微波热疗超声监测系统及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤热疗是指利用某种加热方法将肿瘤组织加热至超过其耐热温度以杀死癌细胞,治疗效果的实时无损评价是肿瘤热疗过程中一个亟需解决的问题。目前热疗监控成像主要有超声(US,Ultrasound)、核磁共振(MRI,Magnetic ResonanceImaging)、组织断层成像(CT,Computed Tomography)三种方式。CT由于对人体组织有损伤,MRI由于实时性较差、价格昂贵,且需要核磁兼容设备,都不便推广使用。超声因成本低、实时性好、与热疗设备兼容等优点,成为热疗监测的首选。本文研究了利用超声对微波热疗实时监测及相应系统设计。购置具有原始超声射频信号接口的高速超声数据采集器,搭建水浴加热实验及微波热疗实验平台,通过实验建立超声无损测温模型及超声组织定征模型,研究超声测温及生物组织热凝固区识别方法,并设计出相应微波热疗超声监测系统。主要研究内容如下:
     (1)实验平台的搭建。为了研究生物组织超声特征参数与温度的相关性,设计水浴实验系统。通过调节水箱温度,提取不同温度下的组织超声射频回波信号,建立超声无损测温及超声组织定征模型;为了利用超声监测微波热疗,设计微波热疗实验系统,提取热疗过程中组织超声射频回波信号,通过分析超声回波特征参数,识别热疗过程中的热凝固区;为了验证识别结果的准确性,统计微波热疗实验过程中不同加热功率和不同加热时间所获取的热凝固区大小。
     (2)生物组织超声特征参数的温度相关性研究。基于水浴实验平台,提取不同温度下的超声射频和视频特征参数,分析其与温度的相关性。其中超声回波射频信号参数主要包括超声背向散射积分、超声回波中心频率、超声衰减系数。研究结果表明:超声背向散射积分、超声衰减系数随温度升高而增大,且相关性系数大于0.95,超声回波中心频率随着温度的升高而降低。超声回波视频信号主要通过自建B超图像,分析图像的纹理特征参数与温度的相关性,分析了灰度直方图、灰度共生矩阵、灰度梯度共生矩阵等31个参数。研究结果表明:具有较高温度相关性的参数有灰度直方图中的灰度均值、灰度共生矩阵中的熵及灰度梯度共生矩阵中的混合熵、逆差距、相关。结合纹理参数的温度相关性分析和比值分析,可以得到随着组织的热凝固,超声纹理特征参数改变较大的有:灰度直方图统计量中的灰度均值,灰度梯度共生矩阵中的灰度不均匀性、能量、混合熵、惯性和逆差矩。微波热疗由于温度分布的不均匀性,用超声回波检测温度误差较大,很难达到临床应用要求。
     (3)组织微波热凝固区的超声无创检测研究。通过超声组织定征方法检测微波热疗过程中的热凝固区,并与实际测量的热凝固区大小对比,获取准确性最高的定征方法用于微波热疗监测系统的设计。采用的超声组织定征方法分别为超声背向散射积分、超声图像纹理特征参数、超声回波功率谱积分、散射元平均间距。研究结果表明:背向散射积分可以很好的检测出热凝固区,检测的速度较快,但由于组织的不均匀性,容易在热凝固区外获得识别结果;利用超声纹理特征参数进行热凝固区识别可以获得比较理想的结果,但由于声影的存在,检测结果只有实际消融区的一半,且纹理参数计算及神经网络的识别计算量很大,检测速度比较慢,不太适合热疗实时监测;利用超声功率谱积分值识别热凝固区,容易在热凝固区外检测到多余的组织,可能是利用频谱积分进行检测使用的数据太长,不易获得更加细节的信息;利用超声检测生物组织散射元平均间距的改变来检测热凝固区,既有较好的识别效果,又有较快的速度,可应用于肿瘤热疗的实时监测。
     (4)微波热疗超声无创监测系统的设计。通过MATLAB GUI实现肿瘤热疗超声无创监测系统的设计,利用微波热疗实验所获得的超声原始射频信号,重建B超图像,通过散射元平均间距的不同检测热凝固区,并将检测结果叠加到自建的B超图像之上,这样既能利用B超进行监测,在热疗过程中观察组织的整体状况,又能够通过灰度编码获取组织在热疗过程中的热凝固区变化。
The tumor hyperthermia refers to the technique that heats tumor cells to exceedtheir heat resistance temperature to kill them. Real-time noninvasive evaluation oftreatment effect is a problem that needs to be resolved in microwave hyperthermia.Ultrasound (US), Magnetic Resonance Imaging (MRI) and Computed Tomography(CT) are the three main imaging methods available to noninvasively monitorhyperthermia therapy. However, as CT has damage to human tissues, and MRI haspoor real-time capability and high cost and requires nuclear magnetic compatibleequipment to operate, they are not widely used in hyperthermia monitoring. Becauseit is low cost, real-time and hyperthermia equipment compatible, ultrasound hasbecome the focus of the study. The real-time noninvasive monitoring system and itskey technologies for microwave hyperthermia were studied using ultrasoniccharacteristic parameters. The high-speed ultrasonic data collector with the originalradiofrequency (RF) signal interface was purchased. The water bath and microwaveheating experiment platforms were set up. The ultrasonic noninvasive temperatureestimation and tissue characterization models were established. The ultrasonictemperature estimation and tissue coagulation zone recognition methods were studied.The ultrasonic monitoring system for microwave hyperthermia was designed. Themain research refers to the following four parts:
     (1) Setting up of the experiment platform. The water bath heating experimentsystem was designed to study the correlations between the ultrasonic echo and thetemperature of biological tissues. The original ultrasound RF signal of tissues atdifferent temperature was acquired by adjusting the temperature of the water tank.The microwave heating experiment system was designed for ultrasonic monitoring ofmicrowave hyperthermia. The thermal coagulation zone was detected during thehyperthermia process by acquiring the original ultrasound RF signal of tissues andanalyzing the ultrasonic characteristic parameters of the echo. In order to verify theaccuracy of the detection results, the statistical analysis was conducted on the sizes ofthermal coagulation zones in the microwave heating experiment under differentheating powers and durations.
     (2) Studying of the correlations between ultrasonic characteristic parameters ofbiological tissues and temperature. Based on the water bath heating experimentplatform, the ultrasonic RF and video characteristic parameters at differenttemperature were extracted, and their correlations with temperature were analyzed.The characteristic parameters of ultrasonic echo RF signals included ultrasonicintegrated backscatter, center frequency of ultrasound echo, and ultrasonic attenuationcoefficient. Experimental results showed that the ultrasonic integrated backscatter and the ultrasonic attenuation coefficient increased with the rising of temperature, with thecorrelation coefficients being greater than0.95; the center frequency of ultrasoundecho decreased with the rising of temperature. The characteristic parameters ofultrasonic echo video signals were studied by self-reconstructing B-mode ultrasoundimages and analyzing the correlations between their texture features and temperature.A total of31texture feature parameters based on the gray level histogram, the graylevel co-occurrence matrices, and the gray level-gradient co-occurrence matrices wereanalyzed. Experimental results showed that the parameters with highly linearcorrelations with temperature included the mean gray scale of gray level histogram,the entropy of gray level co-occurrence matrix, and the hybrid entropy, inversedifference moment and correlation of gray level-gradient co-occurrence matrix.Combining correlation analysis and ratio analysis between texture parameters andtemperature, we found that with the thermal coagulation of tissues, the followingultrasound texture parameters took large changes: the mean gray scale of gray levelhistogram, and the intensity inhomogeneity, energy, hybrid entropy, inertia, andinverse difference moment of gray level-gradient co-occurrence matrix. Because ofthe inhomogeneous temperature distribution in the microwave heating experiment, theerror of temperature estimation by ultrasonic echo was big, so it was difficult to meetclinical application requirements.
     (3) Studying of the ultrasonic noninvasive detection of tissue coagulation zones inmicrowave hyperthermia. The thermal coagulation zones during the microwavehyperthermia process were detected using ultrasoic tissue chracterization techniques,and they were compared with the sizes of acutal measurement to get the detectiontechnique with the highest accuracy for the design of the microwave hyperthermiamonitoring system. The ultrasoic tissue characterization techniques were used basedon the ultrasonic integrated backscatter, ultrasound image texture features, ultrasoundecho power spectrum integration, and mean scatterer spacing. The ultrasonicintegrated backscatter can well detect the thermal coagulation zone with a highefficiency. However, due to the inhomogeneity of tissues, it tended to get recognitionresult outside the thermal coagulation zone, so the detected. Using the ultrasoundtexture features to identify thermal coagulation zones can obtain a satisfying result,but it would take a long time because of huge computation in calculation of textureparameters and the neural network based recognition. Besides, the detection resultwas only half of the real ablation zone due to the acoustic shadow. Consequently, theultrasound texture features were not suitable for real-time hyperthermia monitoring.The method of coagulation zone recognition using the ultrasound echo powerspectrum integration tended to detect redundant tissues outside the coagulation zone.The reason may be that the length of data used for detection by spectrum integration was too long, thus it was difficult to get more detailed information. Detecting thechanges of the mean scatterer spacing of biological tissues by ultrasound can be usedto recognize thermal coagulation zones, which can not only achieve better detectionresults, but also can be carried on in a high speed, so it can be applied in the real-timemonitoring of tumor hyperthermia.
     (4) Designing of the ultrasonic noninvasive monitoring system for microwavehyperthermia. The ultrasounic noninvasive monitoring systerm for tumorhyperthermia was designed using the MATLAB GUI. The original ultrasoic RFsignals from the microwave heating experiments were used to reconstruct B-modeultrasound images. The thermal coagulatoin zones were detected based on the changesof the mean scatterer spacing. The detection results were superimposed to thereconstructed B-mode images. The system can be used for B-mode ultrasound imagemonitoring and for observing the overal situation of tissues, and is capable to monitorthe changes of coagulation zones by grayscale coding during the hyperthermiaprocess.
引文
1Hiraoka M, Masunaga S, Nishimura Y, et al. Regional hyperthermia combined withradiotherapy in the treatment of lung cancers[J]. International Journal of Radiation OncologyBiology Physics,1992,22(5):1009-1014.
    2水野左敏.高温化学疗法的生物学基础[J].医学のわはけみ,1989,148(1):5-7.
    3梁萍.超声引导下微波热消融治疗技术进展[J].世界医疗器械杂志,2006,12(4):20-23.
    4Zhong H, Wan M X. Monitoring imaging of lesions induced by high intersity focusedultrasound based on diffetential ultrasonic attenuation and integrated backscatterestimation[J]. Ultrasound in Medicine and Biology,2007,33(1):82-49.
    5Sheng L, Yang C L, Wu S C. Application study of using ultrasonic integral backscatter tomonitor microwave coagulation therapy[C].20104th International Conference onBioinformatics and Biomedical Engineering,2010:1-4.
    6Wu S C, Sheng L. Yang C L, Application study of monitoring microwave coagulation therapyusing ultrasonic tissue characterization[C]. World Congress on Medical Physics andBiomedical Engineering,2009:1-3.
    7Yang C L, Zhu H, Wu S C. Correlations between B-mode ultrasonic image texture featuresand tissue temperature in microwave ablation [J]. Journal of Ultrasound in Medicine,2010,29:1787-1799.
    8程树群,吴孟超.原发性肝癌的综合治疗进展[J].中华肝胆外科杂志,2009,15(4):241.
    9Tabuse K, Katsumi M, Kobayashi Y, et al. Microwave surgery: keratectomy using amicrowave tissue coagulator [J]. World Journal of Surgical Oncology,1985,9:136-143.
    10Seki T, Wakabayashi M, Nakagawa T, et al. Ultrasonically guided percutaneous microwavecoagulation therapy for small hepatocellular carcinoma [J]. Cancer,1994,74:817-825.
    11梁萍,董宝玮,于晓玲.超声引导下微波消融治疗肝转移癌疗效评价[J].中华肿瘤杂志,2004,26:301-304.
    12陈夷,吴孟超,陈汉.微波热凝治疗转移性肝癌[J].中华肝胆外科杂志,2006,12:118-120.
    13张小红,李坚,张波. B超引导下冷循环微波刀治疗肝癌的价值:116例报告[J].中国普通外科杂志,2008,17:697-699.
    14刘亚宁.电磁生物效应[M].北京:北京邮电大学出版社,2002:101-125.
    15范建中,刘国龙,吴红瑛.肿瘤热疗技术[J].国外医学临床放射学分册,2004,(4):252-255.
    16陈代珠.医用微波技术[M].北京:国防工业出版社,1987:117-150.
    17盛振华.电磁场与微波技术[M].北京:电子工业出版社,1988:1-4.
    18赵春晖,杨莘元.现代微波技术基础[M].哈尔滨:哈尔滨工程大学出版社,2003:115-120.
    19Dong B W, Zhang J, Liang P, et al. Sequential pathological and immunologic analysis ofpercutaneous microwave coagulation therapy of hepatocellular carcinoma [J]. InternationalJournal of Hyperthermia,2003,19(2):119-133.
    20张晶,董宝玮,梁萍.原发性肝癌经皮微波治疗前后局部免疫活性细胞功能检测[J].中华医学杂志,2001,81(16):974-977.
    21Dickinson R J, Hall A S, Hind A J, et al. Measurement of change in tissue temperature usingMR imaging[J]. Comp Assist Tomogram,1986,10:468-472.
    22Wlodarczyk W, Boroschewski R, Hentschel M, et al. Three-dimensional monitoring of smalltemperature changes for therapeutic hyperthermia using MRI [J]. MagnReson Imaging,1998,8:165-174.
    23Stroszczynski C, Gretschel S, Gaffke G, et al. Laser-induced thermotherapy for malignantliver tumours:the role of sonography in catheter placement and observation of the therapeuticprocedure(in German)[J]. Ultraschall in Der Medizin,2002,23:163-167.
    24Scheele J, Altendorf. H. Resection of colorectal liver metastases [J]. Langenbecks Arch Surg,1999,384:313-327.
    25Wust P, Cho C H, Hildebrandt B, et al. Thermal monitoring:invasive minimal-invasive andnon-invasive approaches[J]. International Journal of Hyperthermia,2006,22:255-262.
    26王存诚,陈槐卿.生物医学中的热物理探索[M].北京:科学出版社.1994.
    27林世寅,李瑞英.现代肿瘤热疗学—原理、方法与临床[M].北京:学苑出版社.1996.
    28Meaney P M, Paulsen K D, Ryan T P. Microwave thermal imaging using a hybrid elementmethod with a dual mesh scheme for reduced computation time[J]. Engineering in Medicineand Biology Society,1993,15:96-97.
    29Goldhaber D M, Deli M, Mineyev M I, et al. Measurement of tissue temperature by MRI[C].1993IEEE Nuclear Science Symposium and Medical Imaging Conference,1993,3:1702-1705.
    30任新颖.肿瘤热疗中组织温度场测量方法及关键技术研究[D].北京:北京工业大学博士学位论文,2008:34-39.
    31Wei J J, Zhou W, Texture feature extraction and classification of image with line singularity[J]. Journal of Information and Computational Science,2008,1(5):87-93.
    32徐海东.后向散射超声无损测温设备关键技术的研究与实现[D].北京:清华大学工学博士学位论文,2004:22-23.
    33Ali N A, Emad S, Tryphon T. Noninvasive estimation of tissue temperature viahigh-resolution spectral analysis techniques[J]. IEEE Transaction on Biomedical Engineering,2005,52(2):221-228.
    34Zu W Q, Xiong L L, Yu J S, et. al. Noninvasive thermometer for HIFU and its scaling[J].Ultrasonics,2006,44(Suppl):31-35.
    35Gaitini D, Zivari M, Abadi S, Adam D. Evaluating tissue changes with ultrasound duringradiofrequency ablation[J]. Ultrasound in Medicine&Biology,2008,34(4):586-597.
    36Parmar N, Kolios M C. Attenuation mapping for monitoring thermal therapy using ultrasoundtransmission imaging[C]. Proceedings of the26th Annual International Conference of theIEEE EMBS,2004:1329-1332.
    37米小兵,张淑仪,张俊杰.超声波自动测温技术[J].南京大学学报(自然科学),2003,39(4):517-524.
    38任新颖,吴水才,曾毅.组织超声回波时移温度相关性及其无创测温研究[J].中国生物医学工程学报,2006,25(3):328-332.
    39Steiner G, Soleimani M, Watzenig D. A bio-electromechanical imaging technique withcombined electrical impedance and ultrasound tomography [J]. Physiological measurement,2008,29(6):63-75.
    40Arunachalam K, Stauffer P R, Maccarini P F, Jacobsen S, Sterzer F. Characterization of adigital microwave radiometry system for noninvasive thermometry using atemperature-controlled homogeneous test load[J]. Physics in medicine and biology,2008,53(14):3883-3901.
    41Ajay A, David S, Christopher H. Three-dimensional spatial and temporal temperatureimaging in gel phantoms using backscattered ultrasound [J]. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control,2007,54(1):23-31.
    42Maleke C, Konofagou E E. An all-ultrasound-based system for real-time monitoring andsonication of temperature change and ablation[C]. Proceedings of the28th IEEE EMBSAnnual International Conference,2006:164-167.
    43Daniels M J, Varghese T, Madsen E L, Zagzebski J A. Non-invasive ultrasound-basedtemperature imaging for monitoring radiofrequency heating-phantom results [J]. Physics inmedicine and biology,2007,52(16):4827-4843.
    44Shah J, Aglyamov S R, Sokolov K, Milner T E. Ultrasound imaging to monitor photothermaltherapy-Feasibility study [J]. Optics Express,2008,16(6):3776-3785.
    45Teixeira C A, Ruano M G, Ruano A E. A soft-computing methodology for noninvasivetime-spatial temperature estimation [J]. IEEE Transactions on Biomedical Engineering,2008,55(2):572-580.
    46Teixeira C A, Ruano A E, Negreira C, et al. Non-invasive temperature prediction of in-vitrotherapeutic ultrasound signals using neural networks [J]. Medical and Biological Engineeringand Computing,2006,44(1-2):111–116.
    47Miller N R, Bograchev K M, Bamber J C. Ultrasonic temperature imaging for guidingfocused ultrasound surgery: effect of angle between imaging beam and therapy beam[J].Ultrasound in Medicine and Biology,2005,31(3):401-413.
    48Amini A N, Ebbini E S, Georgiou T T. Noninvasive estimation of tissue temperature viahigh-resolution spectral analysis techniques[J]. IEEE Transactions on BiomedicalEngineering,2005,52(2):221-228.
    49Arthur R M, Trobaugh J W, Straube W L, et al. Temperature dependence of ultrasonicbackscattered energy in motion-compensated images[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,2005,52(10):1644-1652.
    50Wu S C, Bai Y P, Jia L Q, et al. Study on noninvasive temperature measurement in biologicalmedia using ultrasonic nonlinear parameter B/A[J]. Chinese Journal of BiomedicalEngineering(English Edition),2002,11(3):119-124.
    51Pousek L, Jelinek M, Storkova B, et al. Noninvasive temperature monitoring usingultrasound tissue characterization method[C]. Proceedings of the28th InternationalConference on Information Technology Interfaces,2006:219-224.
    52Trobaugh J W, Arthur R, Martin S, William L M, Eduardo G. A Simulation model forultrasonic temperature imaging using change in backscattered energy[J]. Ultrasound inMedicine and Biology,2008,34(2):289-298.
    53贺雪梅,熊欣,邹建中.高强度聚焦超声辐照靶区回声强度与温度的相关性实验研究[J].临床超声医学杂志,2008,10(4):217-219.
    54宋平,钱盛友,冯艳玲,孙福成,张激.基于超声散射回波分析的测温方法研究[J].微计算机信,2007,23(11):267-269.
    55宋平. HIFU治疗中超声测温技术的研究[D].湖南:湖南师范大学硕士学位论文,2007:48-54.
    56刘丹,许哲宇,夏荣民,寿文德,钱德初.离体肝脏组织声学参量的温度特征研究[J].声学技术,2007,26(1):62-65.
    57Zhong H, Wan M X, Jiang Y F, Wang S P. Monitoring imaging of lesions induced by highintensity focused ultrasound based on differential ultrasonic attenuation and integratedbackscatter estimation[J]. Ultrasound in Medicine and Biology,2007,33(1):82-94.
    58Siebers S, Schwabe1M, et al. Evaluation of ultrasonic texture and spectral parameters forcoagulated tissue characterization[J]. IEEE ultrasonics symposium,2004,3:1804-1807.
    59程志刚.915MHz植入式内冷却微波消融肝组织[D].北京:军事进修学院硕士论文,2006:26-40.
    60高晓军,臧福波,闻月异.超声背向散射积分在肝占位性病变诊断中的应用价值[J].中国超声医学杂志,2004,20(1):49-51.
    61李越.超声心动图新技术:超声心肌组织定征[M].北京:科学技术文献出版社,2001:181-191.
    62Feinberg M S, Gussak H M, Davila R G V. Dissociation between wall thickening of normalmyocardium and cyclic variation of backscatter during isotropic stimulation[J]. AmericanJournal of Cardiology,1996,77:515-520.
    63Waters K, Bacrie C C, Levrier C, et al. In vitro characterization of carotid plaque using aclinical ultrasound imaging system[C]. Ultrasonic. Ferroelectrics and Frequency ControlSociety: IEEE ultrasonic symposium Proceedings, New York: Institute of Electrical andElectronic Engineers,2001:1197-1200.
    64钟徽,江一峰,万明习,王素品.高强度聚焦超声软组织损伤背向散射积分减影监控成像[J].航天医学与医学工程,2006,19(3):217-221.
    65潘辉.一种抗几何形变的纹理特征提取算法研究[D].杭州:浙江大学硕士学位论文,2007.
    66Pousek L, Schreib P, Capek M. Hyperthermia ultrasound temperature monitoring (clinicalcase study)[C]. Proceedings of the IASTED International Conference BiomedicalEngineering, Salzburg. Austria,2003:216-218.
    67Pousek L, Jelinek M, et al. Noninvasive temperature monitoring using ultrasound tissuecharacterization method[C].28th International Conference Information TechnologyInterfaces, ITI,2006.
    68Wu S C, Ren X Y, Bai Y P. A study on the temperature correlation of B-mode ultrasonicimage gray for noninvasive temperature monitoring in hyperthermia[J]. Chinese Journal ofBiomedical Engineering,2006,15(1):26-30.
    69徐涛,叶志前,蔡卫民.肝脏B超图像的纹理分析方法[J].国际生物医学工程杂志,2006,29(4):228-230.
    70Mokhtari D M, Gorji A T, et al. Ultrasound monitoring of temperature change in liver tissueduring laser thermotherapy:10℃intervals[C]. IEEE Engineering in Medicine&BiologySociety,2007:2130-2133.
    71Li W, Kan T, et al. Noninvasive temperature estimation using B-scan image for thermaltherapy[C]. APCMBE2008, IFMBE Proceedings,19:542-545.
    72Guiot C, Cavalli R, et al. Temperature monitoring using ultrasound contrast agents: In vitroinvestigation on thermal stability[J]. Ultrasonics,2004,42:927-930.
    73吴熙,钱盛友,孙福成,张激.基于B超图像处理的无损测温方法研究[J].计算机工程与应用,2007,43(32):178-179.
    74吴凝,阳维,陈磊,张素,陈亚珠.射频消融组织的B超图像纹理分析[J].中国医学影像技术,2007,23(1):140-143.
    75Zhang S, Yang W, et al. Noninvasive temperature monitoring in a wide range based ontextures of ultrasound images[J]. Leture Notes in Computer Science,2006,4091:100-107.
    76陈锦钧,陈真诚,陈洪波.离散Fourier变换在无创测温中的应用.生物医学工程研究[J].2007,(03):236-239.
    77Chen H B, Tang J T, et al. Noninvasive temperature estimation using real-valued Gabortransform[J]. International Conference on Bioinformatics and Biomedical Engineering2007:857-860.
    78Verhoef C, Kuiper J W, Heisterkamp J, et al. Interstitial laser coagulation with temporaryhepatic artery occlusion for patients with cirrhosis and irresectable hepatoma[J]. BritishJournal of Surgery,2003,90:950-955.
    79Guan Y S, Sun L, Zhou X P, et al. Hepatocellular carcinoma treated with interventionalprocedures: CT and MRI follow-up[J]. World Journal of Gastroenterology,2004,10(24):3543-3548.
    80Meloni M F, Goldberg S N, Livraghi T, et al. Hepatocellular carcinoma treated withradiofrequency ablation: comparion of pulse inversion contrast-enhanced harmonicsonography contrast-enhanced power Doppler sonography and helical CT[J]. AmericanJournal of Roentgenology. Diagnostic Imaging and Related Sciences,2001,177(2):375-380.
    81Steiner G, Soleimani M, Watzenig D. A bio-electromechanical imaging technique withcombined electrical impedance and ultrasound tomography[J]. Physiological measurement,2008,29(6):63-75.
    82Liu X Z, Gong X F, Yin C, Li J L, Zhang D. Noninvasive estimation of temperatureelevations in biological tissues using acoustic nonlinearity parameter imaging[J]. Ultrasoundin Medicine&Biology,2008,34(3):414-424.
    83Liang P, Dong B W, Yu X L, et al. Computer-aided dynamic simulation of microwave-induedthermal distribtion in coagulation of liver cancer[J]. IEEE Transactions on BiomedicalEngineering,2001,48:821-829.
    84Chen X, Nan Q, Peng J S, et al. Finite element analysis of constant-power invasivemicrowave coagulation of liver tumors[J]. Science in China (Series E),2002,45(6):328-336.
    85Arunachalam K, Stauffer P R, Maccarini P F, Jacobsen S, Sterzer F. Characterization of adigital microwave radiometry system for noninvasive thermometry using atemperature-controlled homogeneous test load[J]. Physics in medicine and biology,2008,53(14):3883-3901.
    86Wang H Z, Yu H B, Lin F L, et al. Method and experiment of noninvasive temperatureestimation by ultrasound echo pulses[J]. IEEE Engineering in Medicine and Biology Society,1998,3:1513-1516.
    87于洪斌,王鸿樟.反射超声无损测温[J].声学技术,1997,16(3):101-103.
    88于洪斌,王鸿樟.基于时频分析的反射超声无损测温新方法[J].上海交通大学学报,1999,33(10):1202-1205.
    89Endoh N, Mogi R T, Nishioka R, et al. Experiment investigation on improvement of rangeresolution in B-mode images by inverse filtering technique[C]. International Conference of1990IEEE Ultrasonics Symposium:1455-1458.
    90Kikuchi T, Sato S. An application of wavelet transform to ultrasonic measurements ofrandom media[C]. International Conference: IEEE Ultrasonics Symposium,1991,3:1171-1175.
    91Fellingham L L, Sommer F G. Ultrasonic charactertion of tissue structure in vivo human liverand spleen[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1984,31(4):418-428.
    92Zhao Y X, Atlas L. The use of cone-shaped kernels for Generalized Time-FrequencyRepresentations of Nonstationary Signal[J]. IEEE on ASSP,1990,38(7):1084-1091.
    93Simon C, VanBaren P, Ebbini E. Quantitative analysis and applications of non-invasivetemperature estimation using diagnostic ultrasound[C].1997IEEE Ultrasonics Symposium,1997,2:1319-1322.
    94Seip R, Vanbaren P, Simon C, et al. Non-invasive spatio-temporal temperature estimationusing diagnostic ultrasound[C].1995IEEE Ultrasonics Symposium,1995,2:1613-1616.
    95Seip R, Vanbaren P, Cain C A, et al. Noninvasive real-time multipoint temperature control forultrasound phased array treatments[J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,1996,43(6):1063-1073.
    96VanBaren P, Simon C, Seip R, et al. Image-guided phased array system for ultrasoundthermotherapy[J]. IEEE Ultrasonics Symposium,1996,2:1269-1272.
    97Miller N R, Bamber J C, Haar G R. Ultrasonic temperature image for the guidance of thermalablation therapies: in vitro results[J]. IEEE Ultrasonic Symposium,2002,2:1365-1368.
    98Chiang H K, Liao C K, Chou Y H, et al. In-vitro ultrasound temperature monitoring in bovineliver during rf ablation therapy using autocorrelation[J]. IEEE Ultrasonic Symposium,2002,2:1439-1442.
    99Kolen A F, Bamber J C. Analysis of cardiovascular liver motion for application to elasticityimaging of the liver in-vivo[C]. Proceedings of the6th Annual Conference on Medical ImageUnderstanding and Analysis,2002:25-28.
    100Seip R, Ebbini E S. Invasive and non-invasive feedback for ultrasound phased arraythermometry[J]. IEEE Ultrasonics Symposium,1994,3:1821-1824.
    101Seip R, Ebbini E S. Non-invasive monitoring of ultrasound phased array hyperthermia andsurgery treatments[J]. IEEE Transactions on Engineering in Medicine and Biology Society,1997,1:663-664.
    102牛金海,张红煊,王鸿章.基于离散随机介质平均散射声功率的无损测温方法[J].声学学报,2001,26(3):247-251.
    103牛金海,周世平,王鸿章.基于超声散射回波功率谱的热疗无损测温模型[J].声学学报,2002,27(2):185-190.
    104Straube W L, Martin A R. Theoretical estimation of the temperature dependence ofbackscattered ultrasonic power for noninvasive thermometry[J]. Ultrasound in Medicine andBiology,1994,20(9):915-920.
    105Silverstein S D. Ultrasound scattering model:2-D cross-correlation and focusingcriteria-theory.simulations.and experiments[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2001,48(4):1023-1030.
    106Insana M F, Wagner R F. Describing small-scale structure in random media using pulse-echoultrasound[J]. Journal of the Acoustical Society of America,1990,87(1):179-183.
    107重庆医科大学医学超声工程研究所,现代超声学研究—冯若教授七秩华诞纪念文集,江苏:南京大学出版社,2002:138-142.
    108徐泾平,李莉,程敬之.生物软组织超声背向散射信号的仿真[J].自然科学进展,1999,9(7):651-660.
    109Robert M M, Christakdi A D. Noinveasive temperature estimation in tissue by ultrasoundecho-shifts[J]. Journal of the Acoustical Society of America,1977,(3):1-13.
    110Weng L, Reid J M, Shankar P M, et al. Nonuniform phase distribution in ultrasound speckleanalysis II. Parametric expression and a frequency sweeping technique to measure meanscatterer spacing[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,1992.39(3):360-365.
    111陆宣明,应崇福,周静华.生物组织超声散射的一种改进模型[J].声学学报,1999,14(5):346-356.
    112牛金海,朱贻盛.肿瘤热疗中的超声无损测温技术[J].生物医学工程学杂志,2000,17(2):202-205.
    113Fellingham L L, Sommer F G. Ultrasonic characterization of tissue structure in the in vivohuman liver and spleen[J]. IEEE Transactions on Sonics and Ultrasonics,1984,31:418-428.
    114Landini L, Verranzzani L. Spectral characterization of tissue microstructure by ultaasound: Astochastic approach[J]. IEEE Transactions on Ultrasonics Ferroelectrics and FrequencyControl,1990,37:448-456.
    115Varghese T, Donohue K D. Mean-scatterer spacing estimates with spectral correlation[J].Journal of the Acoustical Society of America,1994,96:3504-3515.
    116Simon C, Shen J, Seip R, et al. a robust and computationally algorithm for mean scattererspacing estimation[J]. IEEE Transactions on Ultrasonics Ferroelectrics and FrequencyControl,1997,44:882-894.
    117周苏晋,贾译清,谭旭艳.微波热疗对肝组织炭化作用的实验研究[J].临床超声医学杂志,2003,5(5):257-259.
    118冯若.哺乳动物软组织超声背向散射谱研究[J].声学学报,1992,17(6):430-435.
    119邱媛媛,章东,龚秀芬.超声热疗无损测温中AR模型方法应用研究[J].2009,8:530-534.
    120李威.生物组织温度场的超声无损检测及可视化表达.上海:上海交通大学硕士学位论文,2009.
    121刘畅.基于B超图像处理的HIFU有效治疗区域确定及增强方法研究.长沙:湖南师范大学硕士学位论文,2010.
    122Novak P, pouswk L, Schreib P, et al. Noninvasive temperature monitoring using ultrasoundtissus cheracterization method[C]//Proc SPIE, san Diego: SPIE-Int,2001.
    123钟徽,万明习,王素品.高强度聚焦超声软组织损伤超声监控成像与评价方法[J].声学学报,2006,31(3):247-254.
    124Ajay A, David S. Christopher H. Three-dimensional spatial and temporal temperatureimaging in gel phantoms using backscattered ultrasound[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,2007,54(1):23-31.
    125任新颖,吴水才,曾毅.基于组织B超特征的癌热疗无创检测实验研究[J].北京工业大学学报,2008,34(1):90-96.
    126Arthur R M, Straube W L, Trobaugh J W. Noninvasive estimation of hyperthermiatemperatures with ultrasound[J]. International Journal of Hyperthermia,2005,21(6):589-600.
    127Feinberg M S, Gussak H M, Davila R G V, et al. Dissociationbetween wall thickening ofnormal myocardium and cyclic variation of backscatter during inotropic stimulation[J].America Journal of Cardiol,1996,77:515-520.
    128Nozaki S, Demaria A N, Helmer G A, et al. Detection of regional leftventricular dysfunctionin early pacing induced heart failure using ultrasonic integrated backscatter[J]. Circulation,1995,92:2676-2682.
    129Thomas L J, Barazilai B, Perez J E, et al.Quantitative real-time imagingof myocardium basedon ultrasonic integrated backscatter[J]. IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control,1989,36:466-470.
    130周永昌.超声医学-第3版[M].北京:科学技术文献出版社,1998:52.
    131商轶伦.心肌超声背向散射积分检测研究[D].北京:清华大学硕士论文,1996:55-57.
    132徐泾平,李莉,吴延军.生物组织散射元平均间距估计的一种新方法[J].生物物理学报,1996,12(4):653-662.
    133Weng L, Reid J M, Shankar P M, Soetanto K, Lu X M. Nonuniform phase distribution inultrasound speckle analysis-Part I: Background and experimental demonstration[J]. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control,1992,39(3):352-358.
    134Seip R, Ebbini E. Noninvasive estimation of tissue temperature response to heating fieldsusing diagnostic ultrasound[J]. IEEE Transactions on Biomedical Engineering,1995,42(8):828-839.
    135Eugene P, Khizhnyak, Marvin C, Ziskin. Heating patterns in biological tissue phantomscaused by millimeter wave electromagnetic irradiation[J]. IEEE Transactions on BiomedicalEngineering,1994,41(9):865-73.
    136Wear K A, Wagner R F. Application of autoregressive spectral analysis to cepstral estimationof mean scatterer spacing[J]. IEEE Transactions on Ultrasonics Ferroelectrics and FrequencyControl,1993,40:50–59.
    137王鸿樟.声学及医学超声应用:生物医学声学[M].上海交通大学出版社,1991.
    138Shih T C, Liu H L, Horng A T L. Cooling effect of thermally significant blood vessels inperfused tumor tissue during thermal therapy[J]. International communications in heat andmass transfer,2006,33(2):135~141.
    139Kinsler L E, Frey A R, Coppens A B, et.al. Fundamentals of Acoustics.3rd [M]. New YorkWiley.1982:1107.
    140Rajagopalan B, Greenleaf J F, Thomas P J. Ultrasonic Tissue Characterization Linzer[M]. Ed.Washington. D.C.:U.S.GPO.NBS, Spec Pub525,1979:227-233.
    141Straube W L, Arthur R M. Theoretical estimation of the temperature dependence ofbackscattered ultrasonic power for noninvasive thermometry[J]. Ultrasonic in Medical andBiology,1994,20(9):915-922.
    142Weng L, Reid J M, Shankar P M. Nonuniform phase distribution in ultrasound speckleanalysis Part11: Parametric expression and a frequency sweeping technique to measure meanscatterer spacing[J]. IEEE Trans. IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control,1992,39(3):360-365.
    143Xu S, Liu Z L, Quan H Y. Eliminate false peak of Burg spectrum estimation based onEMD[C].20102nd International Conference on Advanced Computer Control (ICACC2010),2010:344-347.
    144Ai S F, Li H, Fu L H. Angle domain average and autoregressive spectrum analysis based gearfaults diagnosis[C].2009International Joint Conference on Artificial Intelligence (JCAI),2009:659-662.
    145Ghoshal G, Oelze M. Use of quantitative ultrasound to detect temperature variations inbiological phantoms due to heating[J]. IEEE Ultrasound Symposium,2009.
    146Zhong H, Wan M X, Jiang Y F, Wang S P. Monitoring imaging of lesions induced by highintensity focused ultrasound based on differential ultrasonic attenuation and integratedbackscatter estimation[J]. Ultrasound in Medicine and Biology,2007,33(1):82-94.
    147López-Haro S A, Leija L, Favari A. Measurement of ultrasound properties into biologicaltissues in the hyperthermia temperature range[J]. Physics Procedia,2010,(3):551-558.
    148Wechsler W. Texture analysis-a survey[J]. Signal Processing,1980,2:271-280.
    149Shapiro L, Stockman G. Computer Vision[M]. Prentice Hall,2001.
    150Russ J C. The Image Processing Handbook4th Ed[M]. CRC Press,2002.
    151Tamura H, Mori S, Yamawaki T. Texture features corresponding to visual perception[J]. IEEEInternational Conference on Systems, Man, and Cybernetics,1978,8(6):460-473.
    152Pousek L, Jelinek M. Noninvasive temperature monitoring using ultrasound tissuecharacterization method[C].28th International Conference on Information TechnologyInterfaces ITI,2006.
    153Wei L, Kan T, Xiao X L, et.al. Noninvasive temperature estimation using B-scan image forthermal therapy[C].7th Asian-Pacific Conference on Medical and Biological Engineering,2008, Part14.542-545.
    154Yang C L, Zhu H, Wu S C. Correlations between B-mode ultrasonic image texture featuresand tissue temperature in microwave ablation[J]. Journal of Ultrasound in Medicine,2010,29:1787-99.
    155Li W, Kan T, et.al. Noninvasive temperature estimation using B-scan image for thermaltherapy[C]. APCMBE2008, IFMBE Proceedings19:542-545.
    156Guiot C, Cavalli R, et.al. Temperature monitoring using ultrasound contrast agents: In vitroinvestigation on thermal stability[J]. Ultrasonics,2004,42:927-930.
    157陈锦钧,陈真诚.陈洪波.离散Fourier变换在无创测温中的应用[J].生物医学工程研究,2007,(03):236-239.
    158Chen H B, Tang J T, et.al. Noninvasive temperature estimation using real-valued Gabortransform[C]. International Conference on Bioinformatics and Biomedical Engineering,2007:857-860.
    159Xu T, Ye Z Q, Cai W M. Texture analysis methods used in B-scan liver images[J].International Journal of Biomedical Engineering,2006,8,29(4):228-230.
    160Wei J J, Zhou W. Texture feature extraction and classification of image with linesingularity[J]. Journal of Information and Computational Science,2008,1(5):87-93.
    161冯若.超声诊断设备原理与设计[M].北京:中国医药科技出版社,1993:410-420.
    162藏福波,高晓军.正常人肝脏超声背向散射积分的测定[J].中华超声影像学杂志,2001,10:328~330.
    163陈宇翔,钱蕴秋,周小东.背向散射积分超声组织定征识存活心肌的实验[J].中华超声影像学杂志,1999,8(2):122-125.
    164Zhong H, Wan M X, Jiang Y F, Wang S P. Monitoring imaging of lesions induced by highintensity focused ultrasound based on differential ultrasonic attenuation and integratedbackscatter estimation[J]. Ultrasound in Medicine and Biology,2007,33(1):82-94.
    165陈晓宇,赵宝珍.超声背向散射积分评估肝脏肿瘤的消融治疗疗效[J].中国医学影像技术,2006,22(4):578-580.
    166谢建华,袁博,赵夏夏.正常成人肝脏背向散射积分超声组织定征测定[J].西北国防医学杂志,2004,25(2):109-111.
    167Yang C L, Sheng L, Wu S C, Bai Y P. Features of ultrasonic radio frequency signal inmicrowave ablation experiments[C]. Proceedings-2011International Conference ofInformation Technology,2011,3:55-58.
    168朱皓,杨春兰,吴水才.微波消融组织B超图像纹理特征参数与温度的相关性[J].中国生物医学工程学报,2009,28(6):818-822.
    169陈洪波,汤井田,陈真诚.基于PCA-LDA的HIFU治疗中组织损伤无损检测方法[J].中国生物医学工程学报,2008,27(6):812-816.
    170陈洪波,汤井田,陈真诚.基于SOM的HIFU治疗中损伤组织特征提取[J].生物医学工程学杂志,2009,26(4):873-877.
    171Park J, Kurz L. Unsupervised segmentation of textured images[J]. Information Sciences,1996,92(1-4):255-276.
    172吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报,2001,6(4):333-337.
    173郭立,朱俊株,陆大虎.基于Gabor小波变换的无监督纹理图像分割[J].微机发展,2000,5:51-54.
    174郑肇葆,郑宏,潘励.纹理分类中遗传算法参数的选择[J].测绘学报,2000,29(1):35-39.
    175马永军,方凯,方廷健.基于支持向量机和距离度量的纹理分类[J].中国图象图形学报,2002,7(A)(11):1151-1155.
    176Scholkopf S, Mika C, Burges J C, et al. Input space vs. feature space in kernel-basemethods[J]. IEEE Transactions on Neural Networks,1999,10(5):1000~1017.
    177Wu S C, Ren X Y, Bai Y P. A study on the temperature correlation of B-mode ultrasonicimage gray for noninvasive temperature monitoring in hyperthermia[J]. Chinese Journal ofBiomedical Engineering,2006,15(1):26-30.
    178Martin R, Arthur D, Yu Z G.3-D in vitro estimation of temperature using the change inbackscattered ultrasonic energy[J]. IEEE Transactions on Ultrasonics. Ferroelectrics andFrequency Control,2010,57(8):1724-1733.
    179白净.生理功能数字仿真与无创成像[M].江苏科学技术出版社,2004:148-203.
    180颜彪,杨娟.关于希尔伯特变换的分析和研究[J].电气电子教学学报,2004,26(5):27-30.
    181陈君,崔祥霞,肖静.基于径向希尔伯特变换的图像边缘增强特性研究[J].光子学报,2011,40(3):483-486.
    182王珂,肖鹏峰.基于二维希尔伯特变换的相位一致模型图像特征检测方法[J].测绘学报,2010,39(6):605-617.
    183Martin G, Edward J. Echocardiographic speckle reduction comparison[J]. IEEE Transactionson Ultrasonics.Ferroelectrics.and Frequency Control,2011,58(1):82-101.
    184彭韵,李德玉,林江莉,汪天富.基于各向异性扩散的超声医学图像滤波方法[J].航天医学与医学工程,2005,18(2):135-139.
    185王常虹,陈韬亦,屈桢深.使用中值各向异性扩散的超声图像去噪算法[J].哈尔滨工程大学学报,2011,32(3):314-321.
    186Banazier A, Abrahim Y K. Speckle noise reduction method combining total variation andwavelet shrinkage for clinical ultrasound[C].20111st Middle East Conference onBiomedical Engineering,2011:80-83
    187Baek-sop K, Jeonesik K, He J. Ultrasound speckle reduction and edge enhancing in laplacianpyramid[C].5th Cairo International Biomedical Engineering Conference,2010:37-40.
    188谢凤英,赵丹培. Visual C++数字图像处理[M].电子工业出版社,2009:80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700