表生条件下铊矿物的氧化溶解动力学及其反应性迁移实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵州省兴仁县滥木厂铊矿床是世界上唯一的铊的独立矿床。多年来,由于对铊矿产资源的开发,大量未及时提取和利用的含铊矿石堆积于地表,经过风化淋滤作用,进入当地的水源和土壤,并通过食物链进入人体。20世纪60-70年代,滥木厂地区有近1000名村民患有不同程度的铊中毒,轻者脱发、视力减退,重者失明、丧失劳动力,至今在该地区仍可见到铊中毒患者。该区成为世界上唯一爆发过大规模铊中毒的病发区。铊又是人体的非必需元素,体内任何含量的铊都会对人体造成危害。饮用水的安全标准中,铊的含量不得超过1μg╱L。因此对表生条件下,含铊矿物的氧化溶解动力学以及反应性迁移的实验研究具有重要的现实意义。
     通过对滥木厂铊矿床中的主要含铊矿物(红铊矿)在酸性矿水条件下的氧化溶解过程、光照(日光照射和汞弧灯照射)对铊价态改变的影响,以及酸性矿水条件下铁对铊吸附的实验研究,得到如下几点认识:
     1.红铊矿的氧化溶解动力学实验表明:红铊矿的氧化溶解速率受到温度、氧化剂中阴离子种类及氧化剂浓度的影响。随着温度的升高,红铊矿的氧化速率增高;Cl~-离子的存在更有助于红铊矿的氧化溶解,表现为氧化溶解速率的增高;随着氧化剂浓度的升高,红铊矿的氧化速率逐渐降低,这主要是由于高铁浓度下,红铊矿表面形成了一层厚约2nm的铁硫化合物的膜,减缓了红铊矿进一步溶解。
     红铊矿表面形态和成分的电镜分析表明,红铊矿表面具有较多的活性点,因此含铊矿石在初露地表时对环境的污染比较强烈,经过风化淋滤作用后,红铊矿表面的活性点减少,加之硫铁化合物膜的形成,阻止了其对环境的进一步污染。但这并不排除一旦环境介质改变,红铊矿表面氧化形成的膜被破坏,红铊矿的新鲜表面暴露出来,活性点增多,溶解性加强,继续对周围环境造成强烈的污染。
     从红铊矿24小时溶解的总铊量来看,酸性矿水条件下红铊矿的氧化溶解是贵州省兴仁县滥木厂地区铊污染的一个重要来源。
     2.铊的光致氧化实验结果表明:无论日光还是汞弧灯照射,水溶液中的Tl(Ⅰ)均可被氧化成Tl(Ⅲ)。pH值越低、光照强度越大,铊的光氧化速率越快,UVB
    
    区的紫外光对铭的光氧化起着主要作用,微生物作用在本实验条件下,相对于光
    氧化作用并不明显。
    3.铁对佗的吸附实验表明:铁的水合氧化物对水溶液中铭的吸附除受溶液的pH
    值和吸附剂的阴离子种类的影响外,主要与铭的价态有直接关系。铁的水合氧化
    物对TI(I)具有一定的吸附能力,阴离子种类对Tl(I)吸附的作用稍有差别,C1-
    离子存在时,铁对Tl(工)的吸附更强一些,吸附率达到50%左右,而S叮一离子存
    在条件下,铁对Tl(I)的吸附率小于20%。碱性(PH=10左右)条件下,铁对
    Tl(1)的吸附较中性条件更明显一些。T1(m)由于自身的水解作用很强,在不同
    pH值和不同阴离子存在条件下,与Fe(m)均可发生共沉淀作用而被完全从水溶
    液中脱除。
     利用光照将T1(I)氧化成T1(m),再利用T1(m)易被沉淀或共沉淀吸附的
    特性,将T1以Tl(OH)3的形式吸附固定下来,降低了铭的活动性,进而可以减少
    铭对环境的影响,为佗污染的环境治理提供了重要的理论依据。
    关键词:铂,铭污染,含量,分布,价态,氧化溶解,光致氧化,吸附
The Lanmuchang thallium deposit in Xingren County, Guizhou Province, is the unique independent thallium deposit in the world. For many years, amounts of unpicked up and unutilized thallium minerals have been stacked on the Earth's surface in that region. Thallium entered into local water and soil by weathering and leaching process, and were exposed in body of local people by food chain. During the period of 1960s and 1970s, a population of approximately 1000 people in Lanmuchang had been affected by Tl poisoning. They suffered poisoning and causal hair loss, reduced vision, lost labor force even blindness. The thallium poisoning case is one of the most serious health problems resulting from environmental pollution. Thallium is not necessary element to human body, trace thallium in the body will be harmful. The current China Maximum Contaminant Level (MCL) is lug/L in drinking water. It is very important to carry out the kinetic study of the oxidation and reactive transference of Tl in hypergene condition.From the oxidation-dissolution experiment of Lorandite in acidic mine water, the photochemical reaction of Tl in aqueous solution and Tl adsorption experiment by iron in acidic mine water, some conclusions can be drawn as follows:I . The results from the kinetic study of the oxidation-dissolution of Lorandite showed that the rate of oxidation of Lorandite was affected by the temperature of solution, the concentration of oxidant and kinds of anion in the oxidant. The rate of oxidation of Lorandite was increased or decreased along with the increasing of the temperature and the concentration of oxidant, respectively. This is because that the surface of Lorandite will form the film formed by sulfur and iron when concentration of iron is high, and this film will prevent from dissolution of Lorandite. Tl minerals polluted severely the environment when they were exploited early days, but the pollution will decrease after weathering-leaching. The pollution will increase again
    
    after the oxidative film of Lorandite being destroyed.The oxidation-dissolution of Lorandite in acid mine water is one of the important sources of thallium pollution in Lanmuchang regions, Xingren County, Guizhou Province in according to the total thallium contents of soluble Lorandite in 24 hours.II. A photooxidation experiment of thallium showed that Tl( I) can be oxidized to Tl(III) under photoirradiation of the high-pressure mercury arc lamp and solar light. The photooxidation rate of thallium can be affected by the pH of the solution, intensity and wavelength of the light source. Lowering of the pH and increasing of the light intensity have the effect of increasing of the photooxidation rate. UV radiation (UVB and UVC regions) played an important role in the photooxidation of Tl( I). However, the microbial effect was not obvious in comparison with photooxidation effect in this experiment.III. The results of Tl adsorption by iron showed that the absorption of Tl by ferrous hydrate could be affected by pH of solution and the concentration of iron, especially the valence state of Tl. T1(I) can be absorbed by ferrous hydrate, especially in the Cl" solution, and the absorption rate is about 50%, but less than 20% in the SO42" solution. T1(I) absorbed by iron in alkaline (pH= 10)solution is stronger than that of the neutral solution. Tl(III) and Fe(III) coprecipitation and Tl(III) can be completely absorbed by iron in the neutral or alkaline (pH= 10) solution and different anion solution because of the hydrolysis of Tl(III).This study has provided a good method handing with thallium pollution. We combined the experiment of photooxidation. T1(I) can be oxidized to Tl(III) by light, then fixed Tl(III) by utilizing the characters of Tl absorption or coprecipitation. This can reduce thallium mobility and make effects on the aquatic environment.
引文
1. A. S. R, R. C. E and C. M. T., et al., Occurrence of Lorandite,T1AsSz, at the carlin gold deposit, Nevand, Economic Geology, 1974,69, 121~124
    2. Anderson C. W. N., Brooks R. R. and Chiarucci A., et al, Phytomining for nickel, thallium and gold, Journal of Geochemical Exploration, 1999, 67,407~415
    3. Anna M. F. and George V. A., Public health goal for thallium in drinking water, Office of Environmental Health Hazard Assessment California Environmental protection Agency, February 1999, 1-3
    4. Batley G. E. and Florence T. M., Determination of thallium in natural water by anodic stripping voltamery, Journal of Electroanalytical Chemistry, 1975, 61(2), 205-211
    5. Bloom P. R., Patrick L Brezonik, Abdul R Khwaja, Photochemical reactions and organic matter binding of mercuric ion and methylmercury in surface water, WRC Research, 2001,7-13
    6. Bohrer D. and Schwedt G., Anodic stripping voltammetric determination of thallium as [TlBn]-rhodamine B complex, Fresenius Journal Anal Chem, 1998,362,224-229
    7. Cheam V., Comment on "Thallium speciation in the Great Lake" , Environ Sci. Technol, 2000, 34(11), 2367-2368
    8. Cheam V.,. Thallium contamination of water in Canada, Water Qual. Res. J. Canada, 2001,36(4), 851-877
    9. Cheam V., Lechner J., Desrosiers R., Laser-induced fluorescence determination of thallium in sediments, Fresenius Journal Anal Chem, 1998,360,81-85
    10. Ciszewski A., Wasiak W. andCiszewska W., Hair analysis. Part 2. Differential pulse anodic stripping voltammetric determination of thallium in human hair samples of persons in permanent contact with lead in their workplace, Anal Chim Acta, 1997,343(3),225-229
    11. Cundeva K., Pavlovska G. and Stafilov T., ETAAS determination of thallium and silver from water matrix after colloidal precipitate flotation using lead(II) hexamethy lenedithiocarbamtem, J. Serb. Chem. Soc., 2001, 458-461
    
    12. Cvetkovio J. , Arpadjan S. and Karadjova I., et. al, Determination of thallium in wine by electrothermal atomic absorption spectrometry after extraction preconcentration, Spectrochimica Acta Part B, 2002,57,1101-1106
    13. Dmowski K. , Kozakiewicz A. and Kozakiewicz M. , Small mammal populations and communicty under conditions of extremely high thallium contamination in the environment, Ecotoxicology and Environmental Safety, 1998, 41,2~7
    14. Ensafi A. and Rezaei B. , Speciation of thallium by flow injection analysis with spectrof luorimetirc detection. Microchemical Journal, 1998, 60, 75-83
    15. Gidwani M.S., Menon S. K. and Agrawal Y.K., Chelating polycalixarene for the chroma- tographic separation of Ga (III) In (III) and Tl (III), Reactive & Functional polymers, 2002, 53, 143-156
    16. Golimowski J. and Ostrega J. K., Voltammetric determination of heavy metals leached from ceramics, Fresenius Journal Anal Chem, 1998, 361, 65-68
    17. Harada H. and Hatanaka T., Natural background level of trace elements in wild plants, Soil Sci. Plant Nutr. , 1998, 44(3), 443-452
    18. Hassanien M. M., Abou-El-Sherbini K. S. and Mostafac G. A. E., A novel tetrachlorothallate (III)_ PVC membrane sensor for the potentiometric determination of thallium (III), Talanta, 2003, 59, 383-392
    19. Horvdth 0., Stevenson K. L. and Vogler A., Photoinduced electron ejection from hydroxo complexes of thallium and tin in alkaline aqueous solution, Radiation Physics and Chemistry, 1999, 55, 497-501
    20. Hubert A. E. and Chao T. T., Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction, Talanta, 1985,32(7), 568-570
    21. Ivanova E., Yan X. P. and Mol W. V., et. al, Determination of thallium in river sediment by flow injection on-line sorption preconcentration in a knotted reactor couple with electrothermal atomic absorption spectrometry, Analyst, 1997, 122, 667-671
    22. Kurz H., Schulz R. and Romheld V., selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants, 1999
    
    23. Liao Y. P., Chen G. and Yan D., et. al, Investigation of thallium hydride generation using in situ trapping in graphite tube by atomic absorption spectrometry, Analytica Chimica Acta, 1998,360,209-214
    24. Lin T. S. and Nriagu J. , Revised hydrolysis constants for thallium( I) and thallium(III) and the environmental implication, Journal of the Air and Waste Management Association, 1998,48, 151-156
    25. Lin T. S. and Nriagu J. , Thallium speciation in the Great lakes, Environ. Sci. Technol, 1999,33, 3394-3397
    26. Lin T. S. and Nriagu J. .Thallium speciation in river waters with Chelex-100 resin, Analytica Chimica Acta, 1999,395:301-307
    27. Lin T. S. and Nriagu J., Response to Comment on "Thallium speciation in the Great Lake" , Environ Sci. Technol, 2000, 34(11), 2369-2370
    28. Lin T. S., Vriagu J. and Wang X. Q., thallium concentration in Lake trout from Lake Michigan, Bull. Environ. Contain. Toxicol, 2001,67,921-925
    29. Liu H. W., Determination of Mercury and Thallium in Seawater by Electrothermal Vaporization Indictively Coupled Plasma Mass Spectrometry, Journal of the Chinese chemical society, 2000, 47 (3), 481-488
    30. Lopez-Garcia I., Navarro E. and Vinas P., et. al, Rapid determination of lead, cadmium and thallium in cement using electrothermal atomic absorption spectrometry with slurry sample introduction, Fresenius Journal Anal Chem, 1997,357,642-646
    31. Lopez-Garcia I., Sdnchez-Merlos M. and Herndndez-Cordoba M., Slurry sampling for the determination of lead, cadmium and thallium in soils and sediments by electrothermal atomic absorption spectrometry with fast-heating programs, Analytica Chimica Acta, 1996, 328, 19-25
    32. Lu T.H., Yang H. Y. and Sun I. W., Square-wave anodic stripping stripping voltammetric determination of thallium(I) at a nafion/mercury film modified electrode, Talanta, 1999, 49, 59-68
    33. Lukaszewski Z., Zembrzuski W. and Piela A., Direct determination of ultratraces of thallium in water by flow-injection-differential-pulse anodic stripping voltammetry,
     Analytica Chimica Acta, 1996, 318,159-165
    
    34. MestekO., Koplik R. and Fingerovd H. , et. al, Determination of thallium in environmental samples by inductively coupled plasma mass spectrometry: comparison and validation of isotope dilution and external calibration methods, Journal of Analytical Atomic Spectrometry, 2000, 15, 403-407
    35. Mihajlovio D. and Stafilov T. , Determination of thallium in sulphide geological samples by X-ray fluorescence spectrometry, X-Ray Spectrometry, 1998, 27, 397-400
    36. Mogarovskii V. V. , Thallium distribution in Intrusive Rocks of the Pamirs and Southern Tien Shan .Tajikistan, Geochemistry International, 2000, 38(3), 225~231
    37. Nriagu. J. , Thallium in the Environment, Nriagu. J. , Ed. , John Willey & Sons, New York, 1998, 1-89
    38. Oldenburg K., Vogler A. and Horvdth 0., Diversity in photoredox chemistry of oxo or hydroxo complexes of s2 metal ions, Inorganica Chimica Acta, 1997, 257, 149-151
    39. Oliver F. S. and Klaus G. H., Development of an isotope dilution mass spectrometric method for dimethylthallium speciation and first evidence of its existence I n the ocean, Anal. Chem., 1999,71,5459-5464
    40. Pizetal., Omanovic D. and BranicaM. .Application of thallium(I) as an internal standard redox process in voltammetric measurements, Analytica Chimica Acta, 1996,331,125-130
    41. Pozebon D.,Dressier V.L. and Curtius A. J., Determination of volatile elements in biological materials by isotopic dilution ETV-ICP-MS after dissolution with tetramethylammonium hydroxide or acid digestion, Talanta, 2000, 51(5), 903-911
    42. Ritchie R. J. and Larkum A. W. D., Uptake of thallium, a toxic heavy-metal, in the cyanobacterium synechococcus R-2(anacystis nidulans, S. Leopoliensis) PCC 7942, Plant Cell Physiol, 1998, 39(11), 1156-1168
    43. Savenko V. S., Physicochemical state of thallium( I ) and thallium(III) in seawater, Geochemistry International,'2001, 39(1), 88-91
    44. Tomds Perez-Ruiz, Carmen Martinez-Lozano, Virginia Tomds, et al. Simple flow injection spectrofluorimetric method for speciation of thallium, Analyst, 1996,121, 813-816
    
    45. Tremel A. , Masson P. and Streckeman. T. , et al, Thallium in French agrosystems- I thallium contents in arable soils, 1997, 95(3), 293-302
    46. Tsakovski S. , Ivanova E. and Havezov I. , Flame AAS determination of thallium in soils, Talanta, 1994, 41 (5), 721-724
    47. Twining B. S. , Twiss M. R. and Nicholas S. F. , Oxidation of thallium by freshwater plankton communities, Environ. Sci. Technol, 2003, 37,2720-2726
    48. Vartak S. V. and Vijay M. S. , An extraction study of gallium, indium and thallium using TPASO as an extractant , Talanta, 1998, 45, 925-930
    49. Wei M. T. and Jiang S. J., Determination of thallium in sea-water by flow injection hydride generation isotope dilution inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, 1999, 14, 1177-1181
    50. Verplanck P. L., Nordstrom D. K. and Taylor H. E., et al., Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation, Applied Geochemistry, 2004, 19, 1339-1354
    51. Vink B. W., The behaviour of thallium in the (sub)surface environment in terms of Eh and pH, Chemical Geology, 1993, 109, 119-123
    52. Wierzbicka M., Szarek-Lukaszewska G. and Grodzinska K., Highly toxic thallium in plants from the vicinity of Olkusz(Poland), Ecotoxicology and Environmental Safely, 2004, 59(1), 84-88
    53. Xiao T. F., Boyle D. and Guha J., et al. , Groudwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou province, China, Applied Geochemistry, 2003, 18, 675-691
    54. Zheng Y. S. and Wang Y. Q., Application of analyses on the basis of characteristic mass: determinations of indium, silver and thallium in drainage sediment and geochemical samples, Talanta, 1995, 42(3), 361-364
    55. Zhou D. X. and Lin D. N., Chronic thallium poisoning in a rural area of Guizhou Province, China, J. Environ Health, 1985,48, 14-18
    56.Massa P.J.,Ikramuddin M.,美国内华达州科莫矿区含金银石英脉及伴生火山岩中的铊,地质地球化学,1987,4(总158),7~10
    
    57.Ikramuddin M.等,铊:矿床的一种潜在指示剂,地质地球化学,1985,5(总134),6~12
    58.Warren H.V.,Horsky S.J.,铊——一种生物地球化学勘查金的工具,地质地球化学,1988,2(总167),13~15
    59.艾军,汤志勇,金泽祥 流动注射在线萃取—火焰原子吸收法测定化探样品中痕量铊,分析化学 1997,25(8),988~989
    60.曹小安,谢长生,测定痕量铊的泡沫塑枓吸附分离-镉试剂2B分光光度法,分析测试学报,2000,19(3),11~14
    61.陈代演,红铊矿在我国的发现和研究,矿物学报,1989a,9(2),141~147
    62.陈代演,我国汞铊共生矿床中富铊矿体的首次发现及其成因初步研究,贵州工学院学报,1989b,18(2),1~19
    63.陈代演,王冠鑫,邹振西等 新矿物——铊明矾,矿物学报,2001,21(3),271~277
    64.陈代演,王华,任大银等,铊的地球化学与找矿的若干问题讨论——以黔西南主要铊矿床(点)为例,矿物岩石地球化学通报,1999,18(1),57~60
    65.陈震阳,王顺珍,杜立华,罕见的1例严重铊中毒情况介绍,中华劳动卫生职业病杂志,1997,15(1),36~37
    66.崔明珍,肖白,刘建中等,铊的毒性及其最高容许浓度的估算,卫生毒理学杂志,1990,4(1),21~23
    67.邓南圣,吴峰编著,环境光化学,化学工业出版社,北京,2003,2~12
    68.段群章,催化动力学光度法在砷、锑、硒、碲、铊的测定中的应用,稀有金属材料与工程,1996,25(4),47~50
    69.冯慈影,董茅,王自利等,铊污染土壤的净化实验,工业卫生与职业病,1998,24(3),159~160
    70.冯慈影,陈英,郭昌清等,兴仁县回笼乡畜禽铊污染情况调查,贵阳医学院学报,2001,26(3),233~235
    71.冯毅,章燕程,陈葛眉等,硫酸铊对鸡胚甲状腺影响的观察,福建医学院学报,1990,24(1),5~7
    72.冯毅,章燕程,陈葛眉等,硫酸铊致雏鸡胚胎发育骨骼畸形的观察,天津医学院学报,1989,13(2),27~31
    73.付爱瑞,罗志定,刘桂玲 萃取火焰AAS法测定地质样品中痕量铊 地质实验室,1995,11(2), 91~92
    74
    
    74.光宇,“稀散元素”四兄弟,金属世界,2000,(5),13~14
    75.郭昌清,冯慈影,董矛等,铊在大鼠体内的吸收、分布和排泄,工业卫生与职业病,1996,22(3),139~141
    76.胡永生编译,孙汭审校,铊对人体健康及环境影响的评价,国外医学:医学地理分册,1999,20(4),153~156
    77.黄显兰,夏树屝,高世扬,钾光卤石溶解过程研究,盐湖研究,1994,2(2),44~48
    78.黄觉斌,魏镜,李舜伟等,铊中毒五例临床分析,中华医学杂志,1998,78(8),610~611
    79.黄丽春、霍学义、郭昌清,兴仁县回龙村矿石、废矿渣对周围环境的铊污染调查,工业卫生与职业病,1996a,22(3),158~160
    80.黄丽春,李红,郭昌清,碳酸亚铊在家兔体内的毒物动力学研究,工业卫生与职业病,1996b,22(2),77~79
    81.侯嘉丽,杨密云,用铊作探途元素寻找金矿,有色金属矿产与勘查,1995,4(4),223~227
    82.侯嘉丽,杨密云,铊元素分析在非卡林型金矿找矿中的应用研究,黄金科学技术,2002,10(1),41~46
    83.侯琳琳,李泽琴,程温莹,土壤溶液中铊存在形式的理论探讨,化学工程师,2001,5,34~35
    84.克里沃马佐大A.H.,哈里托诺娃A.H.,铊的发现史——克鲁克斯还是拉米?,科学史译丛 1989(3),50~54
    85.李德先,高振敏,朱咏煊等,铊矿物及铊的植物找矿,地质与勘探,2003,39(5),44~48
    86.李国柱,兴仁滥木厂汞铊矿床矿石矿物成分与铊的赋存状态初探,贵州地质,1996,13(1),24~37
    87.李红,黄丽春,郭昌清,碳酸铊对小白鼠微核的影响,职业卫生与病伤,1996,11(1),41~42
    88.李锡林,安贤国,安树仁等,斜硫砷汞铊矿在自然界的第二次发现,科学通报,1989,34(1),53~55
    89.李志强,王彦编译,李洞审校,铊对人体的影响(一),国外医学:医学地理分册,1999,20(2),73~75
    90.林雨萍,王正珍,乙基紫光度法测定地质样品中痕量铊,地质实验室,1999,15(3),159~161
    91.刘汉民,铊中毒的调查报告,职业医学,1990,17(3),147~148
    92.刘世友,铊工业生产现状及其应用,国外科技,1992,(1),5~6
    
    93.刘日兰,黎达平,铊中毒的现状与研究进展,职业医学,1994,21(5),43~45
    94.刘荣瑞,未永近志等,佐贺关冶炼厂金属铊的生产,有色冶炼,1991,(5),35~39
    95.刘兴芝,李洪图,宋玉林,硫代磷酸酯萃取铊(Ⅰ)的研究 应用化学,1992,9(5),94~97
    96.刘英俊,曹励明,李兆麟等,《元素地球化学》,科学出版社,1984年,393~399
    97.龙江平,张宝贵,张忠等,铊的地球化学异常与金矿找矿,地质与勘探,1994,30(5),56~61
    98.龙江平,张忠,黔西南地区资源开发中铊的环境效应研究,矿产保护与利用,1996,(3),47~49
    99.卢荫麻,白金峰,土壤中铊的相态分析,地质实验室,1999,15(4),217~220
    100.罗津新,TBP萃淋树脂分离GFAAS测定水与废水中的铊,现代科学仪器,2000,(4),39~41
    101.马万山,刘德汞,许春萱,等,罗丹明B试法鉴定Tl~(3+)用NaNTU消除Au~(3+)和Hg~(2+)的干扰,信阳师范学院学报(自然科学版),2001,14(2),180~181
    102.马作东,客绍英,紫风瑞,铊及其对人体的生物学效应,微量元素与健康研究,2002,19(1),75~76
    103.毛水和,卢文全,杨有富等,褐铊矿在我国的首次发现,矿物学报,1989,9(3),253~256
    104.毛麒瑞,有毒的金属元素铊,化工之友,1996,(4),12~13
    105.聂爱国,龙江平,贵州西南地区慢性铊中毒途径研究,环境科学与技术,1997,(1),12~14,45
    106.潘家永,张宝贵,铊——寻找微细浸染型金矿床的指示元素,矿物学报,1997,17(1),45~49
    107.潘家永,张乾,微细浸染型金矿床金与分散元素铊的共生关系,矿物岩石地球化学通报,2000,19(4),343~345
    108.齐文启,曹杰山,陈亚蕾,铟(In)和铊(Tl)的土壤环境背景值研究,土壤通报,1992,23(1),31~33
    109.钱汉东,陈武,胡勇,黔西南、桂北地区微细浸染型金矿床砷、锑、汞、铊元素及矿物组合特征,高校地质学报,1995,1(2),45~52
    110.如宝,铊(Tl)中毒,金属世界,1996,(5),18~19
    111.孙爱芹 陈方伦,化学光谱法测定环境样品中的铊,地质实验室,1996,12(2),87~88
    112.孙晓玲,胡瑞莲,张勤等,泡沫塑料吸附-石墨炉原子吸收光谱法测定地质物料中痕量铊,光 谱实验室,1997,14(2),71~75
    11
    
    113.涂光炽,高振敏,胡瑞忠等,分散元素地球化学及成矿机制,北京,地质出版社,2003,4~68
    114.王夔主编,生命科学中的微量元素,LM].北京,中国计量出版社,1991
    115.王耐芬,解清,刘雅琼等,ICP—MS检测铊中毒事件中的痕量铊,质谱学报,2001,22(3),43~46
    116.王献科,李玉萍,李莉芬,释放鳌合滴定法测定铊,上海有色金属,2000,21(1),25~27
    117.王献科,李玉萍,李莉芬 液膜分离富集与测定工业废水中痕量铊,湖南冶金,1999,(3),36~38,48
    118.王正辉 罗世昌,林朝会等,苹果酸对含铊黄铁矿的淋滤实验研究,地球化学,2000,29(3),283~286
    119.未立清,张宇光,谷国山等,竖罐炼锌过程中铊的回收,有色金属,1999,3,39~44
    120.武少华,姚士仲,崔璐等,ICP-AES法测定碘化铯晶体中的铊和钠,光谱实验室,2001,18(3),335~338
    121.吴颖娟,陈永亨,刘汝锋等,云浮黄铁矿废渣中铊的模拟淋滤试验,环境化学,2000,19(5),447~454
    122.吴颖娟,陈永亨,张汝国等,淋滤条件对矿物废渣中铊释放的影响,环境化学,2002,21(1),78~82
    123.吴颖娟,陈永亨,周怀伟等,硫酸废渣的重金属污染,广州大学学报(综合版),2001,15(5),73~76
    124.吴惠明,郭慧清,陈永亨等 活性炭吸附分离—分光光度法测定硫化矿和土壤中的痕量铊,岩矿测试,2001,20(4),275~278
    125.肖唐付,陈敬安,洪冰等,铊的土壤污染及其环境影响,矿物岩石地球化学通报,2003,22(2),140~143
    126.肖唐付,洪业汤,郑宝山等,黔西南 Au—AS—Hg—Tl矿化区毒害金属元素的水地球化学,地球化学,2000,29(6),571~577
    127.谢文彪,陈永亨,陈穗玲等,硫铁矿焙烧灰渣中铊分布规律及环境效应的研究,矿物岩石地球化学通报,2000,19(3),204~206
    128.谢文彪,陈穗玲,陈永亨,云浮黄铁矿利用过程中微量毒害元素的环境化学活动性,地球化学, 2001,30(5),465~469
    12
    
    129.熊昭春,泡塑对分散金属的吸附及其分析应用 地质实验室,1990,6(5),277~280
    130.伊克拉穆丁M.等,卡林型金矿床中的铊,地质科技动态,1988,21(总261),14~16
    131.颜文,铊(Tl)的表生地球化学行为及环境效应研究进展,土壤通报,1998,29(3),143~145
    132.颜文,刘孝义,龙江平,铊(TI)——个不可忽视的土壤污染元素,土壤学进展,1995,23(3),21~28
    133.颜文,成杭新,刘孝义,辽宁省土壤中铊的时空分布、存在形态及其环境意义,土壤学报,1998,35(4),526~535
    134.姚海英摘,任中林校,铊:结论、建议及进一步的研究,国外医学医学地理分册,1999,20(4),179~181
    135.杨春霞,陈永亨,彭平安等,铊的分离富集技术,分析测试学报,2002,21(3),94~99
    136.杨乡珍,铊的光度分析新进展,地质实验室,1993,9(4),235~239
    137.叶树德,赫琳,张耀亭等,原子发射光谱法测定被污染矿石中的铊,劳动医学,1997,14(2),101~102
    138.易德华,黄宝贵,铊化合物中Tl_2O_3的光度分析法研究,湖南冶金,1992,(5),30~32
    139.易飞鸿,奚长生,稀散元素的回收与应用,益阳师专学报,2001,18(6),34~37
    140.郁云妹,朱咏煊,高振敏,酸性溶液中毒砂氧化作用动力学实验,矿物学报,2000,20(4),390~396
    141.曾庆栋,沈远超,杨金中等,山东乳山金矿区及外围铊地球化学找矿研究,黄金科学技术,1998,6(4),8~13
    142.曾昭华,曾雪萍,中国癌症与土壤环境中铊元素的关系,环境监测管理与技术,1999a,11(5),14~18
    143.曾昭华,曾雪萍,中国乳腺癌与土壤环境中化学元素的相关性研究,江苏环境科技,1999b,12(3),1~3
    144.曾昭华,曾雪萍,中国鼻咽癌与土壤环境中化学元素的相关性研究,土壤与环境,2000a,9(1),11~14
    145.曾昭华,曾雪萍,中国食管癌与土壤环境中化学元素的相关性研究,河南地质,2000b,18(1),76~80
    146.曾昭华,曾雪萍,中国大肠癌与土壤环境中化学元素的相关性研究,浙江地质,2001,17(2), 55~58
    14
    
    147.张宝贵,张忠,龚国红等,硫砷铊铅矿(PbTlAs_5S_9)在中国的发现和研究,矿物学报,1995,15(2),138~143
    148.张宝贵,王三学,张忠等,南华砷铊矿床铊黄铁矿的发现和研究,矿物学报,1998,18(2),174~178
    149.张宝贵,张乾,潘家永,粤西大降坪超大型黄铁矿矿床微量元素特征及其成因意义,地质与勘探,1994,(4),66~71
    150.张生,李统锦,王联魁,地球化学动力学反应器原理和速率方程测定,地质地球化学,1997,(1),53~58
    151.张淑香,董淑萍,颜文,草河口地区沉积物和土壤中铊的地球化学行为,农业环境保护,1998,17(1),113~115
    152.张希桥,王敏,杨志华,碳酸铊对小鼠行为畸胎学的研究,卫生毒理学杂志,1989,3(3),179~180
    153.张兴茂,云南南华砷铊矿床的矿床和环境地球化学,矿物岩石地球化学通报,1998,17(1),44~45
    154.张宇,未立清,谷国山等,竖罐炼锌过程中铊的回收,有色矿冶,1999,15(3),39~44
    155.张忠,陈国丽,张宝贵等,尿液、头发、指(趾)甲高铊汞砷是铊矿区污染标志,中国环境科学,1999,19(6),481~484
    156.张忠,陈国丽,张宝贵等 滥木厂铊矿床及其环境地球化学研究,中国科学(D辑),1999,29(5),433~440
    157.张忠,张宝贵,中国铊矿床开发过程中铊环境污染研究,中国科学(D辑),1997,27(4),331~336
    158.张忠,张兴茂,张宝贵等 南华砷铊矿床雄黄标型特征,矿物学报,1996,16(3),315~320
    159.郑国祥,郭忠先,邵勇等,2-羟基-3-羧基-5-磺酸基苯基重氮氨基偶氮苯与铊反应的分光光度法研究,分析试验室,1997,16(2),21~24
    160.郑民奇,刘敬华MIBK萃取石墨炉平台原子吸收法连续测定地质样品中痕量镓、铟、铊、锗、银、镉地质实验室,1989,5(6),336~338
    161.周令治,邹家炎,稀散元素近况(Ⅰ),稀有金属与硬质合金,1994a,(116),35~41
    162.周令治,邹家炎,稀散元素近况(Ⅲ),稀有金属与硬质合金,1994b,(118),58~61
    
    163.邹家炎,陈少纯,稀散金属产业的现状与展望,中国工程科学,2002,4(8),86~92
    164.邹振西,陈代演,任大银,植物灰分法在黔西南某些铊矿床(点)的初步应用,贵州工业大学学报(自然科学版),2000,(6),15~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700