应用CAD-RP技术设计并优化个体化支架修复下颌骨缺损
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下颌骨缺损是颌面外科临床常见的疾病。缺损的原因常见于外伤、感染、肿瘤切除手术等,也可见于某些先天性畸形。理想的颌骨缺损重建不光要求恢复正常的面部外形,更需要恢复咬合功能。这便要求恢复骨性的牙槽嵴,以利植入种植体修复牙列。目前,临床上最常用的下颌骨缺损修复方法是骨移植,包括单纯游离骨移植和血管化骨瓣移植。不过这两种骨移植方法均完全依靠手术过程中术者对骨块进行手工塑形,耗费手术时间,且难以获得理想的形态修复。过去的十年中,一种工程制造的新技术——快速成形技术被引进到医学领域。快速成形技术善于精确制造复杂实体,能够制造出结构与形状精确匹配的颌面骨替代物,尤其对于临床上常规方法难以完成的复杂的面部缺损重建,具有重要意义。在颌面畸形与缺损的整复中,可针对不同个体,快速而准确地设计并制作出个体化的修复体。利用快速成形技术可以在术前完成修复体的设计制作,因而术中无需对修复体塑形,且精确的制作能使修复体快速准确就位,在获得良好的面部外形重建的同时,可以有效缩短手术时间[1]。如果能够将快速成形制造的修复体和骨移植结合相结合,则有望实现外形和功能兼得的仿生学修复。
     本研究通过一系列的实验,设计、应用并改进了快速成形植骨支架:利用计算机辅助设计与快速成形技术,制作个体化的骨移植托槽,用于松质骨移植恢复下颌骨的骨连续性,期望植骨成活后,作为牙种植体的骨性支持,最终修复咀嚼功能,从而实现功能修复。在动物实验和临床初步应用中发现快速成形植骨支架最主要的问题:应力屏蔽效应。并最终通过优化植骨托槽的设计方案,使之减少刚性,而使咬合应力能够传导到植骨块,从而有利于植骨的改建和代谢。
     本研究共分为五个实验。
     实验一:利用快速成形支架结合自体松质骨移植修复下颌骨缺损:动物实验研究
     本实验利用快速成形支架结合自体骨移植修复下颌骨节段性缺损,期望实现功能和形态兼顾的理想修复效果。并探讨应用核医学方法监测钛支架内部移植骨的转归情况。以10只杂种犬作为实验动物。通过螺旋CT采集犬头颅CT图像,建立CAD模型,在模型上制造一侧下颌骨4cm长的节段性缺损,并利用镜像对称重构缺损区域,设计完全匹配的个体化的植入支架,通过快速成形技术获得树脂模型,再铸造得到钛支架。然后手术制造下颌骨缺损,植入钛支架,并在支架内充填碎髂松质骨。术后2、4、8、12及24周进行核素骨显像检查,连续观察移植骨的核素分布情况,判断植骨是否成活。结果发现术后植骨区域较对侧正常下颌骨有明显的核素浓聚。核素计数比值半定量分析发现术后2周时,植骨区和对照侧核素计数比值最大,此后呈逐渐下降趋势。实验说明快速成形支架结合自体骨移植植入下颌骨缺损区后,植骨块能够成活。利用核素骨显像监测金属支架内移植骨成活的方法是可行的。
     实验二:利用快速成形技术精确重建下颌骨间断性缺损的临床研究
     本实验中,利用个体制造的钛支架结合自体髂松质骨移植,修复6例因为外伤或者肿瘤截除的下颌骨。个体制造的钛支架是应用RE/CAD/RP技术制造而得。通过螺旋CT扫描获得数字三维模型,在模型中,通过镜像对称方法,将正常侧下颌骨的镜像图像覆盖缺损区,以恢复良好的面部对称性。基于镜像图像设计骨移植支架,并通过快速成形制造出支架模型,模型包埋后利用和铸钛方法得到个体化的钛支架。利用该个体化的支架,结合自体髂骨移植,重建下颌骨缺损。在其中一例中,试行种植义齿,以恢复咬合。结果在6例患者中,利用快速成形技术制作的钛支架和各自的下颌骨残端精确匹配。使下颌骨重建手术很容易,而且节省时间,术后获得了满意的面部对称性。经过平均4年的随访,在5例未进行种植修复的患者中,均无严重并发症发生。而在随访病例复查X线片时发现,植骨槽内呈现低密度影,提示骨移植到植骨槽内,并没有完成骨改建形成良好的骨修复。而且在一例进行咬合重建的病例中,咬合重建只持续了一年,终因骨吸收和感染而告失败。实验说明,通过快速成形技术制作的个体化支架应用于下颌骨修复,能够获得满意的面部外形。快速成形技术为临床下颌骨重建提供非常实用的技术支持。然而,铸造的钛支架的刚性可能对支架内填充的移植骨块产生严重的应力遮挡,这可能导致植骨的废用性萎缩。因此,需要对支架做进一步的改进以利下颌骨的功能性重建。
     在进一步的研究中,我们致力于通过改变植骨支架的设计,而促进植骨的成活和改建。在改进支架设计过程中,我们主要从两个方面入手:1、减小支架的体积。对于外形而言,仅修复完好的颊面形态,即可满足医生和患者对面部外形的要求。现有的快速成形支架体积巨大,形成血供阻挡,不利于植骨的成活和改建,因而,在保证足够强度的基础上,设法减少植骨支架的体积和面积,理论上可以增进骨改建。因此我们考虑,仅通过RP技术设计植骨槽的颊面,通过贴附式植骨,将植骨块固定在修复体的舌侧。如此,植骨块只有颊侧存在金属支架对血运的阻挡,而舌侧仍然可以与周围软组织很好的接触,增强了血液供应并有利于肌肉的附着。2、通过结构优化设计,降低铸造钛支架的刚性,以期减少支架对内部游离植骨的应力屏蔽和血运阻挡等不利影响。通过改进植骨支架的曲面结构,使对于其中的植骨的应力屏蔽效应达到最小化。
     实验三:个体化快速成形钛重建板应用于下颌骨缺损的修复
     通过减小支架的面积,只保留托槽支架的颊侧面,结合块状自体髂松质骨块,修复下颌骨缺损。通过犬动物实验发现,固定在在颊面板支架舌侧的有软组织附着则有良好的骨块形成,植骨块的颊侧紧邻重建板,被重建板阻挡了血运,因而成骨不佳,发生骨吸收、纤维化,甚至于形成死骨。结果说明,应用颊面板形式的个体化重建板尚不能完全解决血运阻挡的问题,因为颊面板无法承载颗粒状植骨,只能以大块骨固定在颊面板上,而块状的植骨不利于血供的渗透,加上支架的阻挡,所以容易坏死。
     实验四:下颌骨植骨支架的优化设计
     通过三维有限元分析方法分析正常下颌骨的受力和应变分布。运用ANSYS软件对下颌修复体进行CAD建模和力学分析研究,在常规托槽型钛下颌植骨支架的基础上对下颌修复体体部进行柔性结构优化设计。引入骨应力重建理论作为理论依据,对骨移植托槽支架进行优化设计。以使支架能够在保证安全,不至于折断的条件下,更多的植骨能够处于有利于成骨的应变范围。通过综合比较一系列的柔性化设计,我们选择了一种体部开槽的弹簧状支架。
     实验五:柔性化快速成形下颌骨植骨支架应用于下颌骨缺损重建的动物实验研究
     进一步通过以杂种犬的动物实验,验证了实验四得出的柔性植骨支架对促进移植骨成骨的作用。以9只杂种犬作为实验动物,应用优化设计后的支架作为假体,修复犬下颌骨体部40mm长的节段性缺损。修复术后通过核医学方法检测支架内部填充游离自体移植骨的成活状态,取材后通过大体标本观察和三点弯曲试验,评价支架内植骨改建后的形态和强度。并和托槽型支架结果进行比较。术后核医学检测结果发现,柔性支架内部的自体移植骨具有更高的活性。取材后见实验组各个标本成骨良好,移植骨改建后不同程度地将支架包裹。有1例在术后1月左右发生支架折断,但取材后发现成骨良好,完全将支架包裹。实验说明经结构优化设计后的快速成形支架能够有效的降低钛支架对内部植骨的应力屏蔽及其它不利影响,相对常规孔槽状支架更有利于内部植骨的成活。
Mandible reconstruction poses a vast challenge to maxillofacial surgeons. There is no ideal method that can achieve satisfactory esthetic and functional results. Free bone grafting, including non-vascularized and vascularized bone grafting, is the most commonly used method for reconstruction of mandibular defects. However, for the non-vascularized bone grafting, resorption of the block bone graft remains unsolved, and it’s not suitable for the large defects. Moreover, it is difficult to achieve ideal aesthetic reconstruction, because of that the bone grafts were manually shaped and fixed intraoperatively. Success rates of over 90% have been achieved with vascularized bone grafting. However, harvesting a vascularized graft requires complicated operative techniques and takes lots of time during the operation. And to reconstruct symmetrical facial appearance is extremely difficult.
     The reverse engineering (RE), CAD/CAM, and rapid prototyping (RP) technologies, originated in the field of industrial fabrication, have been employed to construct craniofacial prostheses. Their feasibility and efficiency have been well demonstrated. However, mandibular segmental defects reconstruction demands not only appearance reconstruction, but also bony continuity to facilitate prosthetic dental rehabilitation. In this study, a customized bone grafting tray was manufactured using the RE-CAD-RP technology, aiming to reconstruct the mandibular shape and the bony continuity at one time. Preshaped titanium mesh tray has been demonstrated to be feasible to carry the autologous cancellous bone grafts to restore bone defects. Thus the bone grafts in the tray was expected to be remodeled and serve as a bony support for the further implant dental implantation.
     This study includes 5 experiments:
     Experiment 1. Reconstruction of Mandibular Defects with the Combination of Rapid Prototyped Tray and Autologous Iliac Bone Grafting: Animal Experiment in Hybrid Dogs.
     The purpose of this experiment is to repair a mandibular discontinous defect using Computer-Aided Design (CAD) and Rapid Prototyping (RP) technique,for satisfactory aesthetic and functional restoration. 10 hybrid dogs were used for this experiment. Helical CT scanning was performed for each subject, and 3D digital model of the skulls of the dogs was constructed with the CT slices in Mimics. After that, segmental mandible dissection was simulated on the model in Geomagic, and individualized bone grafting tray was designed based on the digital. A prototyped tangible resin model was then obtained using the Stereolithography technology. A custom titanium tray was then cast for each animal, and then an operation was done on the each subject. A Discontinous defect in the mandibular body was created according to the CAD proposal. The defect was restored immediately using the tray combining autologous iliac cancellous bone grafting. Sequential radionuclide bone imaging was performed in 2nd,4th,8th,12th,24th week to evaluate the bone graft. Semi-quantitative analysis was done by comparing the ratio of activity between the grafted and the host left mandible. The radionuclide tracer uptake greatly increased in the grafted mandible over a follow-up period of 24 week. the mean activity ratio between the grafted and the contralateral host mandible was greatest at 2 week. The results suggested that the bone graft survived and active modification occurred. The study demonstrates that customized CAD-RP titanium tray combining autologous cancellous bone grafting is feasible for the reconstruction of mandibular discontinuous defect. And radionuclide bone imaging is a sensitive and efficient means for evaluating the bone graft in the Titanium tray. [1]
     Experiment 2. Accurate Reconstruction of Discontinuous Mandible Using a Rapid Prototyped Tray in Combination with Autologous Bone Grafting: A Preliminary Clinical Study
     Six patients who had undergone various block resection of the mandible were restored using a custom titanium tray combining autogenous iliac grafts. The custom titanium tray was fabricated using the rapid prototyping technique. A CAD model of the mandible was constructed in MIMICS with the CT scanning data. The opposite side (unaffected side) of the mandible was mirrored to cover the defect area. A bone grafting tray was designed from the mirrored image. Rapid prototyped model was then obtained and used for casting to get a titanium tray. The mandibular defects were restored using the custom titanium trays in combination of autologous iliac grafting. For 1 of the 6 patients, an implant denture was made to rehabilitate the occlusion, at 24 weeks postoperatively. Results revealed that the prototyped trays fit well in all 6 patients. Satisfactory mandibular symmetries were restored for all of the 6 patients. The reconstructive procedures were straight, simple and time saving. No severe complications ware noted in the other 5 patients without occlusion rehabilitation during a mean 50-month follow-up period. The reconstruction in the patient with occlusion rehabilitation lasted only 1 year and failed eventually due to bone resorption and infection. This case was restored after another 6 months, using vascularized bone grafting. This study suggested that the Rapid Prototyping technique facilitated the clinical mandibular reconstruction and secured satisfactory esthetic reconstruction. However, the rigidity of the cast titanium tray could cause severe stress shielding to the grafts filled in the tray, which could lead to disuse atrophy. Therefore, some modification is needed for better functional reconstruction.[2]
     Experiment 3. customized grafting plate for mandibular defects.
     To reduce the area of the grafting tray, we cut off the lingual and bottom wall of the U shaped tray. A customized tray that only has a buccal wall, which we called“customized grafting plate”, was computer-aided designed and rapid prototyped. A titanium plate was used to reconstruct discontunous mandible, by combining with autologous iliac grafting in dogs. The results revealed that, the grafted bone which is opposite to the plate survived and got corticalized, while the bone graft close to the plate was observed absorbed or osteonecrosis formed. These results suggested that, the customized grafting plate could increase the blood supply of the lingual side but not the buccal side. Furthermore, the plate can’t carry the crushed iliac bone graft, thus iliac cancellous bone block was attached onto the plate, which is not good for nutrient penetration.
     Experiment 4. Optimum Designed Rapid Prototyping Tray for Reconstruction of Mandibular Defects.
     To diminish the stress shield that the tray affect to the inner bone graft,the rapid prototyping tray was optimum designed to decrease the rigidity of the cast titanium tray. ANSYS 6.0 was used to construct the CAD model of the mandible and the Titanium prosthesis,and mechanical simulation investigation was done. Optimum design in the body part of the prosthesis was made on the base of the routine tray.
     Experiment 5. Reconstruction of Mandibular Defects with the Optimum Rapid Prototyped Tray. Animal experiments were done to compare the advantages of the optimum designed tray to the routine U shaped tray in reconstruction of mandibular defects. Nine hybrid dogs were used to investigate the difference between the optimumized tray and the routine tray. 3D digital model was made through helical CT scanning for each subject. Segmental mandible dissection was simulated on the model. And individualized Titanium bone grafting tray was made utilizing CAD-RP technique. Optimumize tray for the 9 subjects in the experimental group,routine tray for the control group. And then an operation was done on the each subject. Discontinuity defect in the mandibular body was created in accordance with the CAD proposal. The defect was restored immediately using the tray combining autologous iliac cancellous bone graft. Sequential radionuclide bone imaging was performed in 2nd,4th,8th,12th,24th week to evaluate the bone graft. And quantitative analysis was done by comparing the ratio of activity between the grafted and the contralateral host mandible. Gross observation and Three-point bending test was done for each sample after sacrifice and harvesting. The radionuclide bone imaging revealed that the bone graft in the optimumized tray has a higher activity than that in the routine tray. The optimumized tray fractured in one of the 10 subjects at about 1 month postoperatively,while the gross observation of the bone sample showed that the bone grafted survived and the rebuilt in a good condition. Infection and osteonecrosis occurred in 2 subjects after the breakage of the alveolar mucosa. Partly osteonecrosis occurred in the inner part of bone graft in the tray,and the bone block covered on the top the tray survived in 2 subjects. Fibrous connective tissue was observed between the bone and the tray in 3 samples. The rest 3 samples were found good. The optimum designed trays could effectively diminish the stress shield and other adverse effect to the in-filled bone graft.
     They are more profit for the survival and remolding of the bone graft comparing to the routine trays.
引文
1.周丽斌,刘彦普,胡曼,刘葳,王晓聪,何亚会,汪静,赵晋龙。利用核医学方法检测自体移植骨在个体化支架内的转归。实用口腔医学杂志, 2008,24(4):465-569
    2. Zhou L, Shang H, He L, Bo B, Liu G, MD, PhD, Liu Y, Zhao J. Accurate Reconstruction of Discontinuous Mandible Using a Reverse Engineering/Computer-Aided Design/Rapid Prototyping Technique: A Preliminary Clinical Study. J Oral Maxillofac Surg. 2010,68(9):2115-2121
    3.商洪涛,雷德林,刘彦普,等。个体化预制钛支架复合松质骨修复犬下颌骨缺损。中国美容医学,2005,14(2):163-165
    4.赵晋龙,刘彦普,商洪涛,薄斌,周丽斌,何黎升。应用反求与快速原型技术修复下颌骨缺损。实用口腔医学杂志,2009,25(2):214-217
    5. Cai M, Lu X, Shen G, Wang X, Cheng AH. Customized bifocal and trifocal transport distraction osteogenesis device for extensive mandibular reconstruction. J Craniofac Surg. 2011 Mar;22(2):562-565
    6. Forriol F, Longo UG, Concejo C, Ripalda P, Maffulli N, Denaro V. Platelet-rich plasma, rhOP-1 (rhBMP-7) and frozen rib allograft for the reconstruction of bony mandibular defects in sheep. A pilot experimental study. Injury. 2009 Dec;40 Suppl 3:S44-49
    7. Wong RC, Tideman H, Kin L, Merkx MA. Biomechanics of mandibular reconstruction: a review. Int J Oral Maxillofac Surg. 2010 Apr;39(4):313-9. Epub 2009 Nov 26
    8. Miles BA, Goldstein DP, Gilbert RW, Gullane PJ.Mandible reconstruction. Curr Opin Otolaryngol Head Neck Surg. 2010 Aug;18(4):317-322
    9.黄静娜.下颌骨缺损修复重建研究进展.中国美容医学,2009,18(10):1546-1548
    10.俞梦孙,蒋大宗,杨子彬等.中国生物医学工程的今天和明天[M].天津:天津科技翻译出版公司,1998。120-122
    11. Bak M, Jacobson AS, Buchbinder D, Urken ML. Contemporary reconstruction of the mandible. Oral Oncol. 2010 Feb;46(2):71-6. Epub 2009 Dec 29
    12. Lindqvist C. Mandibular reconstruction with free bone grafts. Curr Opin Dent. 1992 Sep;2:25-37. Review. Erratum in: Curr Opin Dent 1992 Dec;2:71
    13.杨长湖,高冬玲,齐荣锦,周学军,郭衍魁。自体骨游离移植修复下颌骨缺损的临床疗效观察口腔颌面外科杂志。2010,20(2):117-120
    14.朱成智,黄代营。自体肋骨游离移植修复重建下颌骨缺损。临床口腔医学杂志,2009,5:291-292
    15. Morrison A, Brady J. Mandibular reconstruction using nonvascularized autogenous bone grafting. Curr Opin Otolaryngol Head Neck Surg. 2010 Aug;18(4):227-231
    16. Rahman QB. Non-vascularized bone grafting for immediate reconstruction of mandibular defects during benign tumour surgery. International Journal of Oral and Maxillofacial Surgery. 2007,3(11)6: 1051
    17. Genden EM. Reconstruction of the mandible and the maxilla: the evolution of surgical technique. Arch Facial Plast Surg. 2010 Mar-Apr;12(2):87-90
    18. Takushima A, Harii K, Asato H, Momosawa A, Okazaki M, Nakatsuka T. Choice of osseous and osteocutaneous flaps for mandibular reconstruction. Int J Clin Oncol. 2005 Aug;10(4):234-42
    19.季平,杨凯,张劲松。带肋骨胸大肌肌皮瓣与腓骨(皮)瓣修复重建下颌骨疗效对比分析。中华创伤杂志,2005,21(6):407-409
    20.李雅冬,杨凯,张劲松,张福军,陈睿。带肋骨胸大肌肌皮瓣重建下颌骨的临床疗效。山西医科大学学报,2009年4月,40(4):370-372
    21. Hollinger JO, Kleishmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg, 1990 ;1(1):60-68
    22. Abu-Serriah M, Ayoub A, Boyd J, et al. The role of ultrasound in monitoring reconstruction of mandibular continuity defects using osteogenic protein-1(rhOP-1). Int J Oral Maxillofac Surg. 2003;3 2(6):619-627
    23. Cheng W,Fuh JYH,Nee A Y C,et al.Multi-objective optimization of part-building orientation in stereo lithography.Rapid P rototying Journal,1995,1(4):12-234
    24. KürkcüM, Benlidayi ME, Kurtog?lu C, et al: Placement of implants in the mandible reconstructed with free vascularized fibula flap: Comparison of 2 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 105:e36, 2008
    25. Laure B, Sury F, Martin T, et al: Reconstruction of bony mandibular and maxillary defects with one single transfer of a free fibula osteocutaneous flap. J Plast Reconstr Aesthet Surg 61:200, 2008
    26. Bhuju KG, Xing S, Liu H: Evaluation of mandibular reconstruction with free vascularized fibular flap. J Nanjing Med Univ 22:23, 2008
    27.徐剑波,刘胄,陈峰,董翠芳。运用腓骨组织瓣修复下颌骨缺损。实用口腔医学杂志。2010,26(2):272-274
    28. Emerick KS, Teknos TN.State-of-the-art mandible reconstruction using revascularized free-tissue transfer. Expert Rev Anticancer Ther. 2007,7(12):1781-1788
    29. Shenaq SM, Klebuc MJ. The iliac crest microsurgical free flap in mandibular reconstruction. Clin Plast Surg. 1994 Jan;21(1):37-44
    30.吴俊伟,彭国光。同种异体骨移植重建下颌骨的临床评价。广东医学,2005,26(3):345-346
    31.李祖兵,李智,刘凯.同种异体冻干下颌骨移植修复下颌骨缺损的临床应用.口腔医学研究,2003,19(6):488-490
    32.张英怀,陈瑞梅.复合异种骨和单纯异种骨下颌骨移植的实验研究.现代口腔医学杂志, 1989,3(2): 84-85
    33.张殿忠,薛振恂。异体脱钙骨基质颗粒复合骨水泥修复兔下颌骨缺损的放射影像学和组织学研究。中国临床康复,2002,6(2):198-199
    34.顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993.352-428
    35. Tideman H, Samman N, Cheung LK. Functional reconstruction of the mandible: a modified titanium mesh system.Int J Oral Maxillofac Surg. 1998 Oct;27(5):339-45
    36. Samman N, Cheung LK, Tideman H. Functional reconstruction of the jaws: new concepts. Ann R Australas Coll Dent Surg. 1996 Apr;13:184-92
    37.陈宁,郭吉来,张双越,陶江丰,杜一飞.钛网成形自体颗粒骨修复下颌骨缺损并同期种植的实验研究.中华口腔医学杂志,2009,44(6):360-364
    38. Matsuo A, Chiba H, Takahashi H, Toyoda J, Abukawa H. Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray for mandibular reconstruction. Odontology. 2010 Feb;98(1):85-8. Epub 2010 Feb 16
    39. Garg AK, Stevens M. Nine-year follow-up of successful placement of endosseous implants in a mandibular bone graft. Implant Dent. 1999;8(4): 403-6
    40. Yamashita Y, Yamaguchi Y, Tsuji M, Shigematsu M, Goto M. Mandibular reconstruction using autologous iliac bone and titanium mesh reinforced by laser welding for implant placement. Int J Oral Maxillofac Implants. 2008 Nov-Dec;23(6):1143-6
    41. Louis PJ, Gutta R, Said-Al-Naief N, Bartolucci AA. Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement. J Oral Maxillofac Surg. 2008 Feb;66(2):235-45
    42.毛天球。组织工程研究概况。实用口腔医学杂志,2000,16(1):74
    43. Robert Lanza, Robert Langer, Joseph Vacanti. Principles of Tissue Engineering (Second Edition), 2000, Academic Press, Elsevier, Burlington, MA, USA
    44. Eweida AM, Nabawi AS, Marei MK, Khalil MR, Elhammady HA. Mandibular reconstruction using an axially vascularized tissue-engineered construct. Ann Surg Innov Res. 2011 Mar 20;5:2
    45. Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects: state of the art.J Oral Maxillofac Surg. 2009 May;67(5):1121-7
    46. Lacik E, Langer R. Tissue engineering: current state and perspectives. Appl Microhotol Biotechnol, 2004,65:1-8
    47. Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res. 2006 Nov;85(11):966-79
    48. Wang L, Detamore MS. Tissue engineering the mandibular condyle. Tissue Eng. 2007 Aug;13(8):1955-71
    49.赵晋龙,刘彦普.牵张成骨(DO)与颅颌面畸形整复和缺损重建.实用口腔医学杂志,2006,22(1):126-130
    50. Tavakoli K, Stewart KJ, Poole MD. Distraction osteogenesis in craniofacialsurgery: a review.Ann Plast Surg. 1998 Jan;40(1):88-99
    51. Karp NS, McCarthy JG, Staffenberg DA, et al. Membranous bones lengthening: A serial histological study. Ann Plast Surg. 1992,29(1):2
    52. McCathy JG, Staffenberg DA, Wood RJ, et al. Introduction of an intraoral bone lengthening device. Plast Reconstr Surg, 1994,96:978
    53.柳春明,宋儒耀,宋业光.腭骨外侧缝牵张成骨关闭硬腭裂的长期效果何对颌面发育影响的实验研究.中华整形外科杂志,2000,16:357-360
    54.王兴,林野,伊彪,等.牵张成骨技术在肿瘤术后下颌骨重建中的应用。中华口腔医学杂志,2000,35:409-412
    55.吕俊邦,史宗道.牵张成骨在颌面外科的研究进展.中华整形外科杂志,2002,18(5):308-310
    56. Padwa BL, Kearms G, Todd R, et al. Simultaneous maxillofacial and mandibular distraction osteogenesis with a semiburied device. Int J Oral Maxillofac Surg, 1999,37: 273-276
    57. Warren SM, Longaker MT.New directions in plastic surgery research.Clin Plast Surg. 2001 Oct;28(4):719-30
    58. Panetta NJ, Gupta DM, Slater BJ, Kwan MD, Liu KJ, Longaker MT.Tissue engineering in cleft palate and other congenital malformations. Pediatr Res. 2008 May;63(5):545-551
    59.杨辛.牵张成骨在下颌骨修复中的应用和进展.国外医学?口腔医学分册,2004,31(2):141-143
    60.周宏志,胡敏,刘洪臣.牵引成骨技术在下颌骨节段性缺损修复中的应用.中华口腔医学杂志2005,40(2):175-176
    61.张圃,顾晓明.转移盘牵引成骨整复山羊下颌骨缺损体内实验.使用口腔医学杂志,2001,17(4):288-290
    62. Chen J, Liu Y, Ping F, Zhao S, Xu X, Yan F. Two-step transport-diskdistraction osteogenesis in reconstruction of mandibular defect involving body and ramus. Int J Oral Maxillofac Surg. 2010 Jun;39(6):573-9. Epub 2010 Apr 28
    63. Chopra S, Enepekides DJ. The role of distraction osteogenesis in mandibular reconstruction. Curr Opin Otolaryngol Head Neck Surg. 2007 Aug;15(4):197-201
    64.顾晔,汪永跃.引导骨组织再生膜应用于自身骨移植的研究现状.国际口腔医学杂志, 2008 S1:247-250
    65. Linde A, Alberius P, Dahlin C, Bjurstam K, Sundin Y. Osteopromotion: a soft-tissue exclusion principle using a membrane for bone healing and bone neogenesis. J Periodontol. 1993 Nov;64(11 Suppl):1116-28
    66. BernabéPF, Melo LG, Cintra LT, Gomes-Filho JE, Dezan Jr E, Nagata MJ. Bone healing in critical-size defects treated with either bone graft, membrane, or a combination of both materials: a histological and histometric study in rat tibiae. Clin Oral Implants Res. 2011 Mar 28. [Epub ahead of print]
    67. Li X, Chen SL, Zhu SX, Zha GQ. Guided bone regeneration using collagen membranes for sinus augmentation. Br J Oral Maxillofac Surg. 2011 Jan 10. [Epub ahead of print]
    68. Jégoux F, Goyenvalle E, Cognet R, Malard O, Moreau F, Daculsi G, Aguado E. Mandibular segmental defect regenerated with macroporous biphasic calcium phosphate, collagen membrane, and bone marrow graft in dogs. Arch Otolaryngol Head Neck Surg. 2010 Oct;136(10):971-978
    69. Keles GC, Sumer M, Cetinkaya BO, Tutkun F, Simsek SB. Effect of autogenous cortical bone grafting in conjunction with guided tissue regeneration in the treatment of intraosseous periodontal defects. Eur J Dent.2010 Oct;4(4):403-11
    70.李涤尘,王永信,卢秉恒。快速成形技术发展状况与趋势。电加工与模具。2009,B04:23-27
    71.王晓聪,孙锡红。快速成形技术研究现状及其应用前景。精密制造与自动化。2007,3:57-60,62
    72. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010,31(24): 6121-6130.
    73. Sinn DP, Cillo JE Jr, Miles BA. Stereolithography for craniofacial surgery.J Craniofac Surg. 2006 Sep;17(5):869-875
    74.聂文忠,张建国,汪正宇,王成焘,刘祖德.基于叠层实体技术的脊柱侧弯快速原型制造.生物医学工程学杂志,2008,25(6):1260-1263
    75.高勃,朱晓瑜,王晓波,王忠义。用SLS法定制修复下颌骨缺损的钛植入体的实验研究。临床口腔医学杂志,2006,22(6):355-357
    76. Bartels KA, Bovik AC, Crawford RC, Diller KR, Aggarwal SJ.Selective laser sintering for the creation of solid models from 3D microscopic images.Biomed Sci Instrum. 1993;29:243-250
    77. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002 Feb;23(4):1169-1185
    78. Luna Galiano Y, Fernández Pereira C, Vale J. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.J Hazard Mater. 2011 Jan 15;185(1):373-381
    79. Banerjee R, Nag S, Samuel S, Fraser HL.Laser-deposited Ti-Nb-Zr-Ta orthopedic alloys.J Biomed Mater Res A. 2006 Aug;78(2):298-305
    80. Webb PA. A review of rapid prototyping (RP) techniques in the medical andbiomedical sector. J Med Eng Technol. 2000,24(4):149-153
    81.朱虎,杨忠凤,张伟。STL文件的应用与研究进展。机床与液压。2009,6:186-189
    82. McGurk M, Amis AA, Potamianos P, Goodger NM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl. 1997 May;79(3):169-174
    83.潘瑾,张益,毛驰,等.三维仿真头模在下颌骨缺损重建中的应用l例报道[J].中国口腔颌面外科杂志,2003,1(2):124-126
    84. Kai CC, Fai LK. Rapid Prototyping: Principles & Applications in Manufacturing [M]. Singapore:John Wiley & Sons(Asia) Ltd,1997.
    85. D’urso PS, Barker TM, Earwaker WJ, et al. Stereolithographic biomodelling in Craniomaxillofacial Surgery: a prospective trial [J].Craniomaxillofac Surg,1999,27(1):30
    86.王臻,滕勇,李涤尘,等.基于快速成型技术的个体化人工股骨髁关节面的设计与应用[J].中华外科杂志,2004,42(12):746-749
    87.刘非,李涤尘,卢秉恒,王臻。基于快速成形的个体匹配关节面设计制造方法。中国机械工程。2003,14(16):1422-1424
    88.马秦。量身定做下颌骨。第四军医大学学报。2009,30(6)483-484
    89.连芩,李涤尘,张永睿。新型人工骨支架结构及其功能。机械工程学报。2006,42(1):121-125
    90.何创龙,夏烈文,罗彦凤,王远亮。快速成形技术在骨组织工程领域的应用进展。生物医学工程学杂志。2004,21(5):871-875
    91.何创龙,王远亮,杨立华,夏烈文。人工器官的快速成形制造。生物医学工程研究。2003,22(2):46-50
    92. Williams JM,Adewunmi A,Sehek RM,et a1.Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering[J].Biomaterials. 2005 26(23):4817-4827
    93.李祥,李涤尘,王林,卢秉恒,王臻。基于RP的骨组织工程支架构造及生物学特性分析。中国机械工程。2005,16(12):1117-1120
    94.李祥,李涤尘,苏燕平,卢秉恒。基于快速成形的β-磷酸三钙人工骨结构设计及制造。西安交通大学学报。2005,39(1):13-16
    95. Kim K, Yeatts A, Dean D, Fisher JP.Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression.Tissue Eng Part B Rev. 2010 Oct;16(5):523-539
    96. Burg T, Cass CA, Groff R, Pepper M, Burg KJ. Building off-the-shelf tissue-engineered composites. Philos Transact A Math Phys Eng Sci. 2010 Apr 28;368(1917):1839-1862
    97. Sun W, Lal P.Recent development on computer aided tissue engineering--a review.Comput Methods Programs Biomed. 2002 Feb;67(2):85-103
    98. Sodian R, Loebe M, Hein A, Martin DP, Hoerstrup SP, Potapov EV, Hausmann H, Lueth T, Hetzer R. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 2002 Jan-Feb;48(1):12-16
    99. Lin A C, Liang S R. Rapid prototyping through scanned point data. Int Prod Res, 2002;40(2):293-310
    100.王绍义,蒋欣泉,张志愿。快速成形术在下颌骨缺损修复中的应用进展。中国口腔颌面外科杂志2007,5(5):381-385
    101.杨连平,李彦生,张练平,等.应用CAD/CAM技术进行个体化下颌骨重建[J1_中国口腔颌面外科杂志,2004,2(2):65-69
    102.Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehm?ller M, Russo PA, Bolte H, Sherry E, Behrens E, Terheyden H. Growth and transplantation of a custom vascularised bone graft in a man [J]. Lancet,2004, 364(9436): 766-770
    103.张富强,孙健,张秀娟,等.个性下颌体部钛植入支架的生物力学设计[J].口腔颌面修复学杂志. 2005, 6 (3):232-235
    104.Peckitt NS. Stereoscopic lithography: customized titanium implants in orofacial reconstruction. A new surgical technique without flap cover. Br J Oral Maxillofac Surg. 1999 Oct;37(5):353-369
    105.Singare S,Li D,Lu B,et al. Design and fabrication of custom mandible titanium tray based on rapid prototyping. Medical Engineering & Physics. 2004(26):671-676
    106.刘彦普,龚振宇,Singare. S,等.快速成形及曲面设计技术治疗对称性颌骨畸形.实用口腔医学杂志,2003,19(6):652-654
    107.刘彦普,龚振宇,何黎升,等.大块下颌骨缺损的个体化数字设计及外形与功能重建.中国修复重建外科杂志,2005,19(10):803-806
    108.龚振宇,刘彦普,周树夏,李涤尘,S.Singare,何黎升。基于反求工程和快速原型的下颌骨缺损的修复。中华口腔医学杂志,2004,39(1):9-11
    109.罗耀武,唐安戊,乔穗宪,等. 99Tcm-MDP骨显像判断下颌骨植骨成活的价值.中华核医学杂志,1999,19(2):103
    110.Zhou L, Zhao J, Shang H, Liu W, Feng Z, Liu G, Wang J, Liu Y. Reconstruction of Mandibular Defects Using a Custom-Made Titanium Tray in Combination with Autologous Cancellous Bone. J Oral Maxillofac Surg. 2011 Jan 6. [Epub ahead of print]
    111.Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comp Meth Biomech Biomed Eng 1997;1:15-23.
    112.韩泽民;于开涛;刘宝林,等.非血管化游离骨移植中细胞活力的实验研究. 2004,20(06):681
    113.Moskowitz GW, Lukash F: Evaluation of bone graft viability. Semin Nucl Med 18:246, 1988
    114.Ryu JS, Kim JS, Moon DH, et al: Bone SPECT is more sensitive than MRI in the detection of early osteonecrosis of the femoral head after renal transplantation. J Nucl Med 43:1006, 2002
    115.Zhou Y, Jiang T, Qian M, et al. Roles of bone scintigraphy and resonance frequency analysis in evaluating osseointegration of endosseous implant. Biomaterials. 2008, 29(4): 461
    116.刘晓梅.放射性核素骨显像在临床骨科的新进展.中国骨与关节损伤杂志,2005,20(5):356
    117.Smeele LE, Hoekstra OS, Winters HA, Leemans CR. Clinical effectiveness of 99mTc-diphosphonate scintigraphy of revascularized iliac crest flaps. Int J Oral Maxillofac Surg. 1996 Oct;25(5):366-369.
    118.李宁毅,贾暮云,祝为桥,等.核素骨显像对判断血管化腓骨移植修复下颌骨成活的价值.中华显微外科杂志2001,24(1):67
    119.江捍平,王大平,朱伟民,熊建义,阮建明。放射性核素骨显像在骨缺损修复实验中的研究。中国临床解剖学杂志。2006,24(4):437-440
    120.Kelly JF, Cagle JD, Adler GJ, et al: Sequential quantitative radionuclide evaluation of mandibular Bone graft repair. J Dent Res 55:1111, 1976
    121.Triplett RG, Kelly JF, Mendenhall KG, et al: Quantitative radionuclide imaging for early determination of fate of mandibular bone grafts. J Nucl Med 20:297, 1979
    122.Kennady MC, Tucker MR, Lester GE, et al: Histomorphometric evaluation of stress shielding in mandibular continuity defects treated with rigid fixation plates and bone grafts. Int J Oral Maxillofac Surg 18:170, 1989
    123.刘葳,李涤尘,周丽斌,康利轲,王晓聪。定制化柔性下颌骨钛替代物的有限元优化分析及动物试验。机械工程学报2010, 3. 4(65): 133-138
    124.Burr DB, Robling AG, Turner CH. Effects of Biomechanical Stress on Bones in Animals [J]. Bone Vol. 2002, 30(5):781-786
    125.Ducan RL, Turner CH. Mechanotransduction and the functional response of bone tomechanical strain [J]. Calcif Tissue Int. 1995, 57:344-358
    126.Chen J, Xu L. A finite element analysis of the human temporomandibular joint [J]. Biomech. 1994, 116(4):401-407
    127.Hart RT,Hennebel VV,Thongpreda N,etal. Modeling the biomechanics of the mandible: a three-dimensional finite element study [J]. Biomech. 1992,
    25(3):261
    128.刘亚雄,李涤尘,卢秉恒,等.快速原型在口腔颌面修复中的应用(2)-下颌骨替代物的个体化制造.实用口腔医学杂志[J]. 2003, 19(5):408-410
    129.周光爵,王桂生,郑桂钧译.钛的应用与选择[M].北京:冶金工业出版社1988: 80-100
    130.刘葳,李涤尘,靳忠民,康力轲.基于有限元方法的柔性钛下颌骨替代物的结构设计准则.中国康复医学杂志.2008,23(9):836-838
    131.曲华,吴文周,赵永红。骨应力与生长关系的细观机制。太原理工大学学报,2003,34(5):509-512
    132.杨桂通,吴文周。骨力学[M]。北京:科学出版社,1989:76-77
    133.应航,吕荣坤。应力环境对骨重建的影响。浙江中医学院学报. 2000,24(6):46-48
    134.李彬,张西正,张永亮,等.骨组织工程中的应力与生长。国外医学?生物医学工程分册. 2003,26(3):129-134
    135.Simkin A, Ayalon J, Leichter I. Increased trabecular bone density due to bone-loading exercises in menopausal osteoporotic women [J]. Calcif tiss int, 1987,40 :59-63
    136.Frost H M. Bone mass and the“mechnostat”: a proposal [J]. Anat Rec,1987,219 :1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700