水稻灌浆期相关性状的动态遗传及环境互作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水稻灌浆已成为生理生态研究领域的热点问题之一。对水稻灌浆特性及其影响因子的探讨对指导水稻高效生产意义重大。目前,对水稻灌浆过程的研究大多集中在生理生化机理、栽培措施调控等手段上,在基因水平上的研究相对较少。为揭示水稻灌浆过程灌浆相关数量性状的动态变化及其环境互作,本研究利用课题组由小穗小粒型品种密阳46和大穗大粒型品种FJCD建立的一个包含130个家系F10的重组自交系群体,在水稻开花后6d、12d、18d、24d和30d五个时期分别记为水稻灌浆始期,灌浆前期,灌浆中期,灌浆后期和灌浆末期(分别记为第一、二、三、四、五期),测定武夷山和莆田环境下水稻的源性状、库性状、净光合速率及灌浆速率的动态变化,进行灌浆相关QTL的定位及环境互作研究,并探讨了源库QTL互作关系。主要研究结果如下:
     1.考察水稻灌浆源相关的11个性状,包括旗叶长、旗叶宽、旗叶面积、倒二叶长、倒二叶宽、倒二叶面积、倒三叶长、倒三叶宽、倒三叶长、倒三叶面积、抽穗期和株高,结果表明:各性状的频率分布均呈正态或偏正态分布,表明这些性状为数量性状,可以用于QTL定位研究。
     在武夷山环境下,对11个与源相关的性状进行了QTL定位,共检测到22个加性QTL位点,分布于水稻第1、2、6、11号染色体上,解释了大部分的遗传变异。这些QTL的贡献率介于1.79%-44.55%之间,其中大于10%的位点有15个,效应值小于5%的微效QTL也检测到有3个。单个性状的QTL位点数为1-4个。检测到与抽穗期有关的QTL1个,位于6号染色体上,解释了25.63%的变异,该QTL的正加性效应由亲本FJCD的等位基因提供。
     莆田种植的RIL群体,进行源相关的11个性状的QTL分析,共检测到20个加性QTL位点,分布于水稻第2、5、6、7、12号染色体上,解释了大部分的遗传变异。这些QTL的遗传效应值介于0.66%-56.75%之间,其中效应值大于10%的位点有7个,效应值小于5%的微效QTL也检测到有8个。单个性状的QTL位点数为0-5个,没有检测到与抽穗期、旗叶长、旗叶叶面积相关的QTL,其余8个性状均检测到相应的QTL位点。
     GE互作分析,共检测到20个QTL,分布在水稻1、2、6、11、12号染色体上,均与环境存在互作效应。20个QTL中,加性效应对表型变异贡献率1.37%-34.98%,4个加性QTL贡献率较大,大于10%,10个表型变异小于5%的加性QTL,GE互作效应对表型贡献率0%-15.16%,4个贡献率大于10%,12个小于5%的微效GE互作。2.考察水稻灌浆库相关的5个性状,包括穗长、穗重、粒长、粒重、粒宽等,结果表明:各性状的频数分布均呈正态或偏正态分布,表明这些性状为数量性状,可以用于QTL定位研究。
     武夷山环境下定位灌浆期五个时段的穗长、穗重的QTL:结果共得到21个相关QTL,分布在水稻第1、3、5、6、7、8、11号染色体上,加性效应表型贡献率0.61%-31.63%,大于10%的加性效应QTL8个,小于5%的微效QTL6个。其中,qPL-7-5和qP L-7-6两个QTL在灌浆第一、四阶段重复出现,分别在两个阶段对表型变异的贡献也差异很大。
     定位控制灌浆期五个阶段千粒重的QTL:结果共得到9个相关QTL,分布在水稻第1、2、3、5、7号染色体上,加性效应表型贡献率3.03%-11.9%,大于10%的加性效应QTL1个,小于5%的微效QTL3个。其中,qGW-7-7在灌浆第四、五阶段重复出现,分别在两个阶段对表型变异的贡献为7.64%、3.82%。
     定位控制灌浆期粒长的QTL:结果共得到7个与粒长相关的QTL,分布在水稻第4、6、7、10、12号染色体上,加性效应分别为-0.03、-0.03、-0.03、-0.03、0.02、-0.05、0.03,表型贡献率分别为5.69%、5.69%、8.22%、5.69%、2.53%、15.82%、5.69%。
     定位控制灌浆期粒宽的QTL:结果共得到相关加性QTL7个,分别位于2、2、5、5、6、6、7号染色体上,加性效应分别为0.02、0.01、0.01、0.01、-0.02、-0.02、0.02,表型贡献率分别为5.72%、0.44%、0.44%、0.44%、1.77%、1.77%、1.77%。
     莆田环境下定位灌浆期五个时段的穗长、穗重的QTL:结果共得到41个相关QTL,分布在水稻第1、2、3、4、5、6、8、9、10号染色体上,加性效应表型贡献率0.32%-16.52%,大于10%的加性效应QTL11个,小于5%的微效QTL26个。其中,控制穗长的qPL-2-11、qPL-2-12、qPL-2-13、qPL-4-2、qPL-4-3、qPL-8-3、qPL-8-4、qPL-9-4等QTL均在一个以上的阶段重复出现;控制穗重的qPW-10-3、qPW-3-2、qPW-3-3、qPW-8-8等QTL均在一个以上的阶段重复出现,说明QTL加性效应是穗长形成过程中的主要力量。
     定位控制灌浆期五个阶段千粒重的QTL:结果共得到13个相关QTL,分布在水稻第1、2、4、6、7号染色体上,加性效应表型贡献率1.9%-24.78%,大于10%的加性效应QTL5个,小于5%的微效QTL1个。其中,qGW-6-7、qGW-2-1、qGW-6-8分别在灌浆第四、二、三阶段出现,又全部在灌浆第五阶段重复出现,说明QTL加性效应对水稻灌浆后期产量的形成有极其重要的作用。
     定位控制灌浆期粒长的QTL:结果共得到9个与粒长相关的QTL,分布在水稻第1、2、4、5、7、10、11、12号染色体上,加性效应分别为-0.02、0.02、-0.02、-0.02、-0.03、-0.04、-0.03、0.02、-0.02,表型贡献率分别为3.58%、3.58%、3.58%、3.58%、8.06%、16.12%、8.06%、3.58%、3.58%。
     定位控制灌浆期粒宽的QTL:对控制籽粒宽的QTL进行定位分析,得到相关加性QTL3个,分别位于5、5、6号染色体上,加性效应分别为0.0136、0.0061、-0.0159,表型贡献率分别为14.99%、3.02%、20.49%。
     库相关性状的GE互作分析,联合该群体两地的灌浆期穗长、穗重、粒长、粒重、粒宽等5个库相关性状,定位控制相应性状的GE互作位点,共检测到46个位点,分布在水稻1、2、3、4、5、6、7、8、9、10、11号染色体上,均与环境存在显著的互作效应。46个QTL中,加性效应对表型变异贡献率0%-19.22%,加性效应的大于10%的主效QTL10个,小于5%的微效QTL29个,GE互作效应对表型贡献率0%-12.31%,大多为小于5%的微效QTL。
     3.武夷山环境下定位灌浆期五个时段的净光合速率的QTL:只在灌浆期第一、四阶段检测到7加性QTL位点,分布于水稻第2、4、10、11号染色体上,解释了大部分的表型变异。这些QTL的遗传效应值介于0.34%-22.71%之间,除了两个QTL为贡献率小于5%的微效QTL外,其他QTL的效应值均在10%左右。
     莆田环境下定位灌浆期五个时段的净光合速率QTL:灌浆期第五阶段仍然没有定位到相关QTL,但在第二、三阶段各定位到一个显著的加性QTL。莆田环境下共检测到15与净光合速率相关的QTL位点,分布于水稻第1、2、4、7、9、10号染色体上,解释了大部分的表型变异。这些QTL的遗传效应值介于0.36%-17.85%之间,2个QTL为贡献率小于5%的微效QTL,只有1个QTL对表型变异的贡献率大于10%。
     GE互作分析,联合该群体两地的灌浆期五个阶段的净光合速率,共检测到灌浆期第一、二、四阶段的7个GE互作位点,分布在水稻2、4、9、11号染色体上,均与环境存在显著的互作效应。7个QTL中,加性效应对表型变异贡献率3.51%-16.05%,加性效应的大于10%的主效QTL1个,小于5%的微效QTL2个,GE互作效应对表型贡献率0%-20.91%,大于10%的主效QTL3个,小于5%的微效QTL3个。
     4.武夷山环境下定位灌浆期五个时段的灌浆速率的QTL:在灌浆期第一、二、四、五阶段及灌浆期平均灌浆速率检测到11个加性QTL位点,分布于水稻第1、2、4、5、7、10号染色体上,解释了大部分的表型变异。这些QTL的遗传效应值介于0.92%-17.39%之间,6个QTL为贡献率小于5%的微效QTL,只有1个QTL的贡献率大于10%。
     莆田环境下定位灌浆期五个时段的灌浆速率的QTL:在灌浆期第二、三、四阶段及平均灌浆速率检测到9个加性QTL位点,分布于水稻第1、2、5、6、8号染色体上,解释了大部分的表型变异。这些QTL的遗传效应值介于1.99%-24.41%之间,2个QTL为贡献率小于5%的微效QTL,3个QTL的贡献率大于10%。
     GE互作分析:联合该群体两地的灌浆期五个阶段的灌浆速率及平均灌浆,共检测到灌浆期第二、四、五阶段及平均灌浆速率的7个GE互作QTL,分布在水稻1、2、4、5、6、10号染色体上,均与环境存在显著的互作效应。8个GE互作位点中,加性效应对表型变异贡献率1.1%-4.54%,均为加性效应为小于5%的微效位点,GE互作效应对表型贡献率0%-10.29%,加性效应对表型贡献率不大。5.运用SPSS软件进行相关性分析:源性状与灌浆速率的相关性分析;净光合速率与灌浆速率相关性分析;五个阶段的灌浆速率及平均灌浆速率之间的相关性分析。结果表明,灌浆期相关性之间关系复杂存在相关性,有些达到了显著相关,形成了统一的整体。
     本研究从两地水稻灌浆的不同时期分别对于源、库组件进行分别定位及环境互作分析,在一定意义上揭示了水稻灌浆过程是一个基因动态表达的过程,不同基因之间、基因环境之间存在互相作用,这对水稻遗传育种的工作实践有一定的意义,但基因间的互作仅靠QTL方法作简单的分析,无法确切了解基因的时空表达特征,需要如RNA水平和蛋白质组水平进一步加以证实。
Understanding the factors that regulate grain filling is important for improving rice yield potential. However, there is disagreement as to whether improving sink size alone in rice crops will also result in an increase in leaf and whole plant photosynthesis. The grain yield in rice is the product of spikelet yield (or sink) and ripening ability (or source). The relationship between the source and sink in rice research in general level,QTL mapping and gene×environment interaction are used to research the relationship of source and sink is benefit for us. Thus a RIL including 130 offspring was built in order to study the character of dynamic QTLs during the grain-filling.
     1. In our study,we got 11 characters associated with source for grain filling.Frequencies of 11 characters were close to normal pattern, and showed continuously variant,implying that they are quantitative characters. The result QTL mapping and GE interaction as below:
     Under the environment of Wuyishan,we got 22 QTL of characters associated with source.They are located in 1、2、6、11 linkage group and mostly explained phenotypic variation.The range of the contribution rate is 1.79%-44.55%,and 15 QTLs exceeded 10%,3 QTLs are below 5% among them.The number of a character is 1-4.
     Under the environment of Putian,we got 20 QTLs of characters associated with source.They are located in 2、5、6、7、12 linkage group and mostly explained phenotypic variation.The range of the contribution rate is 0.66%-56.75%,and 7 QTLs exceeded 10%,8 QTLs are below 5% among them.The number of a character is 0-5,8 characters were detected additive QTL expect days to heading,length of flag leaf,area of flag leaf.
     We got 20 QTLs with prominent gene×environment interaction.They are located in1、2、6、11、12 linkage group.The range of the contribution rate of additive effects to phenotype were 1.37%-34.98%,and 4 QTLs exceeded 10%,10 QTLs are below 5% among them. The range of the contribution rate of GE interactions to phenotype were 0%-15.16%,and 4 QTLs exceeded 10%,12 QTLs are below 5% among them.
     2. In our study,we got 5 characters associated with sink for grain filling. Frequencies of 11 characters were close to normal pattern, and showed continuously variant implying that they are quantitative characters. The result QTL mapping and GE interaction as below:
     The QTLs associated with length of panicle and weight of panicle for five stages of grain filling under the environment of Wuyishan:we got 21 QTLs,which were located in 1、3、5、6、7、8、11 linkage group and mostly explained phenotypic variation.The range of the contribution rate is 0.61%-31.63%,and 8 QTLs exceeded 10%,6 QTLs are below 5% among them. Two QTL of qPL-7-5 and qP L-7-6 emerged at 1、4 stage of grain filling,but differencies of two stages were prominent.
     The QTLs associated with weight of 1000 grains for five stages of grain filling under the environment of Wuyishan:we got 9 QTLs .Those QTL were located in1、2、3、5、7linkage group and mostly explained phenotypic variation.The range of the contribution rate is 3.03%-11.9%,and 1 QTLs exceeded 10%,3 QTLs are below 5% among them. The QTL of qGW-7-7 emerged at 4、5 stage of grain filling,and respectively explained 7.64%、3.82% of phenotypic variation.
     The QTLs associated with length of grain for grain filling under the environment of Wuyishan:we got 7 QTLs that were located in 4、6、7、10、12 linkage group and mostly explained phenotypic variation.The values of additive effects were respectively -0.03、-0.03、-0.03、-0.03、0.02、-0.05、0.03 and contribution rates of phenotypic variation were 5.69%、5.69%、8.22%、5.69%、2.53%、15.82% and 5.69% respectively.
     The QTLs associated with width of grain for grain filling under the environment of Wuyishan:we got 7 QTLs and respectively located in 2、2、5、5、6、6、7 linkage group and mostly explained phenotypic variation.The values of additive effects were respectively 0.02、0.01、0.01、0.01、-0.02、-0.02、0.02 and contribution rates of phenotypic variation were 5.72%、0.44%、0.44%、0.44%、1.77%、1.77% and 1.77% respectively.
     The QTLs associated with length of panicle and weight of panicle for five stages of grain filling under the environment of Putian:we got 41 QTLs and located in 1、2、3、4、5、6、8、9、10 linkage group and mostly explained phenotypic variation.The range of the contribution rate is 0.32%-16.52%,and 11 QTLs exceeded 10%,26 QTLs are below 5% among them. The QTLs associated with length of panicle of qPL-2-11、qPL-2-12、qPL-2-13、qPL-4-2、qPL-4-3、qPL-8-3、qPL-8-4、qPL-9-4 emerged at least one time,implying the importance of additive effects to length of panicle.
     The QTLs associated with weight of 1000 grains for five stages of grain filling under the environment of Putian:we got 13 QTLs which were located in1、2、4、6、7 linkage group and mostly explained phenotypic variation.The range of the contribution rate is 1.9%-24.78%,and 5 QTLs exceeded 10%,1 QTLs are below 5% among them. There QTLs of qGW-6-7、qGW-2-1、qGW-6-8 respectively emerged at 4、2、3 stage of grain filling,and all emerged at 5 stage.It showed the importance of additive effects to the form of later output.
     The QTLs associated with length of grain for grain filling under the environment of Putian:we got 9 QTLs and located in 1、2、4、5、7、10、11、12 linkage group and mostly explained phenotypic variation.The values of additive effects were respectively -0.02、0.02、-0.02、-0.02、-0.03、-0.04、-0.03、0.02、-0.02 and contribution rates of phenotypic variation were 3.58%、3.58%、3.58%、3.58%、8.06%、16.12%、8.06%、3.58% and 3.58% respectively.
     The QTLs associated with width of grain for grain filling under the environment of Putian.we got 3 QTLs and respectively located in 5、5、6 linkage group and mostly explained phenotypic variation.The values of additive effects were respectively 0.0136、0.0061、-0.0159 and contribution rates of phenotypic variation were 14.99%、3.02% and 20.49% respectively.
     We got 46 QTLs with prominent gene×environment interaction.They are located in1、2、3、4、5、6、7、8、9、10、11 linkage group.The range of the contribution rate of additive effects to phenotype were 0%-19.22%%,and 10 QTLs exceeded 10%,29 QTLs are below 5% among them. The range of the contribution rate of GE interactions to phenotype were 0%-12.31%, QTLs are mostly below 5% among them..
     3. The QTLs associated with net photosynthetic rate for five stages of grain filling under the environment of Wuyishan:we got 7 QTLs located in 1、2、3、4、5、6、8、9、10 linkage group just at 1、4 stage and mostly explained phenotypic variation.The range of the contribution rate is 0.34%-22.71%, the contribution rate of QTLs mostly exceeded 10% except 2 QTLs.
     The QTLs associated with net photosynthetic rate for five stages of grain filling under the environment of Putian:we got 15 QTLs located in 1、2、4、7、9、10 linkage group at 1、2、3、4 stage and mostly explained phenotypic variation.The range of the contribution rate is 0.36%-17.85%, and just 1 QTLs exceeded 10%,2 QTLs are below 5% among them.
     We got 7 QTLs with prominent gene×environment interaction at 1、2、4 stage.They are located in2、4、9、11 linkage group.The range of the contribution rate of additive effects to phenotype were 3.51%-16.05%,and 1 QTL exceeded 10%,9 QTLs are below 5% among them. The range of the contribution rate of GE interactions to phenotype were 0%-20.91%, 3 QTL exceeded 10%,3 QTLs are below 5% among them.
     4. The QTLs associated with grain-filling rate for five stages of grain filling under the environment of Wuyishan:we got 11QTLs located in 1、2、4、5、7、10 linkage group at 1、2、4、5 stage and mostly explained phenotypic variation.The range of the contribution rate is 0.92%-17.39%, and just 1 QTL exceeded 10%,6 QTLs are below 5% among them.
     The QTLs associated with grain-filling rate for five stages of grain filling under the environment of Putian:we got 9 QTLs located in 1、2、5、6、8 linkage group at 2、3、4 stage and mostly explained phenotypic variation.The range of the contribution rate is 1.99%-24.41%, and 3 QTLs exceeded 10%,2 QTLs are below 5% among them.
     We got 7 QTLs with prominent gene×environment interaction at 2、4、5 stage.They are located in 1、2、4、5、6、10 linkage group.The range of the contribution rate of additive effects to phenotype were 1.1%-4.54%, and contribution rate of QTLs are mostly below 5% among them. The range of the contribution rate of GE interactions to phenotype were 0%-10.29%.
     5. The correlation analysis by SPSS software:the correlation analysis between characters with source、net photosynthetic rates and grain-filling rates.The result indicated that the relationships of the characters during grain-filling were complex and some of them reach significant correlation.
     This research work on the source and the sink carries in Wuyishan and Putian was conducted for separately QTL mapping at different stages and gene×environment interaction in rice.The result in a sense revealed that grain filing process in the rice is a gene dynamic expression process, simultaneously is also an interactive action between the gene and gene, gene and environment in the process, it was significant in rice breeding. Simultaneously the gene dynamic expression and interaction cannot only depend on the QTL method to make the simple analysis. To further understead Understanding the gene expression in space and time characteristics, this also need to do more work. In the different levels, such as RNA proteome level.
引文
1 Alan SN,Cohen MB.Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population[J].Theor Appl. Genet,1998 (97):1370-1379.
    2 Austin DF,Lee M.Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize[J].Theoretical and Applied Genetics,1996 (92):817-826.
    3 C LiYong,Z XiaoDeng,Z JieYun, Z KangLe,C ShiHua.QTL mapping and epistasis analysis for yield components in a RIL population of rice (Oryza sativa L.)[J].Scientia Agricultura Sinica,2003 (36):1241-1247.
    4 Campbell BT,Baenziger PS,Gill KS,Eskridge KM,Budak H,Erayman M,Dweikat I,Yen Y. Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat.Crop Science,2003 (43):1493-1505.
    5 Cao G Q,Zhu J.QTL Mapping for Epistatic Effects and QTL×Environment Interaction Effects on Flag Leaf Width of Rice with a DH Population[J].Journal of Zhengzhou University(Natural Science Edition),2006 (38): 103-107.
    6 Cao L Y,Zhan X D,Zhuang J Y.QTL Mapping and Epistasis Analysis for Yield Components in a RIL Population of Rice (Oryza sativa L. Subsp. Indica)[J].Scientia Agricultura Sinica,2003 (36):1241-1247.
    7 Cao, S.Q., H.Q. Zhai, T.N. Yang, R.X. Zhang & T.Y. Kuang. Studies on photosynthetic rate and function duration of rice germplasm.[J].Chinese J Rice Sci,2001(15): 29-34.
    8 Causse MA,Fulton TM,Cho YG,Ahn SN,Chunwongse J,Wu K,Xiao J,Yu Z,Ronald PC,Harrington SE,Second G,McCouch SR,Tanksley SD:Saturated molecular map of the rice genome based on an interspecific backcross population[J].Genetics,1994 (138): 1251–1274.
    9 Champoux MC,Wang G,Sarkarung S,Mackill DJ,O?Toole JC, Huang N,McCouch SR. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers[J].Theor Appl Genet,1995 (90):969-981.
    10 Chen,W.F., Z.J.Xu, B.L.Zhang & S.R. Yang.Comparative studies on stomatal dendity and its relations to gas diffusion resistance and net photosynthetic rate in rice leaf[J].Chinese J Rice Sci,1990 (4):163-168.
    11 Chen,X.,S.Temnykh,Y.Xu,Y.G.Cho&S.R.McCouch.Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.)[J].Theor Appl Genet,1997 (9)5:553-567.
    12 Cheng G P,Feng J H,Liang G H,Liu X D,Li J Q.Identification of QTLs for Agronomic TraitsAssociated with Yield in a BC2F2 Population Between Oryza sativa and Oryza rufipogon [J].Chinese J Rice Sci,2006 (20):553-556.
    13 Chen X,Temnykh S,Xu Y,et al.Development of a microsatellite framework map providing genome-wide coverage in rice(oryza sativa L.)[J]. Theor Appl Genet ,1997(95):553-567
    14 Cock JH,Yoshida S.Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant[J].Proceedings of the Crop Science Society of Japan,1972 (41):226-234.
    15 Concibido VC,La Ballee B,Mclaird P,Pineda N,Meyer J,Hummel L,Yang J,Wu K,Delannay X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars[J].Theoretical and Applied Genetics,2003 (106):575-582.
    16 Courtois B,Huang N,Guiderdoni RFLP mapping of genes controlling yield components and plant height in an indica/japonica DH population of rice.In:Fragile lives in fragile ecosystems[J]. Proc Int Rice Res Conf., IRRI, Los Banos, Philippines,1995 pp 963-976.
    17 Cui K H,Peng S B,Xing Y Z,Yu S B,XU G G.Genetic Analysis of the Panicle Traits Related to Yield Sink Size of Rice [J].Acta Genetica Sinca,2002 (29):144-152.
    18 Cui KH, Peng SB,Xing YZ,Yu SB,Xu CG,Zhang Q.Molecular dissection of the genetic relationships of source,sink and transport tissue with yield traits in rice[J].Theoretical and Applied Genetics,2003 (106): 649-658.
    19 Den ZH,Xu M,Chen C L and Hong Y Z.Dry matter accumulation and photosynthetic characteristics of inter-subspecific hybrid rice crosses[J]. (In chinese.) Hybrid Rice,1993 (92): 40-46.
    20 Dilday R H,Lin J,Yan M. Identifucation of allelopathy in the USDA-ARS rice germplasm collection[J]. Aust J of Exp Agric,1994,34:907-910.
    21 Ding Z Y,Yang S M,Yuan J C,E S Z,Yu X P,Yao F J.Effects of Leaf-Cutting and Spikelet Thinning On Net Photosynthesis Rate of Rice During Grain Filling[J]. Chinese Agricultural Science Bulletin 2005 (21):179-182.
    22 Echt CS,May-Marquardt P,Hseih M,Zahorchak R.Characterization of microsatellite markers in eastern white pine[J].Genome,1996 (39):1102-1108.
    23 Edwards M. D., C. W. Stuber And J. F. Wendel, Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. numbers, genomic distribution, and types of gene action[J]. Genetics,1987 (116): 113-125.
    24 Erik H. Murchie,Jianchang Yang,Stella Hubbart,Peter Horton1 and Shaobing Peng.Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice[J].Journal of Experimental Botany,2002 (53): 2217-2224.
    25 Eshed Y,Zamir D.Less- than- additive epistatic interactions of quantitative trait loci in tomato[J].Genetics,1996 (1) 43:1807-1817.
    26 Feng G N,Li D X,Z J M.QTL Mapping and Epistasis Analysis of Yield Associated Traits in an DH Population from Indica-Japonica Cross of Rice (Oryza sativa L.) [J].Journal Of Yangzhou University: Agricultural and Life Science Edition,2004 (25):5-10.
    27 G.S. Hemamalini, H.E. Shashidharand Shailaja Hittalmani. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.) [J]. Euphytica,2000 (112): 69-78.
    28 Gao Huijiang and YANG Runqing. Composite interval mapping of QTL for dynamic traits[J]. Chinese Science Bulletin,2006 (51): 1857-1862.
    29 Gebbing T,Schnyder H.Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat[J]. Plant Physiology,1999 (121): 871-878.
    30 Groos C,Robert N,Bervas E,Charmet G.Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat[J]. Theoretical and Applied Genetics,2003 (106): 1032–1040.
    31 Guo Y C,Lin W X,Hang Y Y,Yu G J,Chen H F.Physioeeological studies On dry matter production and yield formation in new plant type(NPT)rice I.Dry matter production and grain-fil1ing characteristics in NPT rice[J]. Journal of Fujian Agricultural University,2001 (30): 16-21.
    32 He H-Q,Dong Z-H,Lin W-X,et al.Genetic ecology of rice allelopathy on receiver plant[J].Chin J Appl Ecol, 2002 12(6):871-875(in Chinese).
    33 Hayashi,K.,T.Yamanoto & M. Nakagahra. Genetic control for leaf photosynthesis in rice, Oryza sativa L[J]. Japan Breed, 1977(27): 49-56.
    34 Horie T, Lubis I, Takai T, Ohsumi A, Kuwasaki K, Katsura K, Nii A. Physiological traits associated with high yield potential in rice. In: Mew TW, Brar DS, Peng S, Dawe D, Hardy B, eds. Rice science: innovations and impact for livelihood[J]. Los Banos, Philippines: IRRI, 2003.117-145.
    35 Horton P.Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture[J]. Journal of Experimental Botany,2000 (51): 475- 485.
    36 Huang J W,Liang Y Y,Lin W X,Liang Kk J.Grain-filling characteristic and its physiobiochemical base in new plant type rice[J]. Fufian Journal of Agricultural Science,2002, (17)143-147.
    37 Ishimaru, K., M. Yano, N. Aoki, K. Ono, T. Hirose, S.Y. Lin, L. Monna, T. Sasaki & R.Ohsugi.Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags[J]. Theor Appl Genet,2001(102): 793-800.
    38 Jansen RC,Stam P.High resolution of quantitative traits into multiple loci via interval mapping[J].Genetics,1994 (136):1447-1455.
    39 Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics 1993 (135):205-211.
    40 Ji C M,hang Y J,hou P N,u Y L,u C F.Study on Relationship Between Source Quality and Grain Yield after Heading in Rice[J].Journal Of Yangzhou University(Natural Science Edition,2000 (2): 38-41.
    41 Jin H S,Jiang D A,Wang P M.Characteristics Of Gas Exchange And Chlorophyll Fluorescence In Different Position Leaves At Booting Stage In Rice Plants[J].Chinese Journal Of Rice Science,2004 (18):443-448.
    42 Kao C H,Zeng Z B,Teasdale R D.Multiple interval mapping for quantitative trait loci . Genetics[J].1999 (152):1203-1216.
    43 Kaworu E, Yan WG, Dilday RH, Namai H and Okuno K .2001. Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts[J]. Breeding Science 51:47-51.
    44 Kojima S,Takahashi Y,Kobayashi Y,et al.Hd3a, a rice ortholog of Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition[J]. Plant Cell Physiol, 2002 (43): 1096-1105.
    45 Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M., Lincoln, S., and Newburg, L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987 (1):174-181.
    46 Li Zhou Y,Wu W.Genetic dissection of heading time and its components in rice[J].Theor Appl Genet,2001 (102): 1236-1242.
    47 Li J X,Yu S B Xu C G,Tan Y F.Quantitative Trait Loci (QTLs) Analyses of Yield and Its Component Traits in“Sa nyou63”Hybrid[J]. Acta Agronomica Sinica,2000 (26): 892-898.
    48 Li X, Jiao D M,Liu Yu.Comparison of Photosynthetic Capacity in Canopies of Diferent Rice Varieties[J]. Jiangsu of Agr Sci,2004, (20):213-219
    49 Li Z ,X D J, Zhai H Q,Wan J.Mapping quantitative trait loci controlling yield and its related characters in rice (Oryza sativa L)[J].Journal of Nanjing Agricultural University,2002 (25):1-6.
    50 Li Z K Lin H X,Qian H R,Zhuang J Y,et al.RFLP mapping of QTLs for yield and related characters in rice (Oryzasativa L.) [J].Theor Appl Genet,1996 (92): 920-927.
    51 Li Z K,Pinson S R M,Park W D,et al.Epistasis forthree grain yield components in rice (Oryza sativa L.)[J].Genetics,1997 (145):453-465.
    52 Li Z,Pinson SRM,Stansel JW,Park WD Identification of quantitative trait loci (QTL) for heading date and plant height in cultivated rice (Oryza sativa L)[J]. Theor Appl Genet,1995 (91):374-381.
    53 Lin H X,Qian H R,Zhuang J Y,Lu J,Min S K,Xiong Z M,Huang N,Zheng K L.Interval mapping of QTL for yield and other related characters in rice[J].Theoretical and Applied Genetics,1997 (12):251-253.
    54 Lin H-X,Qian H-R,Zhuang J-Y,Lu J,Min S-K,Xiong Z-M,Huang N,K-L Zheng.RFLP mapping of QTL for yield and related characters in rice (Oryza sativa L.)[J].Theor Appl Genet,1996 (92):920-927.
    55 Lin W X, He H Q, Dong Z-H, et al. 2004. Study on devevlopmental inheritance of allelopathy in rice (Oryza sativa L.) under different enviroment[J].Acta Agron Sin(作物学报), 30(4):348-353(in Chinese).
    56 Liu Ben Hui.Statistical Genomics[J].Linkage, Mapping and QTL Analysis.USA.611.1998.
    57 Liu Z.Q.A study on the photosynthetic characters of different plant types of rice[J]. Scienctia Agricultura Sinica, 1980 (3): 6-10.
    58 Liu, Z.Y. & Z.Q. Liu, Genetics and Breeding Study on Photosynthesis[M]. Guizhou People’s Publishing Company, Guiyang, China. 1984.
    59 Louise,B.J,et al. Locating Genes Controlling Allelopathic Effects against Barnyardgrass in Upland Rice[J].Agronomy Journal.Vol.93.January-February 2001.
    60 Lu,C.,L. Shen,Z. Tan,Y. Xu,P. He,Y. Chen & L.Zhu.Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population[J]. Theor Appl Genet,1996 (93):1211-1217.
    61 Lynch,Michael,Walsh,Bruce.Genetics and Analysis of Quantitative Traits Sinauer Associates[J].Sunderland,MA,USA. 1998. 980 p.
    62 Ma D P,Luo L J,Wang C Y.Using recombinant inbred lines of rice yield related traits of QTL analysis [J]. Molecular Plant Breeding,2004 (2):507-512.
    63 Masahiro Yano and Takuji Sasaki.Genetic and molecular dissection of quantitative traits in rice[J].Plant Molecular Biolog.,1997 (35):145-153.
    64 Maughan PJ,Saghai Maroof MA,Buss GR.Molecula rmarker analysis of seed-weight: genomic locations,gene action,and evidence for orthologous evolution among three legume species[J].Theoretical and Applied Genetics,1996 (93):574-579.
    65 McCouch S R,Cho Y G.,et al. Blinstrub M., Morishima H., and Kinoshita T.Report on QTLnomenclature[J].Rice Genet.Newslett, 1997 (14):11-13.
    66 McCouch SR,Kochert G,Yu ZH,Wang ZY,Khush GS,Coffman WR,Tanksley SD: Molecular mapping of rice chromosomes[J].Theor Appl Genet,1998 (76): 815-829.
    67 Mervyn S,Michael C,et al. Branch architecture QTL for Pinus elliottii var. elliottii P?inus caribaea var. hondurensis hybrids[J]. Ann. For. Sci.59 (2002) 617-625 617.
    68 Murchie EH,Yang J,Hubbart S,Horton P,Peng S. Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice[J].Journal of Experimental Botany 2002 (53):2217-2224.
    69 Nagamine,T. Genetic variation of photosynthetic capacity of a single leaf by oxygen polarography in rice,Oryza sativa L[J]. Bull Natl Inst Agrobiol Resources (Japan) 1991a.(6): 59-68.
    70 Nagata K,Yoshinaga S,Takanashi J,Terao T. Effects of dry matter production, translocation of non-structural carbohydrates and nitrogen application on grain-filling in rice cultivar Takanari,a cultivar bearing a large number of spikelets[J]. Plant Production Science 2001 (4): 173-183.
    71 Nakamura Y,Yuki K.Park S Y.Carbohydrate Metabolism in the Developing Endoperm of Rice Grains[J]. Plant cell physiol 1989 (30): 833-839.
    72 Ntanos DA,Koutroubas SD. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions[J]. Field Crops Research 2002 (74): 93–101.
    73 Ohno, Y. Varietal differences of photosynthetic efficiency and dry matter production in indica rice[J]. Tro Agri,1976 (53):115-123.
    74 Pan X H,Wang Y G.Influences of Sink-Source Ratio a Interaction on Photosynthesis, Assimilate Translocation and Partitioning and Leaf. Senescence of Rice[J]. Acta Agronomica Sinica 1998 24 (6): 821-827.
    75 Paterson A H. Molecular dissection of quantitative traits: progress and prospects[J].Genome Res.1995 (5):321-333.
    76 Peng K G,Cassman S S,Sheehy J,et al.Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential [J ].Crop Science,1999 (39): 1552-1559.
    77 Peng S, Cassman KG, Vinmani SS, Sheehy J, Khush GS. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential[J]. Crop Science,1999 (39):1552-1559.
    78 Peng, S., Single-leaf and canopy photosynthesis of rice. In:J.E. Sheehy, P.L. Mitchell & B. Hardy (Eds.) [J], Redesigning Rice Photosynthesis to Increase Yield,2000.pp. 213-228.
    79 Pinson S R M,Park W D,et al.Epistasis for three grain yield components in rice (Oryza sativa L.) [J] .Genetics 1997 (145): 453-465.
    80 Putterill J, Robson F, Lee K, Coupland G: The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J]. Cell,1995 (80): 847-857.
    81 Reynolds MP, van Ginkel M, Ribaut J-M.. Avenues for genetic modification of radiation use efficiency in wheat[J]. Journal of Experimental Botany,2000 (51): 459-473.
    82 Richards RA. Selectable traits to increase crop photosynthesis and yield of grain crops[J]. Journal of Experimental Botany,2000 (51): 447-458.
    83 S D TANKSLEY. Comparative linkage maps of rice and maize genes[J]. Proc Natl Acad Sci USA,1993 (90): 7980-7984.
    84 Saito A,Yano M,Kishimoto N,Nakagahra M,Yoshimura A,Saito K,Kuhara S,Ukai Y,Kawase M,Nagamine T,Yoshimura S,Ideta O,Ohsawa R,Hayano Y,Iwata N,Sugiura M:Linkagemap of restriction fragment length polymorphism loci in rice[J].Japan J Breed,1991(41): 665-670.
    85 Sawada S,Usuda H,Tsukui T.Participation of inorganic orthophosphate in regulation of the Ribulose - 1 ,5 - bisphosphate carboxylasectivity in response to changes in the Photosynthetic Source– Sink. Balance[J].Plant Cell Physiol,1992 (33): 943-949.
    86 Sax K.The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris[J]. Genetics,1923 (8): 552-560.
    87 Shao P Y, Zhang Q J,Li J Q ,Zhao B ; Li P.QTL Mapping for Yield Component Traits Using (Pei'ai 64s/Nipponbare) F2 Population[J] .Journal of Crop Science (China),2005 (31): 1620-1627.
    88 Sheng T,Qian Q,Zeng D L,Yasufumi Kunihiro,,Kan Fujimoto,Huang D N,Zhu L H.QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.) [J]. Euphytica, 2004 (135): 1-7.
    89 Song W Y, Wang G. L, Chen L, et al.P.(1995) The rice disease resistance gene,Xa21,encodes a receptor kinase-like protein[J].Science,270,1804-1806.
    90 Song X,Agata W, Kawamitsu Y. Studies on dry matter and grain production of F1 hybrid rice in China. III. Grain-production character from the view point of time changes in non-structural carbohydrate and nitrogen contents during the yield production[J]. Japanese Journal of Crop Science,1990 (59) 107-112.
    91 Sumi A,Hakoyama S,Weng J,Agata W,Takeda T.Analysis of plant characteristics determining ear weight increase during the ripening period in rice (Oryza sativa L.). II. The role of the reserved carbohydrate at heading stage upon the receptive efficiency ofassimilation products in spikelets[J]. Japanese Journal of Crop Science,1996 (65): 214-221.
    92 Takahashi Y,Shomura A,Sasaki T,et al. Hd6,a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2[J].Proc Natl Acad Sci USA, 2001, 98 (14): 7922-7927.
    93 Temnykh S,Hauck N,McCouch S R.Mapping and genome organization of microsatellite sequences in rice (oryza sativa L.)[J].Theor Appl Genet,2000 (100):697-712.
    94 Teng, Q Qian, D Zeng, Y Kunihiro, K Fujimoto,.D QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.)[J]. Euphytica,2004 (135):1-7.
    95 TG. Mason,EJ Maskell. Studies on the Transport of Carbohydrates in the Cotton Plant[J]. Empire Cotton Growing Corp,1928.
    96 Today JM.Location of polygenes[J]. Nature,1961 (191):368–370.
    97 Toshiyuki Takai1,Yoshimichi Fukuta,Tatsuhiko Shiraiwa1 and Takeshi Horie.Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2005 (56):2107-2118.
    98 Tsukaguchi T,Horie T,Ohnishi M. Filling percentage of rice spikelets as affected by availability of non-structural carbohydrates QTL analysis of grain-filling in rice 2117 at the initial phase of grain-filling[J]. Japanese Journal of Crop Science,1996 (65): 445-452.
    99 Tsukaguchi T, Sheehy JE, Ito O, Horie T. Analysis of grain filling of individual tillers of rice based on their emergence time and NSC content in genotypes IR72 and new plant type. In: Horie T,Geng S,Amano T,Inamura T,Shiraiwa T,eds[M].Proceedings of international symposium‘World food security and crop production technologies for tomorrow’. Kyoto, Japan: Kyoto University,1999 pp 298-299.
    100 Tu, Z.P.,M.Y. Feng, W.J. Cai, G.H. Chen & X.Z. Lin. Study on rice high photosynthetic efficiency breeding, I. Genetics of single leaf net photosynthetic rate[J]. Guangdong Agric Sci,1980 (5): 8-13.
    101 Tu, Z.P., Varietial difference of net photosynthetic rate and high photosynthetic efficiency breeding in rice[J]. Acta Phytophysiologica Sinica,1978 4(2): 113-120.
    102 Wang G,Mackill DJ, Bonman JM, MaCouch SR,Champoux MC, Nelson RJ RFLP mapping of genes conferring complete and partial resistance to blast in a durable resistant rice cultivar[J]. Genetics,1994 (136): 1421-1434.
    103 Wang Q,Wenx G,Lu C M,Zhang Q D. Photosynthetic Functions Of Different Senescing Leaves In The Canopy Of Superhigh-Yield Rice‘Hua-An 3’[J]. Acta Phytoecologica Sinica,2004 Vol.28 No.1 P.39-46.
    104 Wang Y L,Cai K Z.Activity Of Grain Capacn Ly And Its Regulat10n In RiceⅢ:TheRelatipnship Of Grain Fii工ing Effective Water Co Ntent W I1th Capacity[J]. Journal of Jiang su Agricultural college,1991 12(2):17-23.
    105 Wang Y P,Zeng J P,Guo L B,Xing Y Z,Xu C G,Mei H W,Ying C S and Luo L J. QTL and Correlation Analysis on Characters of Top Three Leaves and Panicle Weight in Rice (Oryza sativa) [J]. Chinese J Rice Sci,2004 19 (1):13-20.
    106 Wang, Y.R. Physiological Breeding in Rice[M]. Beijing Science and Technology Literature Publishing Company, China, Beijing,1995 pp. 23-44.
    107 Weng J, Takeda T, Agata W, Hakoyama S. Studies on dry matter and grain production of rice plants. I. Influence of the reserved carbohydrate until heading stage and the assimilation products during the ripening period on grain production[J]. Japanese Journal of Crop Science,1982 (51): 500-509.
    108 Wright S.Evolution and Genetics of Population [M].Chicago:Univ Chicago Press,1968:pp. 10-11.
    109 Wu H, Pratley J, et al.2003. Quantitative trait loci and molecular markers associated with wheat allelopathy[J]. Theoretical and Applied Genetics,107:1477-1481.
    110 Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ. Time-related mapping of quantitative trait loci underlying tiller number in rice[J]. Genetics,1999 (151): 297–303.
    111 Xiao J H,Li J M,Yuan L P,et al.Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J].Genetics,1995 (140):745-754.
    112 Xiao J, Li J, Yuan L, Tanksley SD Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from a subspecies rice cross[J]. Theor Appl Genet,1996 (92): 230-244
    113 Xu J L,Xue Q Z, Luo L J, Li Z K Genetic Dissect ion of Grain Weigh t and It s Related Traits in Rice (Oryza sativa L. ) [J].Chinese J R ice Sci,2002, 16 (1) : 6-10.
    114 Xu Y B, Shen Z T. Molecular Mapping for Quantitative Trait Loci ControllingY ield Component Characters Method in Rice Using a Maximum Likelihood(Oryza saliva L.)[J].Acta Genetica Sinica,1995 22(1):46-52.
    115 Xu Y, Shen Z, Xu J, Zhu H, Chen Y, Zhu L Interval mapping of quantitative trait loci in rice using a molecular linkage map[J]. Sci China Ser B,1994 (24): 971-976.
    116 Xu Z H,He Y,et al.Gene mapping on rice allelopathy against barnyardgrass[J]. Chinese Journal of Applied Ecology,2003,14(12):2258-2260.
    117 Yagi T,Nagata K,Fukuta Y,et al.QTL mapping of spikelet number in rice (Oryza stativa L.) [J].Breeding Science,2001 51(1):55-56.
    118 Yang J,Peng S,Visperas RM, Sanico AL,Zhu Q,Gu S.Grain-filling pattern and cytokinincontent in the grains and roots of rice[J]. Plant Growth Regulation,2000 (30): 261-270.
    119 Yang J, Peng S, Zhang Z, Wang Z, Visperas RM, Zhu Q. Grain and dry matter yields and partitioning of assimilates in Japonica/Indica hybrid rice[J]. Crop Science,2002 (42): 766-772.
    120 YanJ Q,Zhu J.He C. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.)[J].Genetics,1998 (150): 1257-1265.
    121 Yano M,Katayose Y,Ashikari M,et al. Hd1.a major photoperiod sensitivity quantitative traits locus in rice, is closely related to the arabidopsis°owering time gene CONSTANS[J] . Plant Cell,2000 (12): 2473-2484.
    122 Yano M,Kojima S,Takahashi Y,et al.Genetic control of flowering time in rice,a short-day plant.Plant Physiology,2001 (127): 1425-1429.
    123 Yoshida S. Physiological aspects of grain yield[J]. Annual Review of Plant Physiology, 1972 (23): 437-464.
    124 Yu S B,Li J X,Xu C G,et al.Identification of quantitative trait loci and epistatic interactions for plantheight and heading date in rice[J].Theor Appl Genet, 2002 (104):619-625.
    125 Yu S B,Li J X,Xu C G,et al.Importance of epistasisas the genetic basis of heterosis in an elite rice hybrid[J] .Proc Natl Acad Sci USA ,1997 (94): 9226-9231.
    126 Zeng D L,Qian Q,Teng S,et al.Genetic analysis on rice allelopathy[J]. Science Bulletin ,2003, 48(1):70-73.
    127 Zeng ZB. Precision mapping of quantitative trait loci[J]. Genetics,1994 (136):1457-1468.
    128 Zhang LB, Chen WF, Yang SR: The theory and method of rice breeding for ideal plant morphology II. Varietal difference in leaf quality in relation to yield components. In: Xiong ZM, Liang CY (eds) Basic Researches on Breeding Techniques of Rice [M]. Chinese Science Press, Beijing,1991 pp. 171-182.
    129 Zheng J S,Jiang L R,Zeng J M.QTL Analysis of Heading Date,Plant Height and Yield Components in F2 Population Derived from Minghui 86×Jiafuzhan[J].Molecular Plant Breeding,2003 (1): 633-639.
    130 Zhikang Li,Shannon R.M. Pinson,James W. Stanse and Andrew H. Paterson. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.) [J].Molecular Breeding,1998 (4): 419-426.
    131 Zhuang J Y,Fan Y Y,Rao Z M,et al.Analysis onadditive effects and additive- by- additive epistatic effects of QTL s for yield traits in a recombinant inbred line population of rice[J]. Theor Appl Genet,2002 (105):1137-1145.
    132 Zhuang J Y,Lin H X,Lu J,et al.Analysis of QTL×environment interaction for yieldcomponents and plant height in rice[J].Theor Appl Genet,1997 (95): 799-808.
    133阿加拉铁等,水稻灌浆期不同阶段叶绿素含量的QTL分析[J].作物学报,2008,34(1):6l-66.
    134曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报198713 (4):265-272
    135董章杭.水稻化感作用的动态遗传及其与环境互作研究[D].福建农林大学硕士论文.2002.
    136杜春芳,毛雪等.多基因抗性的QTL作图及其在作物持久性抗病育种上的应用[J].西北植物学报.2004.24(1):172-177.
    137方宣钧等.作物DNA标记辅助育种[M].科学出版社.2001.
    138龚继明,何平等.水稻的耐盐性QTL的定位[J].科学通报.1998.43(17): 21-24.
    139郭灿,谢锦云.水稻蛋白质组学研究[J].生命科学研究,2003,Sep,7(3): 101-106.
    140郭龙彪.罗利军等.水稻重要农艺性状的两年QTL剖析[J].中国水稻科学,2003, 17(3):211-218
    141郭龙彪、罗利军等.籼粳交重组自交系群体主要农艺性状分析[J].中国水稻科学, 2001.15 (3): 221-224.
    142何华勤,林文雄等.应用差异蛋白组学方法分析作物化感作用的分子机理[J].生态学报,2005,25(12):3141.-3145.
    143何华勤.水稻化感作用及其分子机理研究[D].福建农林大学博士学位论文.2004.
    144黄育民,李义珍,庄占龙,等.杂交稻高产群体光合生产研究[J].福建省农科院学报,1995,10(1):7-l2
    145黄育明.我国水稻品种改良过程源库特征的变化[J].福建农业大学学报,1998,27 (3):271-278.
    146贾小丽.化感水稻的遗传图谱构建及其QTL定位[D].福建农林大学硕士论文,2006.
    147贾小丽,林文雄等.水稻RILs群体化感作用评价[J].南平师专学报,2007, 26(4):31-34.
    148贾小丽,林文雄.水稻RILs化感作用遗传模型分析[J].武夷学院学报,2009,28(2):36-40.
    149景艳军.水稻细菌性条斑病抗性QTLqBIsr5b的精细定位[D].福建农林大学硕士论文.2005.
    150玖村敦彦.从源库关系看日本水稻栽培的发展[J].国外农学一水稻,1983,(3):l-5.
    151李晶,何平,郑先武等.1999,利用水稻重组自交系群体对一些重要农艺性状进行基因定位和互作分析[J].植物学报,41 (I1):1199-1203.
    152李晶照,何平,郑先武,等.利用水稻重组自交系群体对一些重要农艺性状进行基因定位和互作分析[J].植物学报,1999,41(11):1199-1203.
    153李林.蛋白质组学的进展[J].生物化学与生物物理学报,2000,27(3):227-231.
    154李义珍,黄育民,庄占龙,等.杂交稻高产群体于物质积累运转Ⅱ.碳水化合物的积累运转[J].福建省农科院学报,1996,ll(2):l-6.
    155李义珍,黄育民,庄占龙,等.杂交稻高产结构研究[J].福建省农科院学报,1995,10(1):l-6
    156李泽福等,水稻抽穗期QTL与环境互作分析[J].作物学报,2002,28(6):771-776.
    157梁康迳等,水稻籽粒发育过程中可溶性糖含量的遗传及其与品质的关系[J],分子植物育种,2003,1(2):207-215.
    158梁康迳等,水稻籽粒发育过程中总氮含量的遗传及其与品质的关系[J].农业现代化研究,2003,24(5):387-391.
    159林文雄等.水稻抗UV—B的QTL定位和环境互作分析[J].中国生态农业学报2008 16(3):644-648.
    160凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26 (6):l-l1.
    161芦义.作物的光合作用与物质生产[J].北京:科学出版社,1971:365-373
    162阮成江等.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22.
    163松岛省三(庞诚译).稻作理论和技术.北京:北京出版社,1973.
    164田中明.从源一库关系剖析水稻丰产性.国外农业参考资料(广东省农科院科技情报室),1981,(1):12-14.
    165王韶唐.小麦的源库关系[J].国外农学一麦类作物,1984,(3):l5~l8
    166谢桂先等,不同栽培法对食用稻子粒氨基酸含量的影响及其机理初探[J].植物营养与肥料学报,2007 13 (5): 781-788.
    167熊中立等.微卫星DNA和AFLP标记水稻分子标记连锁图上的分布[J].遗传学报,1998,40(7):605-614.
    168杨道林等,水稻穗型遗传规律的研究[J].垦殖与稻作,2004,3,11-14.
    169杨建昌,王志琴,朱庆森.水稻产量源库关系的研究[J].江苏农学院学报1993 14 (3):47~53.
    170余四斌,李建雄,徐才国.上位性效应是水稻杂种优势的重要遗传基础[J].中国科学C辑1998 28(4):333-342.
    171翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑) 2002 32(3) :211-217.
    172张光恒,张国平等.不同环境条件下稻谷粒形进行了QTL定位分析[J].中国水稻科学.2004.18(1):16-22.
    173张小明,籼粳交杂种不同灌浆期稻米缬氨酸含量的发育遗传.中国水稻科学,2006.20(1):36-42.
    174张祖建,朱庆森,壬志琴,等.水稻品种源库特性与胚乳细胞增殖和充实的关系[J].作物学报,1988,24(1):2l-26.
    175郑景生,吕蓓. PCR技术及实用方法[J].分子植物育种,2003,1(3):381-394.
    176周广洽.杂交水稻的源库关系及其调控[J].农业现代化研究,1982,(6):13-16.
    177朱昌兰等,水稻灌浆期耐热害的数量性状基因位点分析[J].中国水稻科学,2005,19(2):117-122.
    178朱军.1999.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报,33 (3): 327-335.
    179左清凡、朱军等.非等试验设计水稻产量构成性状基因型X环境互作的遗传分析[J].作物学报,2001,27(4):125-131.
    180左清凡等,水稻籽粒不同发育时期灌浆速率的遗传及其与环境互作的分析[J].中国农业科学,2002,35(5):465-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700