五轴联动螺旋锥齿轮磨齿机各轴几何误差测量与补偿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床几何位置精度是机床评定的重要指标,直接影响到机床的加工精度。如何提高数控机床的几何位置精度成为目前研究的关键问题。对于高精密数控机床,机床几何精度的提高至关重要,但是机床部件加工误差及机床装配误差等误差给机床几何位置精度提高带来了困难。采用数控系统误差补偿的方法可以使数控机床获得较高的几何精度,且具有成本低的优点。
     本文结合螺旋锥齿轮加工原理及齐次坐标变换方法,建立螺旋锥齿轮数控磨齿机YK2050几何误差模型。并分析五轴定位误差对齿轮齿面精度的影响,为螺旋锥齿轮加工精度提高和机床误差建模提供参考。机床几何误差测量直接关系到机床几何误差数学模型的准确性,且影响到机床误差补偿的效果。本文采用激光多普勒位移测量仪测量螺旋锥齿轮数控磨齿机YK2050直线轴及回转轴共16项几何误差,并采用ISO 230-2(1997)标准进行机床几何误差评定。为机床出厂误差评定提供了参考。
     本文对软件误差补偿法及SINUMERIK 840D系统误差补偿方法进行了研究。在数控磨齿机YK2050上进行了误差补偿实验,分别对直线轴和回转轴定位误差进行补偿。实验结果表明,数控系统误差补偿效果较好,机床几何精度得到了明显提高。采用CMM齿轮检测仪测量磨齿机误差补偿前后所加工齿轮齿面误差。通过比较齿面误差验证机床几何精度的提高可提高机床加工精度。实验结果表明,螺旋锥齿轮数控机床的几何精度提高,其齿轮加工精度也提高。
Geometric positioning accuracy which is an important indicator of Computer Numerically Controlled(CNC) machine assess directly affects machining accuracy. How to improve geometric positioning accuracy of CNC machine becomes an significant issue of present research. Improvement of geometric positioning accuracy is very crucial for high precision machine tool. But processing error and assembly error of machine tool hinder the improvement of geometric positioning accuracy. CNC machine can get high geometric positioning accuracy by adopting the method of error compensation of numerical control system.
     Geometric positioning error model of CNC grinding machine of spiral bevel gear(YK2050) is founded on the basis of spiral bevel gear's machining theory and Descart cordinate transformation. The effect of positioning error of the five axes on tooth precision is studied that is referrence for the improvement of machining accuracy of spiral bevel gear and modeling of geometric positioning error of machine tool. Measurement of geometric positioning error of machine tool directly affects the modeling and error compensation of the machine tool. Sixteen positioning errors of linear and rotational axes of spiral bevel gear(YK2050) are measured by using Laser Doppler Displacement Measurement Device. And the geometric positioning errors are assessed by using ISO 230-2 (1997),which is referrence for error assessment of newly produced produced machine tool.
     Software error compensation and error compensation of SINUMERIK 840D system is studied. Experiments about compensation of positioning error of linear and rotational axes is carryed out on CNC grinding machine of spiral bevel gear(YK2050). The result of experiments indicates that the effect of CNC error compensation is great. And geometric positioning accuracy of the machine tool is improved greatly. Tooth deviation of the grinding machine both before and after the error compensation are measured by using CMM gear measuring device. That improvement of geometric positioning accuracy of machine tool can improve its processing precision is testified by comparation of tooth deviation. The result of experiments indicates that improvement of geometric positioning accuracy of CNC machine tool of Spiral Bevel Gear can improve machining precision of gears.
引文
[1]CHEUNG C, LEE W. A framework of a virtual machining and inspection system for diamond turning of precision optics. Journal of Materials Processing Technology,2001,119(1-3):27-40
    [2]LEE W, LI J, CHEUNG C. Development of a virtual training workshop in ultra-precision machining. International Journal of Engineering Education,2002,18(5):584-96
    [3]LEE W, GAO D, CHEUNG C, et al. Computer-integrated optics design and tool path generation in virtual machining of aspheric surfaces. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2003,217(9):85-94
    [4]LEE W, GAO D, CHEUNG C, et al. An NC tool path translator for virtual machining of precision optical products. Journal of Materials Processing Technology,2003,140(1-3):211-226
    [5]李建广,李荣彬.提高虚拟车削仿真质量的工件建模方法.计算机集成制造系统,2002,8(003):233-238
    [6]PORTMAN V, SHUSTER V. Layout errors of machine tools. International Journal of Machine Tools and Manufacture,1997,37(10):1485-97
    [7]LI S, ZHANG Y, ZHANG G. A study of pre-compensation for thermal errors of NC machine tools. International Journal of Machine Tools and Manufacture,1997,37(12):5-9
    [8]CHEUNG C, LEE W. Modelling and simulation of surface topography in ultra-precision diamond turning. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2000,214(6):63-80
    [9]李荣彬,张志辉,李建广.超精密加工的三维表面形貌预测.中国机械工程,2000,11(008):45-80
    [10]KIM K, KIM M. Volumetric accuracy analysis based on generalized geometric error model in multi-axis machine tools. Mechanism and Machine Theory,1991,26(2):7-19
    [11]SOONS J, THEUWS F, SCHELLEKENS P. Modeling the errors of multi-axis machines:a general methodology. Precision Engineering,1992,14(1): 5-19
    [12]CHEN J. Computer-aided accuracy enhancement for multi-axis CNC machine tool. International Journal of Machine Tools and Manufacture, 1995,35(4):593-605
    [13]李圣怡,戴一帆,等.精密和超精密机床精度建模技术.长沙:国防科技大学出版社,2007.20-50
    [14]李小力.数控机床综合几何误差的建模及补偿研究:[博士学位论文].武汉:华中科技大学,2006
    [15]李彦征,王树新.考虑运动误差的数控插齿机插齿啮合分析.机械传动, 2003,27(006):1-4
    [16]李彦征,王树新.数控插齿机的误差建模及仿真分析.制造业自动化,2003,1(003):20-25
    [17]丁文政,周明虎,黄筱调,等.面向再制造的多轴机床精度设计研究.应用基础与工程科学学报,2007,15(004):59-68
    [18]辜志刚,谌永祥.三坐标数控机床误差补偿技术.兵工自动化,2004,23(002):19-20
    [19]孙长库,叶声华.激光测量技术.天津:天津大学出版社,2001.30-160
    [20]金国藩,李景镇.激光测量学.北京:科学出版社,1998.30-100
    [21]茅振华,孙鲁涌.数控机床精度的激光干涉法测试与补偿.机电工程,1999,16(004):48-9
    [22]杨国光.近代光学测试技术.北京:机械工业出版社,1986.30-100
    [23]羡一民,王科峰.激光干涉仪技术及发展.工具技术,2003,37(011):68-74
    [24]殷纯永.现代干涉测量技术.天津:天津大学出版社.1999.40-110
    [25]杜振辉,蒋诚志,桂垣等.激光干涉仪测量长度.河北建筑工程学院学报,2003,21(002):3-7
    [26]胡绍楼.激光干涉测速技术.北京: 国防工业出版社,2001.30-100
    [27]邾继贵,叶声华.衍射法细丝直径的精密测量.光电工程,1996,23(003):59-63
    [28]刘慧玲.数控螺旋锥齿轮机床空间位置精度检测与补偿研究:[硕士学位论文].长沙:中南大学,2006
    [29]金永君.光多普勒效应及应用.现代物理知识,2003,15(004):14-25
    [30]王仕康,沈熊,周作元.激光多普勒技术.北京:清华大学出版社,1985.50-110
    [31]WANG C. Laser doppler displacement measuring system and apparatus. Google Patents.1987
    [32]李小力,周云飞.数控机床位置误差建模与补偿.机械设计与制造工程,1999,28(002):48-50
    [33]FANG C, FAN K. Development of multi-function error calibration system for NC machine tools, International Journal of Machine Tools and Manufacture,1990,35(4):40-45
    [34]CHEN J, YUAN J, NI J, et al. Real-time compensation for time-variant volumetric errors on a matching center. J Eng Ind Trans ASME,1993, 115(4):72-90
    [35]吴小川.激光测量技术在数控机床定位精度检验中的应用.计量与测试技术,2000,27(004):10-15
    [36]WANG C. Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part Ⅰ:Basic theory. Review of scientific instruments,2000,7(39):33-40
    [37]CHEN G, YUAN J, NI J. A displacement measurement approach for machine geometric error assessment. International Journal of Machine Tools and Manufacture,2001,41(1):149-161
    [38]BRYAN J. A simple method for testing measuring machines and machine tools Part 1:Principles and applications. Precision Engineering, 1982,4(2):61-69
    [39]PAHK J. A new technique for volumetric error assessment of CNC machine tools incorporating ball bar measurement and 3D volumetric error model. International Journal of Machine Tools and Manufacture,1997, 37(11):83-96
    [40]ZIEGERT J, MIZE C. The laser ball bar:a new instrument for machine tool metrology. Precision Engineering,1994,16(4):259-267
    [41]KNAPP W, WEIKERT S. Testing the contouring performance in 6 degrees of freedom. CIRP Annals-Manufacturing Technology,1999,48(1): 33-46
    [42]王正平,钟振周.精密机械三维空间误差测量与补偿.世界制造技术与装备市场,2003,4(2):80-95
    [43]刘又午,刘丽冰.数控机床误差补偿技术研究.中国机械工程,1998,9(012):48-52
    [44]NI J. CNC machine accuracy enhancement through real-time error compensation. Journal of manufacturing science and engineering, 1997,11 (9):7-17
    [45]张虎,周云飞.数控机床定位误差的软件补偿.华中科技大学学报:自然科学版,2001,29(004):4-9
    [46]SARTORI S, ZHANG G. Geometric error measurement and compensation of machines. CIRP Annals-Manufacturing Technology,1995,44(2): 599-609
    [47]LEE E, SUH S, SHON J. A comprehensive method for calibration of volumetric positioning accuracy of CNC-machines. The International Journal of Advanced Manufacturing Technology,1998,14(1):43-49
    [48]SRIVASTAVA A, VELDHUIS S, ELBESTAWIT M. Modelling geometric and thermal errors in a five-axis CNC machine tool. International Journal of Machine Tools and Manufacture,1995,35(9):21-37
    [49]卢延峰.含误差的弧齿锥齿轮齿面接触分析研究:[硕士学位论文].长沙:中南大学,2008
    [50]张志飞.多轴数控机床热误差与几何误差建模及补偿技术的研究:[博士学位论文],天津: 天津大学,2000
    [51]粟时平,李圣怡.多轴数控机床的通用运动学综合空间误差模型.国防科技大学学报,2001,23(004):45-50
    [52]蓝信钜.激光技术.北京:科学出版社,2005.21-80
    [53]赵建林.高等光学.北京:国防工业出版社.2002.30-100
    [54]钟振周,梁瑞芳等.精密机械空间误差量测与补偿.台湾:全华科技图书股份有限公司,1991
    [55]美国光动公司.MCV2002产品技术手册.美国:光动公司,1995
    [56]沈熊.激光多普勒测速技术及应用.北京:清华大学出版社,2004.60-100
    [57]周艳红,宾鸿赞.消除阿贝误差的一种新方法.光学精密工程,1994,2(001):78-82
    [58]刘君,穆海华,孙业业,等.激光干涉测量中的误差分析与补偿.机床与 液压,2006,2(009):181-194
    [59]IS0230-2:19971. Test code for machine tools, Part 2:Determination of accuracy and repeatability of positioning numerically controlled axes
    [60]王一丁,张国雄.数控加工中心的位置误差补偿模型.计量学报,1995,16(003):200-205
    [61]赵小松,方沂.四轴联动加工中心误差补偿技术的研究.中国机械工程,2000,11(006):63-79
    [62]西门子有限公司.SINUMERIK 840D/810D/FM-NC操作指南.德国:西门子有限公司,2002
    [63]杨文健.基于SIEMENS 840D数控系统的机床数据调整与维修.制造技术与机床,2008,5(001):104-108
    [64]熊军.数控机维修与调整.北京:人民邮电出版社,2007.100-150
    [65]XIAO-JUN J.西门子840D数控系统的参数设定. 电站辅机,2001,6(03):100-106
    [66]李翠芝,姜增辉.SINMERIK840D的定位精度补偿.机械工程师,2005,9(04):81-86
    [67]李润方,冯文军,王小椿,等.螺旋锥齿轮的齿面测量及机床加工参数修正.机械工程学报,2003,39(008):125-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700