螺旋锥齿轮磨削误差产生机制及修正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋锥齿轮是机械传动的基础元件,其空间形状和加工过程相当复杂。数控技术的发展,为螺旋锥齿轮简化调整和进一步提高加工质量提供了方便。而螺旋锥齿轮加工质量的控制一直是其加工中的一个关键问题。目前国外螺旋锥齿轮数控加工质量控制技术仅为少数公司所拥有,国内尚处于起步阶段。为此,本文根据螺旋锥齿轮数控加工的特点,以提高其加工精度为目的,展开螺旋锥齿轮磨削误差机理及补偿技术的研究,具体内容如下所述。
     螺旋锥齿轮加工方法及数控加工模型的研究。由于螺旋锥齿轮磨削加工与铣齿加工原理一致,本文根据其铣齿加工特点,结合相对微分和局部共轭法,分析了螺旋锥齿轮大轮展成法、成形法,小轮刀倾法、变性法的加工算法。另外根据摇台式机床加工的特点,分别建立了大轮展成法、成形法,小轮刀倾法、变性法的六轴五联动数控加工模型,为后述螺旋锥齿轮磨削误差及齿面误差修正的研究提供了理论基础。
     六轴五联动螺旋锥齿轮数控磨床综合误差模型的研究。运用多体系统理论,研究了螺旋锥齿轮CNC磨床低序体阵列拓扑结构,进而采用齐次坐标矩阵变换方法,建立了CNC螺旋锥齿轮磨床综合空间误差的数学模型,获得了六个自由度方向的误差表达式。在此基础上,分析了六轴五联动螺旋锥齿轮磨床砂轮磨削点的误差变化规律以及与齿轮齿距、螺旋角、周节、齿形等形位误差生成的关系,提出了获得螺旋锥齿轮精确形位参量所需的机床关键误差控制条件。
     螺旋锥齿轮磨齿加工齿面误差的影响研究。结合得到的误差综合模型,运用螺旋锥齿轮加工原理、齿轮啮合理论,进一步建立了含磨床各运动副误差的螺旋锥齿轮的齿面方程,对含磨床砂轮主轴运动副误差的齿面进行仿真并得到差曲面,进而分析了磨床砂轮主轴各运动副误差对螺旋锥齿轮齿面的影响。其次根据成形法加工螺旋锥齿轮的原理,运用空间坐标变换原理,建立了成形法加工时螺旋锥齿轮的齿面方程,研究了各个机床调整参数扰动时的差曲面,分析了机床调整误差对齿面误差的影响规律。上述研究查明了磨床误差及加工调整参数误差对螺旋锥齿轮齿面误差的影响机制。
     基于截断奇异值分解法的齿面误差修正技术的研究。结合机床调整参数、齿轮啮合原理,建立了螺旋锥齿轮齿面误差修正模型。提出采用TSVD(截断奇异值分解)正则化方法与L曲线相结合求解此线性超越方程组,从而达到对齿面误差修正,其求解精度比采用的最小二乘法求解更高,误差修正更好,为高精度的齿面误差修正提供了有效方法。
     螺旋锥齿轮误差修正试验研究。实验验证了本文齿面误差修正模型及提出的TSVD法求解的正确性,提高螺旋锥齿轮齿面加工质量。此外还进一步分析了修正前后五个联动轴的表达式系数的变化趋势以及对齿面误差的影响规律。
Spiral bevel gear is the mechanical transmission fundamental element.Its space shape and the machining process are very complicated.The developments of numerical control technology provide convenience for simplification adjustment and improvement processing quality of spiral bevel gear.But the quality control of spiral bevel gear processing has been the key problem in the processing.At present,the quality control technologies of spiral bevel gear NC processing are grasped only the minority companies in overseas and are still at the starting stage in domestic. Therefore,according to the numerical control processing characteristic of spiral bevel gear,taking increase processing accuracy as the goal,the paper carries out research in mechanism and compensation technology of spiral bevel gear grinding error.The concrete contents are as follows.
     Study on the numerical control processing model and machining method of spiral bevel gear.Combined with relative derivation and the partial conjugate law, both the generated method and formatted method of gear were analyzed,both the tilted method and modified roll method of pinion were also analyzed.According to machining characteristic of a cradle-type universal machine,the six axis five linkage numerical control machining model of generated method,formatted method,tilted method and modified roll method were established.The above research provides theoretical basis for analysis of spiral bevel gear grinding error and correction tooth surface error.
     Study on the synthesis error model of spiral bevel gear numerical control grinder with six axes five linkages.Based on the multi-body system theory and homogeneous coordinate matrix transformation method,the low foreword body array topology structure of spiral bevel gear CNC grinder was studied.The mathematical model of synthesis space error of spiral bevel gear CNC grinder was established,and the erroneous expressions of six degrees of freedom direction were obtained.Based on such expressions,the tool point erroneous change laws of spiral bevel gear machine with six axes five linkages were analyzed,and the influence of the grinding spot errors on the teeth pitch,helix angle,pitch,teeth profile and others was discussed.The control conditions of machine's key error were proposed to obtain the precise form and position parameter of spiral bevel gear.
     Study on the effect of machining errors of spiral bevel gear-tooth surface.Based on the model of error synthesis,the tooth surface equation of spiral bevel gear including the error motion for machine tools was further proposed by the manufacture principle and meshing principle of spiral bevel gear.The simulation of tooth surface with or without error motion of the spindle was carried out and the difference surface was also obtained,then the effect of error motion of the spindle for tooth surface was analyzed.Based on the forming processing principle of spiral bevel gear and space coordinates transformation,the tooth surface equation using forming processing was build.The difference surfaces with the disturbances of each machine tool adjustment parameter were studied,and the influence law of machine tool adjustment errors on tooth surface errors was analyzed.The above research finds out the influence of grinder error and machining setting parameter error on tooth surface error of spiral bevel gear.
     Study on the error correction technique of tooth surface using truncated singular value decomposition(TSVD).The error correction model of tooth surface was established by machine tool adjustment parameters and meshing principle.The solution to these linear transcendental equations based on regularization method of truncated singular value decomposition and L-curve method was proposed,while the tooth surface errors were corrected and the solving precision is higher than that using the least square method.The above research provides effective method for high precision correction of tooth surface error.
     Experimental study on the error correction of spiral bevel gear.The error correction model of tooth surface and solving method using TSVD were verified experimentally,and the tooth surface machining quality of spiral bevel gear was improved.In addition,the change tendency of the pre and post correction of five axes linkage expression coefficients was analyzed,and the influence of change tendency on tooth surface geometrical error was also discussed.
引文
[1]西安交通大学机制教研室齿轮研究组.弧齿锥齿轮与准双曲面齿轮加工调整原理[M].上海:上海科学技术出版社,1979,1-50.
    [2]郑昌启.弧齿锥齿轮和准双曲面齿轮[M].北京:机械工业出版社,1988,1-176.
    [3]邓效忠,方宗德,张金良等.弧齿锥齿轮高重合度设计[J].中国机械工程,2002,13(9):791-795.
    [4]The Gleason Works.Method for Designing Hypoid Gear Blanks[M].Gleason Works,Rochester,New York,1971,1-67.
    [5]The Gleason Works.Calculating Instructions Generated Hypoid Gears,HGM-26[M].Gleason Works,Rochester,New York,1971,10-43.
    [6]The Gleason Works.Calculating Instructions FORMATE Hypoid Gears,HFT-116[M].Gleason Works,Rochester,New York,1971,17-55.
    [7]The Gleason Works.Calculating Instructions FORMATE Spiral Bevel Gears,SFT-116[M].Gleason Works,Rochester,New York,1971,23-60.
    [8]王声堂,杨岐华,蒋荣孝.21世纪齿轮行业发展战略的建议[J].机械传动,1999,23(1):46-49.
    [9]唐定国.迈向21世纪的我国齿轮工业和传动技术[J].机械传动,1996,19(1):84-87.
    [10]郑江,张保全,桂志国.现代齿轮技术的发展与我国齿轮制造面临的问题[J].华北工学院学报,2004,18(1):50-54.
    [11]陈国荣.弧齿锥齿轮虚拟加工技术研究[M].焦作:焦作工学院硕士学位论文,2000
    [12]刘惟信.圆锥齿轮与双曲面齿轮传动[M].北京:人民交通出版社,1980年.
    [13]Wildhaber E.Basic Relationships of Hypoid Gears[J].American Machinist,1946,90:108-11.
    [14]Wildhaber E.Conjugate Pitch Surface[J].American Machinist,1946,90.
    [15]Wildhaber E.Surface Curvature[J].Prod Engry,1956,270.
    [16]Baxter L M.Basic Geometry and Tooth Contact of Hypoid Gears[J].Industrial Mathematics,1961,11(2):1-28.
    [17]Baxter L M.Exact Determination of Tooth Surfaces For Spiral Bevel and Hypoid Gears[A].AGMA Faper,1966,139.02
    [18]Baxter L M.Effect of Misalignment on Tooth Action of Bevel and Hypoid Gear[A].ASME Paper 61-MD-20,1961.
    [19]The Gleason Works.Method for Designing Hypoid Gear Blanks[M].Gleason Works,Rochester,New York,1971
    [20]The Gleason Works.Calculating Instructions Generated Hypoid Gears,HGM-26[M].Gleason Works,Rochester,New York,1971.
    [21]The Gleason Works.Calculating Instructions FORMATE Hypoid Gears,HFT-116[M].Gleason Works,Rochester,New York,1971.
    [22]The Gleason Works.Calculating Instructions FORMATE Spiral Bevel Gears,SFT-116[M].Gleason Works,Rochester,New York,1971.
    [23]李小清,螺旋锥齿轮数控加工与误差修正技术研究[D].华中科技大学博士论文,2004.
    [24]曾韬,螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [25]Litvin F L.Gear Geometry and Applied Theory[M],New Jersey:Prentice Hall,1994.
    [26]Litvin F L,Gutman Y.Methods of Synthesis and Analysis of Hypoid Gear Drives of'Formate' and 'Helixform',part 1-3[J].ASME J.of Mech.Design,1981,103:83-113.
    [27]Litvin F L,Gutman Y.A Method of Local Synthesis of Gears Grounded on the Connection Between the Principal and Geodetic Curvatures of Surfaces[J].ASME J.of Mech.Design,1981,103:114-125.
    [28]Litvin F L,Zhang Y.Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears[A].NASA CR4342,Chicago:NASA Lewis Research Center,1991.
    [29]王小椿.点啮合曲面的三阶接触分析[J].西安交通大学学报,1983,17(3):1-13.
    [30]王小椿.线接触曲面的三阶接触分析[J].西安交通大学学报,1983,17(5):1-12.
    [31]王小椿,吴序堂.点接触齿面三阶接触分析的进一步探讨-V/H检验理论[J].西安交通大学学报,1987,21(2):1-13.
    [32]吴序堂,王小椿,李峰.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价[J].机械工程学报,1994,30(3):47-57.
    [33]Wang X C,Ghosh S K.Advanced Theories df Hypoid Gears[M].Amsterdam:Elsevier Science B.V.,1994.
    [34]田行斌,方宗德.弧齿锥齿轮加工参数的全局优化设计[J].航空动力学报,2000,15(1):75-77.
    [35]方宗德,刘涛,邓效忠.基于传动误差设计的弧齿锥齿轮的啮合分析[J].航空 学报.2002,23(3):226-230.
    [36]邓效忠,方宗德,张金良等.弧齿锥齿轮高重合度设计[J].中国机械工程,2002,13(9):791-795.
    [37]邓效忠.高重合度弧齿锥齿轮的设计理论及实验研究[D].西安:西北工业大学,2002.
    [38]吴训成,毛世民,吴序堂.点啮合齿面主动设计研究[J].机械工程学报,2000,36(4):70-73.
    [39]吴训成,毛世民,吴序堂.点接触齿面啮合分析的基本公式及其应用研究[J].机械设计,2000,2:15-18.
    [40]梁桂明.螺旋锥齿轮的新齿形-分锥角综合变位原理[J].齿轮,1981,2:19-34.
    [41]梁桂明,邓效忠,何兆旗.新型非零传动曲齿锥齿轮技术[J].中国机械工程,1997,8(1):97-101.
    [42]杨宏斌,范明,周彦伟等.高齿准双曲面齿轮的研究[J].中国机械工程,2000.11(8):897-900.
    [43]周彦伟,杨宏斌,邓效忠.高齿准双曲面齿轮的轮齿加载接触分析[J].中国机械工程,2002,13(14):1181-1183.
    [44]孟庆睿,邓效忠,陈东.高齿制准双曲面齿轮的优化设计[J].洛阳工学院学报,1999,20(3):22-24.
    [45]邓效忠.孟庆睿.牛嗥.高齿制准双曲面齿轮的根切[J].洛阳工学院学报,1999,20(3):18-21.
    [46]邓效忠,梁桂明.大重合度锥齿轮的优化设计[J].洛阳工学院学报,1993,14(1):14-18.
    [47]邓效忠,杨宏斌,牛啤.高齿弧齿锥齿轮的设计与性能试验[J].中国机械工程,1999,10(8):864-866.
    [48]Litvin,F T,Chen J S.Application of Finite Element Analysis for Determination of Load Share,Real Contact Ratio,Precision of Motion,and Stress Analysis[J].ASME Journal of Mechanical Design,1996,118:561-567.
    [49]Gosselin C,Cloutier L,Nguyen Q D.A General Formulation for the Calculation of the Load Sharing and Transmission Error Under Load Sharing and Transmission Error Under Load of Spiral Bevel And Hypoid Gears[J].Mech.Mach.Theory.1995,30(3):433-950.
    [50]Gosselin C,Gagnon P,Cloutier L.Accurate Tooth Stiffness of Spiral Bevel Gear Teeth by the Finite Strip Method[J].ASME Journal of Mech.Des.2998,220(12):599-609.
    [51]Sugimoto M,Maruyama N.Effect of tooth contact and gear dimensions on transmission errors of loaded hypoid gears[J].Transactions of the ASME,Journal of Mechanical Design,1991,113:182-187.
    [52]Falah B,Gosselin C.Experimental and numerical investigation of the meshing cycle and contact ratio in spiral bevel gears[J].Mech.Mach.Theory,1998,33(1/2):21-37.
    [53]郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理[J].机械工程学报,1981,17(2):1-12.
    [54]郑昌启,黄昌华,吕传贵.螺旋锥齿轮加载接触分析计算原理[J].机械工程学报,1993,29(4):50-54.
    [55]黄昌华,温诗涛,郑昌启.螺旋锥齿轮啮合轮齿应力场分析[J].机械传动,1992,16(2):9-13.
    [56]李润方,黄昌华,郑昌启,等.弧齿锥齿轮和准双曲面齿轮轮齿接触有限元分析[J].机械工程学报英文版,1995(2).
    [57]王三民,沈允文.具有最佳加载接触性能的弧齿锥齿轮主动设计研究[J].机械科学与技术,2001,2(5):663-664.
    [58]方宗德.修形斜齿轮的承载接触分析[J].航空动力学报,1997,12(3):251-254.
    [59]方宗德.修形斜齿轮的轮齿接触分析[J].航空动力学报,1997,12(3):247-250.
    [60]方宗德,杨宏斌.用规划法的齿轮有摩擦三维连续弹性接触分析[J].机械工程学报,1999,35(6):98-101.
    [61]高建平,方宗德,杨宏斌.螺旋锥齿轮边缘接触分析[J].航空动力学报,1998,13(3):289-292.
    [62]方宗德.杨宏斌.准双曲面齿轮传动的轮齿接触分析[J].汽车工程,1998,20(6):350-355.
    [63]方宗德.田行斌.准双曲面齿轮有摩擦承载接触分析[J].汽车工程,1999,21(3):184-187.
    [64]西安交通大学机制教研室齿轮研究组.弧齿锥齿轮与准双曲面齿轮加工调整原理[M].上海:上海科学技术出版社,1979.
    [65]北京齿轮厂编.螺旋锥齿轮[M].北京:科学出版社,1974.
    [66]遇立基.CIMT'99展出的数控齿轮加工机床[J].制造技术与机床,1999,(12):6-7
    [67]湖南中大创远数控装备有限公司,http://www.zdcy.net/
    [68]王小椿等.基于空间运动学的传动机床与Free-Form型机床运动转换方法的研究[J].机械工程学报,2001,37(4):93-98.
    [69]王延忠,周云飞,李左章等.基于通用五坐标数控机床螺旋锥齿轮NC加工研究[J].中国机械工程,2001,12(8):903-906.
    [70]魏冰阳,方宗德等.传统机床与Free-Form型机床运动的等效转换[J].机械科学与技术,2004,23(4):425-428.
    [71]Stardtfeld H J.Handbook of Bevel and Hypoid Gears[M].New York:Rochester Institute of Technology,1993.190-200.
    [72]Litivin F L.Zhang Y,J.Kieffer.et al.Identification and Minimization of Deviation of Real Gear Tooth Surface[J].Journal of Mechanical Design,ASME,1991,113(1):55-62.
    [73]C Y Lin,C B 'I'say,Z H Fong.Computer-aided manufacturing of spiral and hypoid Theory gears with minimum surfaced-deviation[J].Mech Mach 1998,336(6):785-803.
    [74]李静.弧齿锥齿轮补偿弹性变形齿形加工方法的研究[M].沈阳:沈阳工业大学硕士学位论文,2000
    [75]樊奇·让德福.格里森专家制造系统(GEMS)开创弧齿锥齿轮及双曲面齿轮数字化制造新纪元,世界制造技术与装备市场,2005(4):87-93
    [76]王军.基于三坐标测量的弧齿锥齿轮及准双曲面齿轮齿面几何精度控制方法研究[D].西安:西安交通大学博士学位论文,2000
    [77]LIN Chung-yuan,TSAY Chung-Biau,FONG Zhang-hua.Computer- aided manufacturing of spiral bevel and hypoid gears with minimum surface deviation[J].Mech.Mach.Theory,1998,33(6):785-803.
    [78]LIN Chung-yuan,TSAY Chung-Biau,FONG Zhang-hua.Computer- aided manufacturing of spiral bevel and hypoid gears by applying optimization techniques[J].Journal of Materials Processing Technology,2001,114:22-35.
    [79]Zhang Y,Litvin F L.Computerized Analysis of Meshing and Contact of Gear Real Tooth Surfaces[J].ASME Journal of Mechanical Design,1994,116:677-682.
    [80]Gosselin C,Guertin T.Simulation and Experimental Measurement of the Transmission Error of Real Hypoid Gears Under Load[J].ASME Journal Mechanical Design,2000,122:1091-122.
    [81]孙殿柱,董学朱.真实齿面啮合分析[J].机械工程学报,2000,36(8):98-101.
    [82]王延忠,王建甫,周元子,等.航空弧齿锥齿轮的齿面偏差最小化[J].机床与液压,2008,36(6):10-13.
    [83]李敬财,王太勇,范胜,等.基于数字化制造的螺旋锥齿轮齿面误差修正[J].农业机械学报,2008,39(5):174-177.
    [84]中国机械工程学会材料学会主编.齿轮的失效分析[M].机械工业出版社,1992
    [85]李华敏.关于齿轮、链、带等学科的发展方向[J].机械传动,1992,16(1):1-5.
    [86]刘丽冰,乔小林,刘又午.多轴数控机床加工误差建模研究[J].河北工业大学学报,2000,29(3):1-6.
    [87]刘丽冰,王广彦,刘又午.复杂机械系统运动误差自动建模技术研究[J].中 国机械工程,2000,11(6):642-646.
    [88]岳红新,章青,王慧清.基于多体理论的加工中心热误差建模及补偿技术研究[J].组合机床与自动化加工技术,2005,1:27-29.
    [89]张志飞,刘又午,刘丽冰,等.基于多体理论的五坐标数控机床的热误差建模[J].河北工业大学学报,2000,29(5):23-28.
    [90]刘又午,章青,赵小松,等.基于多体理论模型的加工中心热误差补偿技术[J].机械工程学报,2002,38(1):127-130.
    [91]张志飞,刘又午,张永,等.加工中心热误差补偿研究[J].制造技术与机床,2001,1:27-30.
    [92]刘又午,章青,赵小松,等.数控机床全误差模型和误差补偿技术的研究[J].制造技术与机床,2003,7:46-49.
    [93]刘又午,刘丽冰,赵小松,等.数控机床误差补偿技术研究[J].中国机械工程1998,12:
    [94]章青,卢腾镞,张志飞,等.五坐标联动数控机床的误差建模及仿真[J].机械设计,2001,8:13-16.
    [95]桑宏强,刘丽冰,刘芬,等.基于多体系统理论的工件检测模型及其应用[J].机床与液压,2008,36(5):114-115.
    [96]王秀山,杨建国,闫嘉钰.基于多体系统理论的五轴机床综合误差建模技术[J].上海交通大学学报,2008,42(5):761-764.
    [97]任永强,杨建国,窦小龙,等.五轴数控机床综合误差建模分析[J].上海交通大学学报,2003,37(1):70-75.
    [98]刘国良,张宏韬,任永强,等.数控机床几何误差综合建模及其专家系统[J].现代制造工程,2005,7:1-4.
    [99]粟时平,李圣怡.多体系统理论在数控加工精度软件预测中的应用[J].组合机床与自动化加工技术,2004,3:26-28,30.
    [100]粟时平,李圣怡,王贵林.基于多体系统理论的数控机床空间误差建模[J].长沙电力学院学报(自然科学版),2001,16(4):75-78.
    [101]康念辉,李圣怡,郑子文.基于多体系统理论的非球面磨削误差模型与补偿技术[J].机械工程学报,2008,44(4):143-149.
    [102]胡勇,范晋伟,谷志敏,等.SK-21数控凸轮磨床几何娱羡补偿技术的理论研究[J].机械制造,2006,44(498):43-45.
    [103]杨磊,范晋伟,刘栋,等.基于多体理论的数控机床精度可再生关键技术的研究[J].航空精密制造技术,2007,43(5):52-56.
    [104]杨林,周朝,刘杰.多轴数控机床的几何精度分析[J].机械工程与自动化,2007,10:133-134.
    [105]刘延斌,金光,钟平.机载成像仿真系统的误差建模[J].兵工学报,2003, 24(4):490-494.
    [106]陈晓飞,黄筱调,方成刚.基于多体理论的数控双盘铣刀加工斜齿轮啮合分析[J].机械传动,2007,31(2):17-19.
    [107]刘启东,徐春广.基于多体系统理论的车铣中心空间误差模型分析[J].组合机床与自动化加工技术,2005,5:55-58.
    [108]谷珂,马闯,吴洪涛.基于多体系统理论的三坐标数控铣床几何误差建模[J].机械制造与研究,2007,36(1):23-24.
    [109]郭辰,杨林,李庆勇.基于多体系统理论的数控机床误差建模[J].机械设计与制造,2005,3:123-125.
    [110]李欢玲,缪群华,赵宇,等.基于多体系统理论的五轴加工中心几何误差建模[J].中国制造业信息化,2007,36(19):16-19.
    [111]丁文政,周明虎,黄筱调.面向再制造的多轴机床精度设计研究[J].应用基础与工程科学学报,2007,15(4):559-568.
    [112]辜志刚,谌永祥.三坐标数控机床误差补偿技术[J].先进制造技术,2004,23(2):19-18.
    [113]李彦征,王树新.考虑运动误差的数控插齿机插齿啮合分析[J].机械传动,2003,27(6):1-4.
    [114]李彦征,王树新.数控插齿机的误差建模及仿真分析[J].制造业自动化,2003.25:152-156.
    [115]Goldrich R.N.Theory of Six Axes CNC Generation of Sprial Bevel and Hypoid Gears,AGMA Fall Technical Meeting,Pittsburgh,Nov.1989
    [116]Hermann J Stadfeld.Automated Closed Loop Manufacturing and Correction of Bevel Gear Sets[M].The Gleason works,May 1997
    [117]Hermann J Stadfeld.The G-LAB Expert System,a Third Dimension in Developing Bevel Gears[M].The Gleason works,Rochater,1994
    [118]Hermann J Stadfeld,Phoenix CB Computer-Controlled Building,Measurement and Truing of Stick Blade Cutter Heads[M].The Gleason works,June 1997
    [119]Stadtfeld H.J.A Closed and Fast Solution Formulation for Practice Oriented Optimization of Real Sprial Bevel and Hypoid Gear Flank Geometry,AGMA Fall Technical Meeting,Toronto,Nov.1989
    [120]张艳红,吴联银,魏洪钦,等.刀倾型机床调整参数转化为Free-Form型机床调整参数的原理[J].机械科学与技术,2000,19(5):782-784.
    [121]熊越东,王太勇,张威.螺旋锥齿轮数控加工参数转换计算方法[J].组合机床与自动化加工技术,2006,8:5-9.
    [122]Litvin F L.Local Synthesis and Tooth Contact Analysis of Face-milled Spiral Bevel Gear,NASA,CR,4342[R].Chicago:NASA Lewis Research Center, 1991.
    [123]Wittenburg J.,Dynamics of System of Rigid Bodies[J].Stuttgart,Teubner,1977(7)
    [124]Ho J.Y.L.,Direct Path Method for Flexible Multibody Spacecraft Dynamics[J].AIAA Journal of Spacecraft&Rocket,1977,14(2):102-110
    [125]R.L.休斯顿,刘又午,多体系统动力学(上册)[M].天津:天津大学出版社,1987
    [126]SRIVASTAVA A K,VELDHUIS S C,ELBESTAWIT M A.Modeling geometric and thermal errors in a five-axis CNC machine tool[J].Int.J.Mach.Tools Manu fact,1995,35(9):1321-1337.
    [127]FLORUSSEN G H J,DELBRESSINE F L M,et al..Assessing geometrical errors of multi-axis machines by three-dimensional length measurements[J].Measurement,2001,30:241-255.
    [128]童恒超,杨建国,刘国良,等.数控车床两轴联动系统空间误差建模技术[J].上海交通大学学报,2006,40(7):1213-1217.
    [129]Wang X C,Ghoash S K.Advanced Theories of Hypoid Gears[M].ELSEVIER,1994.
    [130]Stardtfeld H J.Handbook of Bevel and Hypoid Gears[M].New York:Rochester Institute of Technology,1993.
    [131]Litvin F L,etc.Minimization of deviation of Gear Real Tooth Surface Determined by Coordinate Measurements[J].ASME Journal of Mechanical Design,1993,115(4):995-1001.
    [132]王军,姜虹,王小椿,等.差曲面的性质及其在弧齿锥齿轮中的应用[J].机械传动,2003,27(3):23-27.
    [133]徐忠四,付胜.差曲面及其在螺旋锥齿轮拓扑误差评定中的应用[J].组合机床与自动化加工技术,2006,5:39-42.
    [134]CHUNG-YUNN LIN,CHUNG-BIAU TSAY,ZHANG-HUA FONG.Mathematical model of spiral bevel and hypoid gears manufactured by the modified roll method[J].Mech.Mach.Theory,1997,32(2):121-136.
    [135]吴序堂.齿轮啮合原理.北京:机械工业出版社,1982.
    [136]张伟社,王守宇.基于加工精度的齿轮几何参数的选择[J].机械制造与研究,2003,(5):21-23.
    [137]周哲波.克林根贝格螺旋锥齿轮齿面修正的数学模型[J].煤矿机械,2004,(2):47-48.
    [138]姜志明.克林根贝格螺旋锥齿轮加工和调整[J].煤矿机械,2005,(3):73-75.
    [139]李瑛,肖耘亚.齿轮测量及反调技术在螺旋锥齿轮生产中的应用[J].仪器仪表与检测,2004,(12):71-72.
    [140]F.L.Litivn.Minimization of deviation of gear real tooth surfaces determined by coordinate measurement.ASME Mechanical Design,1993,115(4):1995-10001.
    [141]AGMA 2009-AXX,Bevel Gear Classification,Tolerances and Measuring Methods[S].USA,American Gear Manufacturers Association,1996.
    [142]Golub Gene H.,Charles F.Van Loan.Matrix computations[M].The Johns Hopkins University Press,Baltimore,Maryland,1983.
    [143]Hansen P.C..Regularization Tools:A Matlab Package for Analysis and solution of Discrete Ⅲ-posed Problems[J].Numerical Algorithms,1994,6:1-35.
    [145]Bjorck A.,L.Elden."Methods in Numerical Algebra for Ⅲ-posed Problem"International Symposium on Ⅲ-posed Problems:Theory and Practice[J]University of Delaware,Newark Delaware,1979,10:2-6.
    [146]Tikhonov A.N.,Vasiliy Y.Arsenin.Solution of Ⅲ-posed Problems[M]Washington,DC:Winston,1977.
    [147]Hansen P.C..Yruncated Singular Decomposition Solutions to Discrete Ⅲ-posed Problems with Ⅲ-Determined Numerical Rank[J]SIAM,J.Sci.Comput.1990,11(3):503-518.
    [148]O.C.Lindgerde,N.Christophersen.Regularization principles-Solving Ⅲ-posed inverse problems.Lecture notes to IN INVPAR,Department of informatics,University of Oslo,Norway,1998.
    [149]A.Neumaier.Solving Ⅲ-conditioned and singular linear systems:A tutorial on regularization[J].SIAM Review,1998,40:636-666.
    [150]Misha E.Kilmer,Dianne P.O'Leary.Choosing Regularization Parameters in Iterative Methods for Ⅲ-Posed Problems[J].SIAM Journal on Matrix Analysis and Applications,2001,22(4):1204-1121.
    [151]D.Calvetti,L.Reichel and Q.Zhang.Iterative solution methods for large linear discrete Ⅲ-posed problems[J].Applied and Computational Control,Signals and Circuits,1999:313-367.
    [152]Pereverzev S.,Schock E..Morozov's Discrepancy Principle for Tikhonov Regularization of Severely Ⅲ-posed Problems in Finite Dimensional Subspaces[J].Numerical Functional Analysis and Optimization,2000,21:901-916.
    [153]Golub Gene H.,Michael Heath,and Grace Wahba.Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter[J]. Technometrocs,1979,21:215-222.
    [154]Golub Gene H.,Urs Matt.Generalized Cross-Validation for Large Scale Problems[R].Technical Report,TR-96-28,Swiss Center for Scientific Computing,1996,9.
    [155]Hansen P.C.Analysis of Discrete Ⅲ-posed Problems by Means of the L-Curve[J].SIAM Review,1992,34(4):561-580.
    [156]Hansen PC..The Use of the L-Curve in the Regularization of Discrete Ⅲ-posed Problems[J]SIAM J.Sci.Comput.1993,14:1487-1503.
    [157]F.L.Litvin,C.Kuan,and J.C.Wang.Minimization of Deviations of Gear Real Tooth Surfaces Determined by Coordinate Measurements[R].NASA,Technical Report,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700