混凝土坝水库水动力相互作用计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大坝-库水动力相互作用是混凝土坝在强震作用下的动力响应重要影响因素之一,合理地确定坝面在地震作用下的动水压力及其对坝体地震响应的影响是大坝安全评估的重要基础。然而大坝体积巨大,且坝面动水压力受到库水可压缩性、库底淤沙的吸收作用、地基柔性、河谷形状等多种因素的影响,因此现场测试还难以准确获得坝面动水压力的分布和大小。在理论分析和数值分析方面,Westergaard首先(1933)对刚性坝面动水压力进行了开创性研究,之后许多学者采用解析法、有限元和边界元等数值方法进行了大量、深入的研究。但计算模型的精度及效率仍未能满足工程应用的需要。因此,研究新型高效、高精度的数值方法将对坝面动水压力的研究具有重要的科学研究价值和工程意义。本文基于比例边界有限元方法(SBFEM),针对坝体上游水库为半无限棱柱形、坝前库区形状不规则的情况,提出了坝面动水压力的计算模型和辐射边界条件,并完善了大坝-地基-库水系统动力响应的有限元和SBFEM耦合计算模型。主要内容如下:
     (1)在SBFEM的基础上,建立了坝体上游水库为半无限棱柱水域情况的坝面动水压力计算模型。利用加权余量、Hamilton变分原理两种方法,考虑了库水可压缩性、库底吸收条件,提出了坝面动水压力的SBFEM计算模型。该模型只需离散坝面,且解自动满足水库上游无穷远处的辐射边界条件。利用二维重力坝与三维拱坝的多个数值算例,对坝面几何形状变化,坝体特性,地震动激励对坝面动水压力大小和分布的影响进行了详细研究,并与边界元、有限元、解析法对比,验证了本文方法的准确性和高效性。
     (2)针对复杂形状的库区,基于SBFEM,是出了一种新的能够满足无穷远辐射条件,并且可以考虑库水可压缩性、库底吸收条件。该方法仅对近场有限库区边界进行离散,从而可以大大降低求解的规模,提高计算效率。数值算例表明,本文方法可适用于坝前水域形状复杂条件下坝面动水压力的计算,而且所提出的无反射边界条件具有较高的精度和较为广泛的适应性。
     (3)将求解坝面动水压力和无限地基的SBFEM计算模型与坝体结构的有限元模型相结合,完善了大坝-库水-地基系统的耦合计算模型。SBFEM在处理无限域问题时具有很大的优势,通过与有限元方法相结合,可以充分发挥两种方法的优点,同时由于本文提出的动水压力模型更为精确,从而提高了耦合计算模型的整体计算精度。利用耦合模型,针对坝-库水-地基系统,重点分析了坝-库水动力相互作用对坝体动力响应的影响,计算模型及分析结果将对高坝建设和抗震安全评价具有重要的参考价值。
Dam-reservoir dynamic interaction is one of the most important influence factors of the dynamic response of concrete dams subjected to the strong earthquakes. Reasonable determination of the hydrodynamic pressures on the dams and its effects on the dam body during earthquakes are the basis of the safety evaluation of the dams. However, the volume of the dam is huge and the water compressibility, the absorption of the reservoir sediments, the flexibility of the foundation, the geometry of the reservoir all affect the hydrodynamic pressures. Therefore, the field test method can not be obtained the accurate value and the distribution of the hydrodynamic pressures. In terms of numerical and theory analysis, Westergaard gave the pioneer work on hydrodynamic pressures acting on rigid dam. After, many researches have extensively studied earthquake analysis of dam-reservoir system using various methods including analytical method, finite element method, and boundary method and so on. But the accurate and the efficiency of the computation model can not satisfy the demand of the engineering application and science research. So it is necessary to study a high efficient and precision numerical method for computing the hydrodynamic pressures. Based on Scaled Boundary Finite Element Method (SBFEM), this dissertation presents a computation model of dam reservoir hydrodynamic interaction and a novel radiation boundary condition for dam-reservoir systems, and also improves the coupled finite element and scaled boundary finite element approach for the earthquake response analysis of arch dam reservoir foundation systems. The major content of this dissertation is organized as follows:
     (1) Based on SBFEM, it presents the computation model for hydrodynamic pressures acting on the dam when the reservoir extended to infinity with uniform cross-section. It can be derived the governing equations of hydrodynamic pressure in the frequency domain by weight residual method or Hamilton variable principle. The water compressibility and absorption of reservoir sediments can be conveniently taken into consideration. Only the dam-reservoir interface needs to be discretized to model the fluid domain, the solution is automatic satisfy with the radiation condition at the infinity, and the hydrodynamic pressure in the stream direction is solved analytically. Several numerical examples including a gravity dam with an inclined upstream face and an arch dam with a reservoir of arbitrary cross-section are provided to demonstrate the computational efficiency and accuracy of the proposed model.
     (2) Based on SBFEM, it provides a new boundary condition of the stress on the truncation boundary suited for the complex shape of the reservoir-dam systems. The proposed approach can conveniently consider the water compressibility, the absorption of the reservoir boundary and the shape of the reservoir. Only the boundary of the dam-reservoir systems in the near field needs to be discretized. The numerical examples explain the proposed approach is not only satisfied the radiation condition boundary, but also for reducing computational efforts.
     (3) Coupling the SBFEM model for computing the hydrodynamic pressures on dam and the unbounded foundation with the FEM model for dam body, it improves the computation model of the dam-reservoir-foundation systems. SBFEM is good at solving the unbounded domain problems, and it can be seamlessly coupled with FEM, therefore, they can give full play to dam-reservoir-foundation problem. Besides, the computation model of hydrodynamic pressures based on SBFEM is much more accurate, and it can improve the precision of the coupled model. This paper presents the influence of dam-reservoir hydrodynamic interaction to the response of the dam, the computation model and the results can be of significant reference value for the high dam construction and the seismic safety evaluation.
引文
[1]Westergaard H M. Water pressures on dam during earthquake[J]. Transactions-ASCE.1933,98:418-433.
    [2]Von Karman. Pressures on dams during earthquakes-discussion[J]. Transactions-ASCE.1933,98: 434-436.
    [3]Kotsubo S. Dynamic water pressure on dams due to irregular earthquakes[J]. Faculty of Engineering Kyushu University.1959,18:119-129.
    [4]Kotsubo S. External forces on arch dams during earthquakes[J]. Memoirs Faculty of Engineering.1961, 20(4):327-360.
    [5]潘家铮.楔形重力坝在地震时动水压力作用下的应力计算[J].水利学报.1963(6):55-57.
    [6]谢省宗,钱磷.倾斜坝面地震动水压力的小参数解法[J].水利学报.1963(4):51-55.
    [7]陈振诚.地震所激起而作用于倾斜坝面上的流体动载荷[J].力学学报.1964,7(1):48-62.
    [8]李新民.关于倾斜坝面上地震动水压力[J].水利学报.1964(5):46-51.
    [9]肖天铎,周淦明.河谷断面形式对铅直坝面上地震动水压力的影响[J].水利学报.1965(1):1-15.
    [10]Chopra A K. Hydrodynamic pressures on dams during earthquakes[J]. Journal of the Engineering Mechanics Division-ASCE.1967,93(EM-6):205-223.
    [11]Chwang A T, Housner G W. Hydrodynamic pressures on sloping dams during earthquakes.Part Ⅰ Momentum Method[J]. Journal of Fluid Mechanics.1978,87:335-341.
    [12]Chwang A T. Hydrodynamic pressures on sloping dams during earthquakes.Part Ⅱ Exact Theory[J]. Journal of Fluid Mechanics.1978,87:343-348.
    [13]韩国城.水工建筑物地震动水压力[J].大连工学院学报.1978(1):1-13.
    [14]肖天铎,钱磷.各型二元挡水板或墙上的地震动水压力[J].水利学报.1980(2):1-13.
    [15]倪汉根.各型二元挡水板或墙上的地震动水压力[J].水利学报.1980(6):82-85.
    [16]阎承大,张楚汉,王光纶.规则河谷中计算水坝动水压力的解析方法[J].清华大学学报(自然科学版).1990,30(5):15-21.
    [17]於三大,熊文林,王鸿儒.具有任意折坡坝面在地震作用下动水压力的解析解[J].水利学报.1991(6):46-51,72.
    [18]Zanger C N, Haefeli R J. Electric analog indicates effect of horizontal earthquake shock on dams.[J]. Civil Engineering.1952,22(4):54-55.
    [19]潘啓忠,黄其愚,宋国演.用压电晶体测量动水压力[J].科学通报.1957(2):507-508.
    [20]宫必宁.重力坝地震动水压力试验研究[J].河海大学学报.1997,25(1):98-102.
    [21]杜修力,王进廷,Hung T. K.淤砂对库水地震动水压力作用分析[Z].2000:45,2012-2016.
    [22]李德玉,张伯艳,王海波,等.重力坝坝体—库水相互作用的振动台试验研究[J].中国水利水电科学研究院学报.2003(3):52-56.
    [23]王铭明,陈健云,范书立.重力坝地震动水压力试验研究[J].水电能源科学.2012(5):51-53.
    [24]Chakrabarti P, Chopra A K. Earthquake analysis of gravity dams including hydrodynamic interation[J]. Earthquake Engineering & Structural Dynamics.1973,2:143-160.
    [25]Chakraba. P, Chopra A K. Hydrodynamic effects in earthquake response of gravity dams[J]. Journal of the Structural Division-ASCE.1974,100(NST6):1211-1224.
    [26]Chakrabarti P, Chopra A K. Hydrodynamic pressures and response of gravity dams to vertical earthquake component[J]. Earthquake Engineering & Structural Dynamics.1972,1(4):325-335.
    [27]Nath B. Hydrodynamic pressure on arch dams-by a mapping finite element method[J]. Earthquake Engineering & Structural Dynamics.1981,9(2):117-131.
    [28]董育坚.矩形截面进水塔的地震动水压力计算[J].水利学报.1982,1:47-52.
    [29]刘—威.非直立坝面的地震动水压力[J].地震工程与工程振动.1983,3(3):28-41.
    [30]Hall J, Chopra A K. Dynamic analysis of arch dams including hydrodynamic effects[J]. Journal of Engineering Mechanics-ASCE.1983,109(1):149-167.
    [31]Fok K, Chopra A K. Earthquake analysis of arch dams including dam-water interaction, reservoir boundary absorption and foundation flexibility[J]. Earthquake Engineering & Structural Dynamics.1986, 14(2):155-184.
    [32]张楚汉,阎承大,王光纶.响洪甸拱坝的动水压力响应分析-考虑水库边界吸收作用的影响[J].水利学报.1991(11):26-34.
    [33]Tan H, Chopra A K. Earthquake analysis of arch dams including dam-water-foundation rock interaction[J]. Earthquake Engineering & Structural Dynamics.1995,24(11):1453-1474.
    [34]陈和群,章青.库水中淤沙对刚性坝的动水压力影响[J].河海大学学报(自然科学版).2000,28(4):72-76.
    [35]陈怀海,林皋.坝面动水压力影响系数的一种简化求法[J].计算力学学报.2000,17(2):238-241.
    [36]邱流潮,张立翔.地震作用下拱坝--库水耦合振动动水压力分析[J].水动力学研究与进展A辑.2000,15(1):94-103.
    [37]蒋景彩.动水压力问题的边界单元法[J].地震工程与工程振动.1988,8(2):44-54.
    [38]陈国荣,姜弘道.边界单元法在动水压力分析中的应用[J].河海大学学报.1989,17(2):19-25.
    [39]Jablonski A M, Humar J L. Three-dimensional boundary element reservoir model for seismic analysis of arch and gravity dams[J]. Earthquake Engineering & Structural Dynamics.1990,19(3):359-376.
    [40]Tsai C, Lee G C. Arch dam-fluid interactions:By fem-bem and substructure concept[J]. International Journal for Numerical Methods in Engineering.1987,24(12):2367-2388.
    [41]Touhei T, Ohmachi T. A FE-BE method for dynamic analysis of dam-foundation-reservoir systems in the time domain[J]. Earthquake Engineering & Structural Dynamics.1993,22(3):195-209.
    [42]傅作新.加权余量法解部分吸收库底条件下水坝的动水压力[J].地震工程与工程振动.1986,6(4):86-92.
    [43]傅作新,陆瑞明.水库的库底条件和挡水结构的动水压力[J].水利学报.1987(5):28-35.
    [44]傅作新.挡水坝动水压力的一个有效解法[J].河海大学学报.1987,15(1):1-7.
    [45]章青,傅作新.考虑库底吸收作用时挡水坝的抗震分析[J].河海大学学报.1988,16(6):20-32.
    [46]张茂祥.关于“加权余量法解部分吸收库底条件下水坝的动水压力”的讨论[J].地震工程与工程振动.1987,7(4):95-96.
    [47]章青,傅作新.拱坝坝面动水压力的加权余量解法[J].河海大学学报.1990,18(2):32-41.
    [48]凌斐章,朱永诚,石庆尧.一般库底条件下刚性坝面的动水压力[J].合肥工业大学学报(自然科学版).1989,12(4):21-31.
    [49]阎承大,张楚汉.拱坝地震动水压力分析的配点法[J].地震工程与工程振动.1990,10(4):73-82.
    [50]Chopra A K. Earthquake behavior of reservoir-dam systems[J]. Journal of Engineering Mechanics Division-ASCE.1968,94(EM6):1475-1500.
    [51]Permumalswami P R, Kar L. Earthquake hydrodynamic forces on arch dams[J]. Journal of Engineering Division-ASCE.1973,99:965-977.
    [52]Porter C S, Chopra A K. Hydrodynamic effects in dynamic response of simple arch dams[J]. Earthquake Engineering & Structural Dynamics.1982,10(3):417-431.
    [53]刘浩吾.混凝土坝动水压力与库水可压缩性效应[J].水利水电科技进展.2002,22(2):10-13.
    [54]王忠,柴贺军,刘浩吾.重力坝动水压力与地震干扰频率的关系[J].成都理工学院学报.2002,29(1):101-104.
    [55]赵兰浩,李同春,牛志伟.考虑库水可压缩性的高拱坝动力特性分析[J].水电能源科学.2008,26(3):95-97.
    [56]Fenves G, Chopra A K. Earthquake analysis of concrete gravity dams including reservoir bottom absorption and dam-water-foundation rock interaction[J]. Earthquake Engineering & Structural Dynamics. 1984,12(5):663-680.
    [57]Cheng A. Effect of sediment on earthquake-induced reservoir hydrodynamic response[J]. Journal of Engineering Mechanics-ASCE.1986,112(7):654-665.
    [58]於三大,熊文林,王鸿儒.库底淤砂对地震动水压力的影响[J].武汉水利电力学院学报.1992,25(5):487-493.
    [59]Dominguez J, Gallego R, Japon B R. Effects of porous sediments on seismic response of concrete gravity dams[J]. Journal of Engineering Mechanics-ASCE.1997,123(4):302-311.
    [60]Du X, Wang J, Hung J K. Effects of sediment on the dynamic pressure of water and sediment on dams[J]. Chinese Science Bulletin.2001,46(7):521-524.
    [61]Zhang C, Yan C, Wang G. Numerical simulation of reservoir sediment and effects on hydro-dynamic response of arch dams[J]. Earthquake Engineering & Structural Dynamics.2001,30(12):1817-1837.
    [62]王忠,晏启祥,刘浩吾.库底反射性边界条件与地震动水压力分析[J].四川大学学报(工程科学版).2002,34(1):36-39.
    [63]晏启祥,刘浩吾,王忠.流固耦合系统库底边界对动水压力的影响[J].西南交通大学学报.2002,37(3):246-249.
    [64]Sommerfeld A. Partial Differential Equations in Physics[M]. New York:Academic Press,1949.
    [65]Sharan S K. Finite element modeling of infinite reservoirs[J]. Journal of Engineering Mechanics-ASCE. 1985,111(12):1457-1469.
    [66]Sharan S K. Time-domain analysis of infinite fluid vibration[J]. International Journal for Numerical Methods in Engineering.1987,24(5):945-958.
    [67]Maity D, Bhattacharyya S K. Time-domain analysis of infinite reservoir by finite element method using a novel far-boundary condition[J]. Finite Elements in Analysis and Design.1999,32(2):85-96.
    [68]Maity D. A novel far-boundary condition for the finite element analysis of infinite reservoir[J]. Applied Mathematics and Computation.2005,170(2):1314-1328.
    [69]章青,傅春梅.考虑表面波影响时挡水结构的动水压力[J].河海大学学报.1998,26(6):37-43.
    [70]Dasgupta G. A finite element formulation for unbounded homogeneous continua[J]. Journal of Applied Mechanics-Transactions of the ASME.1982,49(1):136-140.
    [71]Wolf J P, Song C. Dynamic-stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method[J]. Earthquake Engineering & Structural Dynamics.1994,23(11):1181-1198.
    [72]Song C, Wolf J P. Dynamic stiffness of unbounded medium based on damping-solvent extraction[J]. Earthquake Engineering & Structural Dynamics.1994,23(2):169-181.
    [73]Song C, Wolf J P. Unit-impulse response matrix of unbounded medium by finite-element based forecasting[J]. International Journal for Numerical Methods in Engineering.1995,38(7):1073-1086.
    [74]Song C M, Wolf J P. Consistent infinitesimal finite-element-cell method-out-of-plane motion[J]. Journal of Engineering Mechanics-ASCE.1995,121(5):613-619.
    [75]Wolf J P, Song C M. Consistent infinitesimal finite-element cell method-inplane motion[J]. Computer Methods in Applied Mechanics and Engineering.1995,123(1-4):355-370.
    [76]P W J, Song C M. Consistent infinitesimal finite-element cell method-Three dimensional scalar wave motion[J]. Journal of Applied Mechanics-Transactions of the ASME.1996,63(3):650-654.
    [77]Song C, Wolf J P. Consistent infinitesimal finite-element cell method:three-dimensional vector wave equation[J]. International Journal for Numerical Methods in Engineering.1996,39(13):2189-2208.
    [78]Wolf J P, Song C M. Static stiffness of unbounded soil by finite-element method[J]. Journal of Geotechnical Engineering-ASCE.1996,122(4):267-273.
    [79]Song C, Wolf J P. Consistent infinitesimal finite-element cell method for diffusion equation in unbounded medium[J]. Computer Methods in Applied Mechanics and Engineering.1996,132(3-4):319-334.
    [80]Wolf J P, Song C. Finite-element modelling of unbounded media[M]. Chichester:John Wiley & Sons, 1996.
    [81]Song C, Wolf J P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering.1997,147(3-4):329-355.
    [82]Wolf J P, Song C. The scaled boundary finite-element method-a primer:derivation[J]. Computers & Structures.2000,78(1-3):191-210.
    [83]Song C, Wolf J P. The scaled boundary finite-element method-a primer:solution procedures[J]. Computers & Structures.2000,78(1-3):211-225.
    [84]Song C, Wolf J P. The scaled boundary finite-element method:analytical solution in frequency domain[J]. Computer Methods in Applied Mechanics and Engineering.1998,164(1-2):249-264.
    [85]Song C, Wolf J P. Body loads in scaled boundary finite-element method[J]. Computer Methods in Applied Mechanics and Engineering.1999,180(1-2):117-135.
    [86]Deeks A J, Wolf J P. A virtual work derivation of the scaled boundary finite-element method for elastostatics[J]. Computational Mechanics.2002,28(6):489-504.
    [87]Deeks A J, Wolf J P. Stress recovery and error estimation for the scaled boundary finite-element method[J]. International Journal for Numerical Methods in Engineering.2002,54(4):557-583.
    [88]Deeks A J, Wolf J P. Semi-analytical elastostatic analysis of unbounded two-dimensional domains[J]. International Journal for Numerical and Analytical Methods in Geomechanics.2002,26(11):1031-1057.
    [89]Deeks A J, Wolf J P. An h-hierarchical adaptive procedure for the scaled boundary finite-element method[J]. International Journal for Numerical Methods in Engineering.2002,54(4):585-605.
    [90]胡志强,林皋,王毅,等.基于Hamilton体系的弹性力学问题的比例边界有限元方法[J].计算力学学报.2011(4):510-516.
    [91]Hu Z, Lin G, Wang Y, et al. A Hamiltonian-based derivation of Scaled Boundary Finite Element Method for elasticity problems[J]. IOP Conf. Series:Materials Science and Engineering.2010,10:12213.
    [92]Song C. A matrix function solution for the scaled boundary finite-element equation in statics[J]. Computer Methods in Applied Mechanics and Engineering.2004,193(23-26):2325-2356.
    [93]Song C. Dynamic analysis of unbounded domains by a reduced set of base functions[J]. Computer Methods in Applied Mechanics and Engineering.2006,195(33-36):4075-4094.
    [94]Vu T H, Deeks A J. Use of higher-order shape functions in the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering.2006,65(10):1714-1733.
    [95]Song C, Bazyar M H. A boundary condition in Pade series for frequency-domain solution of wave propagation in unbounded domains[J]. International Journal for Numerical Methods in Engineering.2007, 69(11):2330-2358.
    [96]Bazyar M H, Song C. A continued-fraction-based high-order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry[J]. International Journal for Numerical Methods in Engineering.2008,74(2):209-237.
    [97]Prempramote S, Song C, Tin-Loi F, et al. High-order doubly asymptotic open boundaries for scalar wave equation[J]. International Journal for Numerical Methods in Engineering.2009,79(3):340-374.
    [98]Birk C, Prempramote S, Song C. An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains[J]. International Journal for Numerical Methods in Engineering.2012,89(3):269-298.
    [99]Bazyar M H, Song C. Transient analysis of wave propagation in non-homogeneous elastic unbounded domains by using the scaled boundary finite-element method[J]. Earthquake Engineering & Structural Dynamics.2006,35(14):1787-1806.
    [100]Bazyar M H, Song C. Time-harmonic response of non-homogeneous elastic unbounded domains using the scaled boundary finite-element method[J]. Earthquake Engineering & Structural Dynamics.2006,35(3): 357-383.
    [101]杜建国,林皋.基于比例边界有限元法的结构-地基动力相互作用时域算法的改进[J].水利学报.2007,38(1):8-14.
    [102]Zhang X, Wegner J L, Haddow J B. Three-dimensional dynamic soil-structure interaction analysis in the time domain[J]. Earthquake Engineering & Structural Dynamics.1999,28(12):1501-1524.
    [103]Yan J, Zhang C, Jin F. A coupling procedure of FE and SBFE for soil-structure interaction in the time domain[J]. International Journal for Numerical Methods in Engineering.2004,59(11):1453-1471.
    [104]Genes M C, Kocak S. Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model[J]. International Journal for Numerical Methods in Engineering.2005,62(6):798-823.
    [105]Radmanovic B, Katz C. A High Performance Scaled Boundary Finite Element Method[J]. IOP Conf. Series:Materials Science and Engineering.2010(10):12214.
    [106]Wang Y, Lin G, Hu Z. A coupled FE and scaled boundary FE-approach for the earthquake response analysis of arch dam-reservoir-foundation system[J]. IOP Conf. Series:Materials Science and Engineering.2010(10):12212.
    [107]Deeks A J, Cheng L. Potential flow around obstacles using the scaled boundary finite-element method[J], International Journal for Numerical Methods in Fluids.2003,41(7):721-741.
    [108]Li B, Cheng L, Deeks A J, et al. A modified scaled boundary finite-element method for problems with parallel side-faces. Part Ⅱ. Application and evaluation[J]. Applied Ocean Research.2005,27(4-5): 224-234.
    [109]Li B, Cheng L, Deeks A J, et al. A modified scaled boundary finite-element method for problems with parallel side-faces. Part I. Theoretical developments[J]. Applied Ocean Research.2005,27(4-5): 216-223.
    [110]Li B, Cheng L, Deeks A J, et al. A semi-analytical solution method for two-dimensional Helmholtz equation[J]. Applied Ocean Research.2006,28(3):193-207.
    [111]Teng B, Zhao M, He G H. Scaled boundary finite element analysis of the water sloshing in 2D containers[J]. International Journal for Numerical Methods in Fluids.2006,52(6):659-678.
    [112]Song H, Tao L. Short-crested wave interaction with a concentric porous cylindrical structure[J]. Applied Ocean Research.2007,29(4):199-209.
    [113]Song H, Tao L. Short-crested wave interaction with a concentric porous cylindrical structure[J]. Applied Ocean Research.2007,29(4):199-209.
    [114]Tao L, Song H, Chakrabarti S. Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder[J]. Computer Methods in Applied Mechanics and Engineering.2007,197(1-4): 232-242.
    [115]Tao L, Song H, Chakrabarti S. Nonlinear progressive waves in water of finite depth-an analytic approximation J]. Coastal Engineering.2007,54(11):825-834.
    [116]Song H, Tao L, Chakrabarti S. Modelling of water wave interaction with multiple cylinders of arbitrary shape[J]. Journal of Computational Physics.2010,229(5):1498-1513.
    [117]Song H, Tao L. An efficient scaled boundary FEM model for wave interaction with a nonuniform porous cylinder[J]. International Journal for Numerical Methods in Fluids.2010,63(1):96-118.
    [118]Li S, Liang H, Li A. A semi-analytical solution for characteristics of a dam-reservoir system with absorptive reservoir bottom[J]. Journal of Hydrodynamics, Ser. B.2008,20(6):727-734.
    [119]Li S M. Diagonalization procedure for scaled boundary finite element method in modeling semi-infinite reservoir with uniform cross-section[J]. International Journal for Numerical Methods in Engineering. 2009,80(5):596-608.
    [120]Li M, Zhang H, Guan H. Study of offshore monopile behaviour due to ocean waves[J]. Ocean Engineering. 2011,38(17-18):1946-1956.
    [121]Wang X, Jin F, Prempramote S, et al. Time-domain analysis of gravity dam-reservoir interaction using high-order doubly asymptotic open boundary[J]. Computers & Structures.2011,89(7-8):668-680.
    [122]王翔,金峰.动水压力波高阶双渐近时域平面透射边界Ⅰ:理论推导[J].水利学报.2011(7):839-847.
    [123]王翔,金峰.动水压力波高阶双渐近时域平面透射边界Ⅱ:计算性能[J].水利学报.2011(8):986-994.
    [124]王翔,宋崇民,金峰.离散高阶Higdon-like透射边界[J].工程力学.2010(2):12-18.
    [125]林皋,杜建国.基于SBFEM的坝-库水相互作用分析[J].大连理工大学学报.2005,45(5):723-729.
    [126]杜建国,林皋,谢清粮.一种新的求解坝面动水压力的半解析方法[J].振动与冲击.2009,28(3):31-34,45.
    [127]Lin G, Du J G, Hu Z Q. Dynamic dam-reservoir interaction analysis including effect of reservoir boundary absorption[J]. Science in China Series E-Technological Sciences.2007,50(1):1-10.
    [128]Lin G, Wang Y, Hu Z. An efficient approach for frequency-domain and time-domain hydrodynamic analysis of dam-reservoir systems[J]. Earthquake Engineering & Structural Dynamics.2012,41(13): 1725-1749.
    [129]Song C, Wolf J P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method[J]. Computers & Structures. 2002,80(2):183-197.
    [130]Song C. A super-element for crack analysis in the time domain[J]. International Journal for Numerical Methods in Engineering.2004,61(8):1332-1357.
    [131]Song C. Evaluation of power-logarithmic singularities, T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners[J]. Engineering Fracture Mechanics.2005, 72(10):1498-1530.
    [132]Song C, Vrcelj Z. Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method[J]. Engineering Fracture Mechanics.2008,75(8):1960-1980.
    [133]Song C, Tin-Loi F, Gao W. A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges[J]. Engineering Fracture Mechanics.2010,77(12):2316-2336.
    [134]Ooi E T, Song C, Tin-Loi F, et al. Polygon scaled boundary finite elements for crack propagation modelling[J]. International Journal for Numerical Methods in Engineering.2012,91(3):319-342.
    [135]Li C, Man H, Song C, et al. Fracture analysis of piezoelectric materials using the scaled boundary finite element method[J]. Engineering Fracture Mechanics.2013,97(0):52-71.
    [136]Augarde C E, Deeks A J. On the effects of nodal distributions for imposition of essential boundary conditions in the MLPG meshfree method[J]. Communications in Numerical Methods in Engineering. 2005,21(7):389-395.
    [137]Yang Z J, Deeks A J, Hao H. Transient dynamic fracture analysis using scaled boundary finite element method:a frequency-domain approach[J]. Engineering Fracture Mechanics.2007,74(5):669-687.
    [138]Yang Z J, Deeks A J. Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method[J]. Engineering Fracture Mechanics.2007,74(16):2547-2573.
    [139]Chidgzey S R, Trevelyan J, Deeks A J. Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics[J]. Computers & Structures.2008,86(11-12):1198-1203.
    [140]He Y Q, Yang H T, Deeks A J. Determination of coefficients of crack tip asymptotic fields by an element-free Galerkin scaled boundary method[J]. Fatigue & Fracture of Engineering Materials & Structures.2012,35(8):767-785.
    [141]刘钧玉,林皋,李建波,等.重力坝动态断裂分析[J].水利学报.2009(9):1096-1102.
    [142]刘钧玉,林皋,胡志强,等.裂纹内水压分布对重力坝断裂特性的影响[J].土木工程学报.2009(3):132-141.
    [143]朱朝磊,李建波,林皋.基于SBFEM任意角度混合型裂纹断裂能计算的J积分方法研究[J].土木工程学报.2011(4):16-22.
    [144]Liu J, Lin G. A scaled boundary finite element method applied to electrostatic problems[J]. Engineering Analysis with Boundary Elements.2012,36(12):1721-1732.
    [145]Lin Z, Liao S. The scaled boundary FEM for nonlinear problems[J]. Communications in Nonlinear Science and Numerical Simulation.2011,16(1):63-75.
    [146]Chopra A K, Chakrabarti P. Earthquake analysis of concrete gravity dams including dam-fluid-foundation rock interaction[J]. Earthquake Engineering & Structural Dynamics.1981,9(4):363-383.
    [147]Hanna Y G, Humar J L. Boundary element analysis of fluid domain[J]. Journal of the Engineering Mechanics Division-ASCE.1982,108(2):436-450.
    [148]Fok K, Chopra A K. Frequency response functions for arch dams:Hydrodynamic and foundation flexibility effects[J]. Earthquake Engineering & Structural Dynamics.1986,14(5):769-795.
    [149]Bouaanani N, Miquel B. A new formulation and error analysis for vibrating dam-reservoir systems with upstream transmitting boundary conditions[J]. Journal of Sound and Vibration.2010,329(10): 1924-1953.
    [150]Samii A, Lotfi V. Application of H-W boundary condition in dam-reservoir interaction problem[J]. Finite Elements in Analysis and Design.2012,50:86-97.
    [151]Tsai C S, Lee G C. Time-domain analyses of dam-reservoir system.Ⅱ. substructure method[J]. Journal of Engineering Mechanics-ASCE.1991,117(9):2007-2026.
    [152]Wepf D H, Wolf J P, Bachmann H. Hydrodynamic-stiffness matrix based on boundary elements for time-domain dam-reservoir-soil analysis[J]. Earthquake Engineering & Structural Dynamics.1988,16(3): 417-432.
    [153]Humar J L, Jablonski A M. Boundary element reservoir model for seismic analysis of gravity dams[J]. Earthquake Engineering & Structural Dynamics.1988,16(8):1129-1156.
    [154]Estorff O, Antes H. On FEM-BEM coupling for fluid-structure interaction analyses in the time domain[J]. International Journal for Numerical Method in Engineering.1991,31(1):1151-1168.
    [155]Kiicukarslan S. Dynamic analysis of dam-reservoir-foundation interaction in time domain[J]. Computational Mechanics.2004,33(4):274-281.
    [156]Maity D, Bhattacharyya S K. Time-domain analysis of infinite reservoir by finite element method using a novel far-boundary condition[J]. Finite Elements in Analysis and Design.1999,32(2):85-96.
    [157]Sharan S K. Efficient finite element analysis of hydrodynamic pressure on dams[J]. Computers & Structures.1992,42(5):713-723.
    [158]Prempramote S, Song C, Tin-Loi F, et al. High-order doubly asymptotic open boundaries for scalar wave equation[J]. International Journal for Numerical Methods in Engineering.2009,79(3):340-374.
    [159]Birk C, Prempramote S, Song C. An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains[J]. International Journal for Numerical Methods in Engineering.2012,89(3):269-298.
    [160]Birk C, Ruge P. A symmetric time-domain model for 3D dam-reservoir interaction including radiation damping[J]. Earthquake Engineering & Structural Dynamics.2007,36(5):661-682.
    [161]Millan M A, Young Y L, Prevost J H. The effects of reservoir geometry on the seismic response of gravity dams[J]. Earthquake Engineering & Structural Dynamics.2007,36(11):1441-1459.
    [162]Aydin I, Demirel E. Hydrodynamic modeling of dam-reservoir response during earthquakes[J]. Journal of Engineering Mechanics-ASCE.2012,138(2):164-174.
    [163]Bouaanani N, Paultre P, Proulx J. A closed-form formulation for earthquake-induced hydrodynamic pressure on gravity dams[J]. Journal of Sound and Vibration.2003,261(3):573-582.
    [164]Sharan S K. Modelling of radiation damping in fluids by finite elements[J]. International Journal for Numerical Methods in Engineering.1986,23(5):945-957.
    [165]Ghaemian M, Ghobarah A. Staggered solution schemes for dam-reservoir interaction[J]. Journal of Fluids and Structures.1998,12(7):933-948.
    [166]Li X, Romo M P O, Aviles J L. Finite element analysis of dam-reservoir systems using an exact far-boundary condition[J]. Computers & Structures.1996,60(5):751-762.
    [167]Coskun S B. An exact truncation boundary condition for incompressible fluid domains in dam-reservoir interaction analysis[J]. Engineering Structures.2007,29(4):635-639.
    [168]Song C, Wolf J P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering.1997,147(3-4):329-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700