of the SouthAfrican Institute of Mining and Metallurgy,1995,95(1):37-44.
    [35] David Cliff, David Rowlands, Jon Sleeman. Spontaneous combustion in Australianunderground coal mines[M],1996
    [36]朱志宇,赵浩,刘光伟.浅析露天煤矿煤炭自燃[J].露天采矿技术,2011(001):29-31.
    [37] Tuncay Uslu, Ercan Sahinoglu, Mehmet Yavuz. Desulphurization and deashing of oxidizedfine coal by Knelson concentrator[J]. Fuel Processing Technology,2012,101:94-100.
    [38]王羽玲,王羽娟,陈海旭.太西煤的可选性与加工利用研究[J].选煤技术,2000,6:21-24.
    [39]王羽玲.太西煤的煤岩特性研究[J].洁净煤技术,2000,6(4):43-46.
    [40]李光明,杨建国,王羽玲等.超低灰无烟煤制备技术研究[J].煤炭加工与综合利用,2006,5:25-28.
    [41]王羽玲,杨建国,李光明等.超低灰太西精煤的制备[J].选煤技术,2004,6:35-36.
    [42]康淑云.开发神宁超低灰煤,问鼎国家科技奖——访神华宁煤集团太西洗煤厂厂长叶庆春[J].中国煤炭,2009(2):99-100.
    [43]贺婧,颜丽,杨凯等.不同来源腐殖酸的组成和性质的研究[J].土壤通报,2003,34(4):343-345.
    [44]郭晓峰.自然界对煤的风化作用[J].腐植酸,2003,2:2-3.
    [45] K. Baris, S. Kizgut, V. Didari. Low-temperature oxidation of some Turkish coals[J]. Fuel,2012,93:423-432.
    [46] M. S. Jena, S. K. Biswal, M. V. Rudramuniyappa. Study on flotation characteristics ofoxidised Indian high ash sub-bituminous coal[J]. International Journal of Mineral Processing,2008,87(1):42-50.
    [47] J. C. Petit. A comprehensive study of the water vapour/coal system: application to the roleof water in the weathering of coal[J]. Fuel,1991,70(9):1053-1058.
    [48] X. Dong Chen, James B. Stott. The effect of moisture content on the oxidation rate of coalduring near-equilibrium drying and wetting at50C[J]. Fuel,1993,72(6):787-792.
    [49] Anthony H. Clemens, Trevor W. Matheson. The role of moisture in the self-heating oflow-rank coals[J]. Fuel,1996,75(7):891-895.
    [50] Saurabh Bhat, Pradeep K. Agarwal. The effect of moisture condensation on the spontaneouscombustibility of coal[J]. Fuel,1996,75(13):1523-1532.
    [51] A. D. Palmer, M. Cheng, J-C Gouletet al. Relation between particle size and properties ofsome bituminous coals[J]. Fuel,1990,69(2):183-188.
    [52] Srinivasan Krishnaswamy, Pradeep K. Agarwal, Robert D. Gunn. Low-temperatureoxidation of coal.3. Modelling spontaneous combustion in coal stockpiles[J]. Fuel,1996,75(3):353-362.
    [53] Srinivasan Krishnaswamy, Robert D. Gunn, Pradeep K. Agarwal. Low-temperatureoxidation of coal.2. An experimental and modelling investigation using a fixed-bed isothermalflow reactor[J]. Fuel,1996,75(3):344-352.
    [54] Srinivasan Krishnaswamy, Saurabh Bhat, Robert D. Gunnet al. Low-temperature oxidationof coal.1. A single-particle reaction-diffusion model[J]. Fuel,1996,75(3):333-343.
    [55] Musa Sarikaya, Gülhan zbayo lu. Flotation characteristics of oxidized coal[J]. Fuel,1995,74(2):291-294.
    [56]赵继尧.顺磁共振谱对氧化煤的初步研究[J].煤炭科技资料,1991(3):70-72.
    [57]何启林,任克斌,王德明.用红外光谱技术研究煤的低温氧化规律[J].煤炭工程,2003,11:45-48.
    [58]胥哲,曹代勇.新鲜煤和氧化煤自燃倾向性的FTIR对比分析[J].中国煤炭地质,2008,20(5):4-6.
    [59]褚廷湘,杨胜强,孙燕等.煤的低温氧化实验研究及红外光谱分析[J].中国安全科学学报,2008,18(1):171-176.
    [60]葛岭梅,李建伟.神府煤低温氧化过程中官能团结构演变[J].西安科技学院学报,2003,23(2):187-190.
    [61]石必明.易自燃煤低温氧化和阻化的微观结构分析[J].煤炭学报,2000,25(3):294-298.
    [62]陆伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报,2007,32(9):939-944.
    [63]董庆年,陈学艺.红外发射光谱法原位研究褐煤的低温氧化过程[J].燃料化学学报,1997,25(4):333-338.
    [64]戴广龙.煤低温氧化及自燃特性的综合实验研究[D]:徐州:中国矿业大学,2005.
    [65]戴广龙.煤低温氧化过程中微晶结构变化规律研究[J].煤炭学报,2011,36(2):322-325.
    [66] Philip D. Swann, David G. Evans. Low-temperature oxidation of brown coal.3. Reactionwith molecular oxygen at temperatures close to ambient[J]. Fuel,1979,58(4):276-280.
    [67] John Radspinner, H. Howard. Determination of Surface Oxidation of Bituminous Coal[J].Industrial&Engineering Chemistry Analytical Edition,1943,15(9):566-570.
    [68] Jon S. Gethner. Thermal and oxidation chemistry of coal at low temperatures[J]. Fuel,1985,64(10):1443-1446.
    [69] Jon S. Gethner. Kinetic study of the oxidation of Illinois No.6coal at low temperatures:evidence for simultaneous reactions[J]. Fuel,1987,66(8):1091-1096.
    [70] Brian M. Lynch, Lai-Im Lancaster, J. Anthony MacPhee. Carbonyl groups from chemicallyand thermally promoted decomposition of peroxides on coal surfaces: detection of specific typesusing photoacoustic infrared Fourier transform spectroscopy[J]. Fuel,1987,66(7):979-983.
    [71] Vassil N. Marinov. Self-ignition and mechanisms of interaction of coal with oxygen at lowtemperatures.2. Changes in weight and thermal effects on gradual heating of coal in air in therange20–300C[J]. Fuel,1977,56(2):158-164.
    [72] Vassil N. Marinov. Self-ignition and mechanisms of interaction of coal with oxygen at lowtemperatures.1. Changes in the composition of coal heated at constant rate to250°C in air[J].Fuel,1977,56(2):153-157.
    [73] Carol A. Rhoads, Joseph T. Senftle, Michael M. Colemanet al. Further studies of coaloxidation[J]. Fuel,1983,62(12):1387-1392.
    [74] E. Jakab, Y. Yongseung, HLC Meuzelaar. Effects of weathering on the molecular structureof coal[J]. Chemistry of Coal Weathering,1989:61-82.
    [75] Ronald Liotta, Glen Brons, James Isaacs. Oxidative weathering of Illinois No.6coal[J].Fuel,1983,62(7):781-791.
    [76]周安宁,王祖侗,陈邦杰等.神木镜煤与柳林镜煤碳化过程的红外光谱研究[J].西安科技学院学报,1994,14(4):371-378.
    [77]高建辉.国内外型焦生产工艺及发展前景[J].煤化工,2004,32(4):8-12.
    [78] D. Fitzgerald, D. W. Van Krevelen. Chemical Structure and Properties of Coal XXI-TheKinetics of Coal Carbonization[J]. Fuel,1959,38:17.
    [79] Douglas Hays, John W. Patrick, Alan Walker. Pore structure development during coalcarbonization.1. Behaviour of single coals[J]. Fuel,1976,55(4):297-302.
    [80] Jean-No l Rouzaud. Contribution of transmission electron microscopy to the study of thecoal carbonization processes[J]. Fuel Processing Technology,1990,24:55-69.
    [81] Shigeaki Kasaoka, Yusaku Sakata, Masaki Shimada. Effects of coal carbonizationconditions on rate of steam gasification of char[J]. Fuel,1987,66(5):697-701.
    [82] Isao Mochida, Kiyoyuki Shimizu, Yozo Koraiet al. Structure and carbonization properties ofpitches produced catalytically from aromatic hydrocarbons with HFBF3[J]. Carbon,1988,26(6):843-852.
    [83] T. Oki, H. Yotsumoto, S. Owada. Calculation of degree of mineral matter liberation in coalfrom sink–float separation data[J]. Minerals engineering,2004,17(1):39-51.
    [84] Graham O'Brien, Bruce Firth, Ben Adair. The application of the coal grain analysis methodto coal liberation studies[J]. International Journal of Coal Preparation and Utilization,2011,31(2):96-111.
    [85] Ljudmilla Bokanyi, Barnabás Cs ke. Preparation of clean coal by flotation following ultrafine liberation[J]. Applied energy,2003,74(3):349-358.
    [86]付晓恒,李萍,刘虎等.煤的超细粉碎与超净煤的分选[J].煤炭学报,2005,30(2):219-223
    [87]付晓恒,单晓云,蒋和金等.煤泥深度浮选技术的研究[J].煤炭学报,31(1):90-93.
    [88]付晓恒,朱书全,杨巧文.煤炭的深度物理加工与超净煤的制备[J].选煤技术,2006,5:46-54.
    [89]桂夏辉,程敢,刘炯天等.异质细泥在煤泥浮选中的过程特征[J].煤炭学报,2012,37(2):301-309.
    [90]桂夏辉,刘炯天,程敢等.能量输入对煤泥浮选过程的影响[J].中南大学学报(自然科学版),2012,43(6):2076.
    [91]桂夏辉.煤泥分选过程强化及两段式分选研究[D].徐州:中国矿业大学,2012.
    [92] D. W. Fuerstenau, J. Diao, J. S. Hansonet al. Effect of weathering on the wetting behaviorand flotation response of coal[J]. New Trends in Coal Preparation Technologies and Equipment,1994:747-753.
    [93] G. Ate ok, M. S. elik. A new flotation scheme for a difficult-to-float coal using pitchadditive in dry grinding[J]. Fuel,2000,79(12):1509-1513.
    [94] Wencheng Xia, Jianguo Yang, Bin Zhu. Flotation of oxidized coal dry-ground withcollector[J]. Powder Technology,2012,228:324-326.
    [95] Hussin AM Ahmed, Jan Drzymala. Upgrading difficult-to-float coal using microemulsion[J].Minerals and Metallurgical Processing,2012,29(2):88-96.
    [96] Hussin AM Armed, Jan Drzymala. Effect of flotation procedure and composition ofreagents on yield of a difficult-to-float coal[J]. Fizykochemiczne ProblemyMineralurgii/Physicochemical Problems of Mineral Processing,2004(38):53-63.
    [97] Sabriye Pi kin, Mesut Akgün. The effect of premixing on the floatation of oxidized Amasracoal[J]. Fuel processing technology,1997,51(1):1-6.
    [98]李延锋,张晓博,桂夏辉等.难选煤泥形貌特征及搅拌强化可浮性试验研究[J].中国矿业大学学报,2012,41(006):930-935.
    [99]李延锋,张晓博,桂夏辉等.煤泥浮选过程能量输入优化[J].煤炭学报,2012,37(8):1378-1384.
    [100] Jovica M. Sokolovic, Rodoljub D. Stanojlovic, Zoran S. Markovic. Activation of oxidizedsurface of anthracite waste coal by attrition[J]. Physicochemical Problems of Mineral Processing,2012,48(1):5-18.
    [101] Jovica M. Sokolovi, Rodoljub D. Stanojlovi, Zoran S. Markovi. The Effects ofPretreatment on the Flotation Kinetics of Waste Coal[J]. International Journal of Coal Preparationand Utilization,2012,32(3):130-142.
    [102] D. W. Fuerstenau, John M. Rosenbaum, J. Laskowski. Effect of surface functional groupson the flotation of coal[J]. Colloids and Surfaces,1983,8(2):153-173.
    [103] E. T. Woodburn, D. J. Robbins, S. A. Flynn. The demineralization of a weathered coal byfroth flotation[J]. Powder Technology,1983,35(1):1-15.
    [104] Z. Sadowski, R. Venkatadri, J. M. Drudinget al. Behavior of oxidized coal during oilagglomeration[J]. Coal Preparation,1988,6(1-2):17-34.
    [105] D. W. Fuerstenau, GCC Yang, J. S. Laskowski. Oxidation Phenomena in Coal Flotation PartI. Correlation Between Oxygen Functional Group Concentration, Immersion Wettability and SaltFlotation Response[J]. Coal Perparation,1987,4(3-4):161-182.
    [106] Jianli Diao, D. W. Fuerstenau. Characterization of the wettability of solid particles by filmflotation2. Theoretical analysis[J]. Colloids and surfaces,1991,60:145-160.
    [107] D. Feng, C. Aldrich. Effect of Preconditioning on the Flotation of Coal[J]. ChemicalEngineering Communications,2005,192(7):972-983.
    [108] William H. Buttermore, Bogdan J. Slomka. The effect of sonic treatment on the flotabilityof oxidized coal[J]. International journal of mineral processing,1991,32(3):251-257.
    [109] Safak Gokhan Ozkan. Effects of simultaneous ultrasonic treatment on flotation of hard coalslimes[J]. Fuel,2012,93:576-580.
    [110] H. Mitome. Action of ultrasound on particles and cavitation bubbles[A],2003:2342-2346.
    [111] Safak G. Ozkan. Beneficiation of magnesite slimes with ultrasonic treatment[J]. Mineralsengineering,2002,15(1):99-101.
    [112] Safak G. Ozkan, Halit Z. Kuyumcu. Investigation of mechanism of ultrasound on coalflotation[J]. International Journal of Mineral Processing,2006,81(3):201-203.
    [113] M. S. Celik, K. Seyhan. Effect of heat treatment on the flotation of Turkish lignites[J]. CoalPreparation,1995,16(1-2):65-79.
    [114] M. Cinar. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperatureheat treatment[J]. Fuel processing technology,2009,90(10):1300-1304.
    [115] Shiou-Chuan Sun. Hypothesis for different floatabilities of coals, carbons and hydrocarbonminerals[J]. Trans. AIME,1954,199:67-75.
    [116] Y. Ye, R. Jin, J. D. Miller. Thermal treatment of low-rank coal and its relationship toflotation response[J]. Coal preparation,1988,6(1-2):1-16.
    [117] Paul C. Painter, Michael Starsinic, Emily Squireset al. Concerning the1600cm1region inthe ir spectrum of coal[J]. Fuel,1983,62(6):742-744.
    [118] Shang Jung Yuh, E. E. Wolf. FTIR studies of potassium catalyst-treated gasified coal charsand carbons[J]. Fuel,1983,62(2):252-255.
    [119] Wencheng Xia, Jianguo Yang, Chuan Liang. Effect of microwave pretreatment on oxidizedcoal flotation[J]. Powder Technology,2012,233:186-189.
    [120] A. U. Kurniawan, O. Ozdemir, A. V. Nguyenet al. Flotation of coal particles in MgCl2,NaCl, and NaClO3solutions in the absence and presence of Dowfroth250[J]. International Journalof Mineral Processing,2011,98(3):137-144.
    [121] O. Paulson, R. J. Pugh. Flotation of inherently hydrophobic particles in aqueous solutions ofinorganic electrolytes[J]. Langmuir,1996,12(20):4808-4813.
    [122] Esen Bolat, Selma Sa lam, Sabriye Pi kin. The effect of oxidation on the flotationproperties of a Turkish bituminous coal[J]. Fuel processing technology,1998,55(2):101-105.
    [123] Villi Ivanovich Klassen, V. Ao Mokrousov. An introduction to the theory of flotation[M]:Butterworths,1963
    [124]林玉清,林麟,徐长江等.对改善氧化煤泥表面疏水性药剂的研究[J].选煤技术,2001,1:24-25.
    [125]康文泽,刘松阳,张亚革. AO捕收剂浮选稀缺难浮煤实验[J].黑龙江科技学院学报,2011,21(2):85-88.
    [126] J. Laskowski. Particle-bubble attachment in flotation[J]. Mineral Science Eng,1974,6(4):223-235.
    [127] Zongfu Dai, Daniel Fornasiero, John Ralston. Particle–bubble attachment in mineralflotation[J]. Journal of colloid and interface science,1999,217(1):70-76.
    [128] Russell Crawford, John Ralston. The influence of particle size and contact angle in mineralflotation[J]. International Journal of Mineral Processing,1988,23(1):1-24.
    [129] J. S. Laskowski. Aggregation of fine particles in mineral processing circuits[C]. Mineralprocessing on the verge of the21st century, Ozbayoglu et al. ed., Balkema, Rotterdam,2000
    [130] K. A. Matis, G. P. Gallios, K. A. Kydros. Separation of fines by flotation techniques[J].Separations Technology,1993,3(2):76-90.
    [131] Elizaveta Forbes. Shear, selective and temperature responsive flocculation: A comparison offine particle flotation techniques[J]. International Journal of Mineral Processing,2011,99(1):1-10.
    [132]彭耀丽,谢广元,蒋兆桂等.基于高浓度煤泥水的柱式主再浮试验研究[J].煤炭学报,2013,38(增刊1):195-200.
    [133]许光前,谢广元,郭柱等.浮选柱分选-0.18mm细粒煤泥的实验室试验和工业应用[J].矿山机械,2012,40(4):87-91.
    [134]刘炯天.旋流-静态微泡浮选柱及洁净煤制备研究[D]:北京:中国矿业大学化工学院,1998.
    [135]王红新,夏文成,杨建国等.充气量和循环量对浮选柱气含率的影响研究[J].煤炭工程,2011(002):85-87.
    [136] D. Tao, X. H. Zhou, C. Zhaoet al. Coal and Potash Flotation Enhancement Using a ClayBinder[J]. Canadian Metallurgical Quarterly,2007,46(3):243-250.
    [137] ü. Akdemir, I. S nmez. Investigation of coal and ash recovery and entrainment inflotation[J]. Fuel processing technology,2003,82(1):1-9.
    [138] R. C. Rastogi, F. F. Aplan. Coal flotation as a rate process[J]. Minerals and MetallurgicalProcessing,1985,2(2):137-145.
    [139] BRAHIM S NMEZ, NAL AKDEM R, KEMAL AHBUDAK. Increasing selectivity incoal flotation by controlling impeller speed and collector concentration[J]. Energy sources,2005,27(4):381-386.
    [140] M. S. Jena, S. K. Biswal, S. P. Daset al. Comparative study of the performance ofconventional and column flotation when treating coking coal fines[J]. Fuel Processing Technology,2008,89(12):1409-1415.
    [141] Hasan Hacifazlioglu, Hale Sutcu. Optimization of some parameters in column flotation anda comparison of conventional cell and column cell in terms of flotation performance[J]. Journal ofthe Chinese Institute of Chemical Engineers,2007,38(3):287-293.
    [142] Z. Aktas, J. J. Cilliers, A. W. Banford. Dynamic froth stability: Particle size, airflow rateand conditioning time effects[J]. International Journal of Mineral Processing,2008,87(1):65-71.
    [143] Murat Erol, Cigdem Colduroglu, Zeki Aktas. The effect of reagents and reagent mixtures onfroth flotation of coal fines[J]. International Journal of Mineral Processing,2003,71(1):131-145.
    [144] Marc A. Hampton, Anh V. Nguyen. Accumulation of dissolved gases at hydrophobicsurfaces in water and sodium chloride solutions: Implications for coal flotation[J]. MineralsEngineering,2009,22(9):786-792.
    [145] Wencheng Xia, Jianguo Yang. Experimental design of oily bubbles in oxidized coalflotation[J]. Gospodarka Surowcami Mineralnymi-Mineral Resources Management,2013,29(4):129-135.
    [146]刘秀梅,张夫道,冯兆滨等.风化煤腐殖酸对氮,磷,钾的吸附和解吸特性[J].植物营养与肥料学报,2005,11(5):641-646.
    [147]陈盈,颜丽,关连珠等.不同来源腐殖酸对铜吸附量和吸附机制的研究[J].土壤通报,2006,37(3):479-481.
    [148] Marcin Niewiadomski, Jan Hupka, Romuald Bokotkoet al. Recovery of coke fines from flyash by air sparged hydrocyclone flotation[J]. Fuel,1999,78(2):161-168.
    [149] Elizabeth Freeman, Yu-Ming Gao, Robert Hurtet al. Interactions of carbon-containing flyash with commercial air-entraining admixtures for concrete[J]. Fuel,1997,76(8):761-765.
    [150]夏文成,杨建国,朱宾等.磨矿对氧化煤浮选效果的影响[J].煤炭学报,2012,37(012):2087-2091.
    [151] Wencheng Xia, Jianguo Yang, Chuan Liang. A short review of improvement in flotation oflow rank/oxidized coals by pretreatments[J]. Powder Technology,2013,237:1-8.
    [152] Wencheng Xia, Jianguo Yang. Enhancement in Flotation of Oxidized Coal by OxidizedDiesel Oil and Grinding Pretreatment[J]. International Journal of Coal Preparation and Utilization,2013,33(6):257-265.
    [153]王羽玲,夏文成,杨建国等.无烟煤颗粒表面低温氧化过程研究[J].中国矿业大学学报,2012,41(4):578-581.
    [154] Tadashi Yoshida, Yosuke Maekawa. The behavior of methylene groups in coal during heattreatment and air-oxidation[J]. Fuel processing technology,1986,14:57-66.
    [155] E. Desimoni, G. I. Casella, A. Moroneet al. XPS determination of oxygen‐containingfunctional groups on carbon‐fibre surfaces and the cleaning of these surfaces[J]. Surface andInterface Analysis,1990,15(10):627-634.
    [156] E. Desimoni, G. I. Casella, A. M. Salvi. XPS/XAES study of carbon fibres during thermalannealing under UHV conditions[J]. Carbon,1992,30(4):521-526.
    [157] R. Fiedler, D. Bendler. ESCA investigations on Schleenhain lignite lithotypes and thehydrogenation residues[J]. Fuel,1992,71(4):381-388.
    [158] John F. Moulder, Jill Chastain, Roger C. King. Handbook of X-ray photoelectronspectroscopy: a reference book of standard spectra for identification and interpretation of XPSdata[M]: Physical Electronics Eden Prairie, MN,1995
    [159] David L. Perry, Alan Grint. Application of XPS to coal characterization[J]. Fuel,1983,62(9):1024-1033.
    [160] David C. Frost, William R. Leeder, Robert L. Tapping. X-ray photoelectron spectroscopicinvestigation of coal[J]. Fuel,1974,53(3):206-211.
    [161] Bo Wang, Yongjun Peng, Sue Vink. Diagnosis of the Surface Chemistry Effects on FineCoal Flotation Using Saline Water[J]. Energy&Fuels,2013,27(8):4869-4874.
    [162] Robert Pietrzak, Teresa Grzybek, Helena Wachowska. XPS study of pyrite-free coalssubjected to different oxidizing agents[J]. Fuel,2007,86(16):2616-2624.
    [163] Wencheng Xia, Jianguo Yang. Effect of pre-wetting time on oxidized coal flotation[J].Powder Technology,2013,250:63-66.
    [164] Wencheng Xia, Jianguo Yang. Reverse flotation of Taixi oxidized coal[J]. Energy&Fuels,2013,27(12):7324-7329.
    [165] Christian Bergins. Mechanical/thermal dewatering of lignite. Part2: A rheological model forconsolidation and creep process[J]. Fuel,2004,83(3):267-276.
    [166] Christian Bergins, Janine Hulston, Karl Strausset al. Mechanical/thermal dewatering oflignite. Part3: Physical properties and pore structure of MTE product coals[J]. Fuel,2007,86(1):3-16.
    [167] Christian Bergins. Kinetics and mechanism during mechanical/thermal dewatering oflignite[J]. Fuel,2003,82(4):355-364.
    [168] W. C. Xia, J. G. Yang, C. Liang. Improving Oxidized Coal Flotation Using Biodiesel as aCollector[J]. International Journal of Coal Preparation and Utilization,2013,33(4):181-187.
    [169] Wencheng Xia, Jianguo Yang. Enhancement in flotation of oxidized coal by oxidized dieseloil and grinding pretreatment[J]. International Journal of Coal Preparation and Utilization,2013,33(6):257-265.
    [170] Wei Sun, Kui Ouyang, Limin Zhanget al. Preparation of hydrolyzate of hogwash oil (HHO)and its application in separating diaspore from kaolinite[J]. Minerals Engineering,2010,23(9):670-675.
    [171] M. I. Alonso, C. Castano, A. B. Garcia. Performance of vegetable oils as flotation collectorsfor the recovery of coal from coal fines wastes[J]. Coal Perparation,2000,21(4):411-420.
    [172] M. I. Alonso, A. F. Valdés, R. M. Mart n ez-Tarazonaet al. Coal recovery from fines cleaningwastes by agglomeration with colza oil: a contribution to the environment and energypreservation[J]. Fuel processing technology,2002,75(2):85-95.
    [173] Marta I. Alonso, Adolfo F. Valdés, Rosa M. Mart n ez-Tarazonaet al. Coal recovery fromcoal fines cleaning wastes by agglomeration with vegetable oils: effects of oil type andconcentration[J]. Fuel,1999,78(7):753-759.
    [174] Ana B. Garcia, M. Rosa Martínez-Tarazona, JoséM G. Vega. Cleaning of Spanish high-rankcoals by agglomeration with vegetable oils[J]. Fuel,1996,75(7):885-890.
    [175] Adolfo F. Valdés, Ana B. Garcia. On the utilization of waste vegetable oils (WVO) asagglomerants to recover coal from coal fines cleaning wastes (CFCW)[J]. Fuel,2006,85(5):607-614.
    [176] B. Das, PSR Reddy. The utilization of non-coking coal by flotation using non-conventionalreagents[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2010,32(19):1784-1793.
    [177]秦勇,王文峰,宋党育.太西煤中有害元素在洗选过程中的迁移行为与机理[J].燃料化学学报,2002,30(2):147-150.
    [178]张西春.太西煤煤质变化规律及其加工利用途径[J].选煤技术,1992(2):12-15.
    [179]谢广元,吴玲,欧泽深等.从细粒煤泥中回收精煤的分选与脱水技术研究[J].煤炭学报,2004,29(5):602-605.
    [180]谢广元,吴振清. FCMC—1500型旋流微泡浮选柱在煤泥浮选中的应用研究[J].煤炭科学技术,1997,25(11):26-28.
    [181]刘常春,谢广元,吴玲. FCMC型旋流微泡浮选柱在中小型选煤厂的应用优势[J].煤炭工程,2006,3:54-56.
    [182]路启荣,谢广元,吴玲.浮选柱技术的新发展[J].中国煤炭,2002,28(4):36-39.
    [183] W-C Xia, J. Yang, C. Lianget al. The Effects of Conditioning Time on the Flotation ofOxidized Coal[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2014,36(1):31-37.
    [184] G. H. Luttrell, A. T. Weber, G. T. Adelet al. Microbubble flotation of fine coal[J]. ColumnFlotation,1988,88:205-212.
    [185] B. Li, D. Tao, Z. Ouet al. Cyclo-microbubble column flotation of fine coal[J]. Separationscience and technology,2003,38(5):1125-1140.
    [186] Maoming FAN, Daniel TAO, Rick HONAKERet al. Nanobubble generation and itsapplication in froth flotation (part I): nanobubble generation and its effects on properties ofmicrobubble and millimeter scale bubble solutions[J]. Mining Science and Technology (China),2010,20(1):1-19.
    [187] Youjun Tao, Jiongtian Liu, Samuel Yuet al. Picobubble enhanced fine coal flotation[J].Separation science and technology,2006,41(16):3597-3607.
    [188] Daniel Tao, Samuel Yu, Xiaohua Zhouet al. Picobubble column flotation of fine coal[J].International Journal of Coal Preparation and Utilization,2008,28(1):1-14.
    [189]陶有俊,刘谦,TAO Daniel等.纳米泡提高细粒煤浮选效果的研究[J].中国矿业大学学报,2009,38(6):820-823.
    [190] R-H Yoon. The role of hydrodynamic and surface forces in bubble–particle interaction[J].International Journal of Mineral Processing,2000,58(1):129-143.
    [191] Antoine Marc Gaudin. Flotation[M]: McGraw-Hill,1957
    [192] R. H. Yoon, G. H. Luttrell. The effect of bubble size on fine particle flotation[J]. MineralProcesing and Extractive Metallurgy Review,1989,5(1-4):101-122.
    [193] M. E. Weber, D. Paddock. Interceptional and gravitational collision efficiencies for singlecollectors at intermediate Reynolds numbers[J]. Journal of Colloid and Interface Science,1983,94(2):328-335.
    [194] K. L. Sutherland. Physical chemistry of flotation. XI. Kinetics of the flotation process[J].The Journal of Physical Chemistry,1948,52(2):394-425.
    [195] G. zbayo lu, T. Depci, N. Ataman. Effect of microwave radiation on coal flotation[J].Energy Sources, Part A,2009,31(6):492-499.
    [196] B. C. Meikap, N. K. Purohit, V. Mahadevan. Effect of microwave pretreatment of coal forimprovement of rheological characteristics of coal–water slurries[J]. Journal of colloid andinterface science,2005,281(1):225-235.
    [197] B. K. Sahoo, S. De, B. C. Meikap. Improvement of grinding characteristics of Indian coal bymicrowave pre-treatment[J]. Fuel Processing Technology,2011,92(10):1920-1928.
    [198] W-C Xia, J-G Yang, B. Zhu. The Improvement of Grindability and Floatability of OxidizedCoal by Microwave Pre-treatment[J]. Energy Sources, Part A: Recovery, Utilization, andEnvironmental Effects,2014,36(1):23-30.
    [199] Haijun Zhang, Jiongtian Liu, Yijun Caoet al. Effects of particle size on lignite reverseflotation kinetics in the presence of sodium chloride[J]. Powder Technology,2013,246:658-663.
    [200] Marek Pawlik, Janusz S. Laskowski. Coal reverse flotation. Part I. Adsorption ofdodecyltrimethyl ammonium bromide and humic acids onto coal and silica[J]. Coal Preparation,2003,23(3):91-112.
    [201] Marek Pawlik, Janusz S. Laskowski. Coal reverse flotation. Part II. Batch flotation tests[J].Coal Preparation,2003,23(3):113-127.
    [202] Kejian Ding, Janusz S. Laskowski. Coal reverse flotation. Part I: Separation of a mixture ofsubbituminous coal and gangue minerals[J]. Minerals engineering,2006,19(1):72-78.
    [203] Kejian Ding, Janusz S. Laskowski. Coal reverse flotation. Part II: Cleaning of asubbituminous coal[J]. Minerals engineering,2006,19(1):79-86.
    [204] P. Stonestreet, J-P Franzidis. Reverse flotation of coal—A novel way for the beneficiationof coal fines[J]. Minerals Engineering,1988,1(4):343-349.
    [205] F. D. ztürk, H. Abakay Temel. Investigation of the Effects of Various Bridging LiquidTypes on Deashing of a Lignite Sample by Selective Oil Agglomeration[J]. Energy Sources, PartA: Recovery, Utilization, and Environmental Effects,2013,35(7):671-678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700