Te/TeO_2-SiO_2复合薄膜的电化学—溶胶凝胶法制备及其非线性光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TeOx基非线性光学薄膜材料具有优良的非线性光学性能,在光通讯、光计算机、光信息处理等方面具有良好的应用前景。电化学-溶胶凝胶法制备薄膜结合了溶胶凝胶法和电沉积法的优势,能够制备出结构和性能优异的复合薄膜材料。本论文以TeO_2-SiO_2复合溶胶作为电解液,利用电化学-溶胶凝胶法在ITO导电玻璃基底上制备了Te/TeO_2-SiO_2复合薄膜;该薄膜经过热处理制备出了α-TeO_2-Te/TeO_2-SiO_2复合薄膜;采用Z-scan方法研究了这两种薄膜的三阶非线性光学性能。
     以正硅酸乙酯和异丙醇碲为先驱体在真空手套箱中成功制备出了澄清透明的TeO_2-SiO_2复合溶胶,而且溶胶在空气中能长期保持稳定,为电化学制备薄膜提供了基础。采用循环伏安、Tafel曲线、交流阻抗电化学方法研究了在TeO_2-SiO_2复合溶胶中制备薄膜的机理。循环伏安结果表明,TeO_2-SiO_2体系的电化学诱导溶胶凝胶过程中包含了Te的电沉积:在析氢电位下,阴极表面区域pH值升高的诱导作用使得在电极表面生成了TeO_2-SiO_2复合凝胶薄层;与此同时发生了Te的电沉积,使Te共沉积于TeO_2-SiO_2薄膜中,从而形成Te/TeO_2-SiO_2薄膜。采用Tafel曲线测试了复合溶胶体系中的Te电沉积过程的动力学参数,其交换电流密度为9.66×10-7 A-cm-2,传递系数α=0.149。电化学阻抗谱显示在阴极电位下电极表面能够生成薄膜,电化学阻抗谱中存在的较大弥散效应表明制备的薄膜是镶嵌结构。
     SEM/EDX表征结果表明:采用恒电位法制备的Te/TeO_2-SiO_2复合薄膜中镶嵌了大量Te单质颗粒,其粒径为100 ~ 300 nm。薄膜中的Te/Si比值随沉积电位和沉积时间不同而变化,在中间电位(-0.8 V附近)处Te/Si比值最高并且Te/Si比值随沉积时间相对较稳定;而在较正(-0.1 V, -0.4 V)和较负电位(-1.5 V)下Te/Si比值较低;在较正和较负电位下,随着沉积时间延长,薄膜中的Te/Si比逐渐升高。随着沉积时间延长,薄膜中的Te颗粒逐渐长大,颗粒形状由圆球形逐渐长大成六棱柱状。XRD、TG结果表明,制备的Te/TeO_2-SiO_2复合薄膜经过热处理后,由于Te颗粒在空气中部分被氧化成α-TeO_2,从而可得到α-TeO_2-Te/TeO_2-SiO_2复合薄膜。
     采用Z-scan法测试了薄膜的非线性折射系数、非线性吸收系数和三阶非线性极化系数。制备的薄膜都属于自散焦、饱和吸收材料,Te/TeO_2-SiO_2复合薄膜的三阶非线性极化系数χ(3)达到10-14 (m/V)2(或10-6 esu),α-TeO_2-Te/TeO_2-SiO_2薄膜也具有同等量级的非线性极化系数,两者都远高于碲酸盐玻璃类材料。
     凝胶薄膜中的TeO_2和镶嵌其中的α-TeO_2都具有[TeO4]单元的三角双锥结构,这是产生高非线性极化的原因之一,此外,薄膜中镶嵌的具有良好导电性的Te晶体颗粒也起到了重要作用:一方面,颗粒表面等离子体的共振吸收对非线性光学效应有巨大的放大效果;另一方面,Te颗粒中的自由电子在电磁场作用下发生定向移动,生成强的电偶极子,从而产生很强的极化。
Due to the excellent optical nonlinearity, TeOx based nonlinear optical material thin films have promising applications in optical communication, optical computer and optical information processing etc. For the preparation of their thin film, electrochemistry-sol-gel method takes the advantages of both sol-gel and electrodeposition methods, which help to fabricate high quality thin films of the composite materials. In this dissertation, using TeO_2-SiO_2 composite sol as electrolyte, Te/TeO_2-SiO_2 composite thin films was successfully prepared on the ITO glass by the electrochemical sol-gel method.α-TeO_2-Te/TeO_2-SiO_2 composite films were further obtained by thermo treatment of Te/TeO_2-SiO_2 composite thin films. In addition, third-order optical nonlinearities of as-prepared two kinds of composite films were studied by Z-scan technique.
     Firstly, TeO_2-SiO_2 composite sol was successfully prepared by using TEOS and Te(OPri)_4 as precursors. The as-prepared TeO_2-SiO_2 composite sols are very stable in ambient condition for long time, which make it easy for preparation of thin films by electrodeposition. The deposition mechanism of the composite film was then studied by using the cyclic-voltammetry (CV), Tafel plot and AC impedance techniques. The CV measurements showed that electrochemically induced sol-gel process included the electrodeposition of Te. The increase of local pH value in the anode area due to the evolution of hydrogen resulted in the formation of TeO_2-SiO_2 composite films. Because of the simultaneous electrodepositon Te occurred, Te/TeO_2-SiO_2 composite film finally formed. The Tafel plot was used to study the kinetic parameters of the deposition of Te, which showed the exchange current density i0 = 9.66×10~(-7) A-cm~(-2),and transfer coefficientα=0.149. Electrochemical AC impedance studies showed that the composite film could be formed in the cathodic potential range. The obvious dispersion effect in the AC impedance spectroscopy indicated the as-prepared thin films were of mosaic structure.
     The morphology and the composition of Te/TeO_2-SiO_2 composited films were then studied by scanning electronic microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques. It was shown that Te particles with size of 100 to 300 nanometers were uniformly embedded in the as-prepared composited films. The EDX measurement showed that the Te/Si ratio in the composite films depended on deposition potential and time. High Te/Si ratio appeared at potentials about -0.8 V was high and relatively stable. However, when the potentials were more positive (-0.1 V and -0.4 V) or more negative (-1.5 V), the values of Te/Si ratio decreased. However, its value increased with the increase of deposition time. With the deposition time prolonging, the Te particles grew larger, and their shapes changed from spherical shape to hexagonal prism. XRD and TG measurements showed that Te particles were partially oxidized toα-TeO_2 during the thermo treatment in air, resulting in the formation ofα-TeO_2-Te/TeO_2-SiO_2 composite films.
     The nonlinear refractive index (γ), nonlinear adsorption coefficient (β) and third order nonlinear susceptibility (χ(3)) of composite films were tested by Z-scan technique. It was found both composite films belonged to self-defocused and saturated absorption materials.χ(3) of Te/TeO_2-SiO_2 composite films reached 10-14 (m/V)2 or 10-6 esu, and that ofα-TeO_2-Te/TeO_2-SiO_2 composite films are in the same order, which was much higher than that of tellurite glass.
     Both TeO_2 andα-TeO_2 embedded in the thin film consists of [TeO_4] units with trigonal bipyramid structure, which are the source of large nonlinear effect. In addition, the good conductivity of Te particles may also play important role in the excellent nonlinear property. On the one hand, the surface plasmon resonance absorption of Te particles may greatly enhance third-order nonlinearities due to the giant amplification of local electric field. On the other hand, there are a great amount of free electrons on/in metal particles surfaces, which move directionally under electromagnetic field and form strong electric dipole, resulting in strong polarization.
引文
[1]罗丽庆,王海波,林健,黄文旵.碲酸盐系统玻璃的研究进展[J].光电子技术与信息, 2005,18(1): 1-6.
    [2]王海波,林健,黄文旵.碲酸盐系统玻璃组成和结构对非线性光学性能的影响[J].材料导报, 2003, 17(8): 34-36.
    [3]林健,黄文旵,王海波,井冲,罗丽庆. TeO2-Nb2O5系统玻璃的成玻性能研究[J].材料科学与工程学报, 2004,22(6): 827-830.
    [4]井冲,林健,黄文旵. TeO2-Nb2O5系统玻璃的析晶性能研究[J].玻璃与搪瓷, 2005,33(3) : 15-19.
    [5] B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-M esjard, T. Merle-Méjean, B. Frit, V. Nazabal, E. Fargin, G. Le Flem, M. O. Martin, B. Bousquet, L. Canioni, S. Le Boiteux, P. Segonds, L. Sarger. Glass Structure and Optical Nonlinearities in Thallium(I) Tellurium(IV) Oxide Glasses[J]. Journal of Solid State Chemistry, 1999,146: 329-335.
    [6] M. Soulis, T. Merle-Méjean, A.P. Mirgorodsky, O. Masson, E. Orhan, P. Thomas, M.B. Smirnov. Local molecular orbitals and hyper-susceptibility of TeO2 glass[J]. Journal of Non-Crystalline Solids, 2008, 354: 199-202.
    [7] S. Suehara, P. Thomas, A. Mirgorodsky, T. Merle-Méjean, J.C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, S. Inoue. Non-linear optical properties of TeO2-based glasses: ab initio static finite-field and time-dependent calculations[J]. Journal of Non-Crystalline Solids, 2004,345&346: 730-733.
    [8] O. Noguera, T. Merle-Méjean, A.P. Mirgorodsky, M.B. Smirnov, P. Thomas, J.-C. Champarnaud-Mesjard. Vibrational and structural properties of glass and crystalline phases of TeO2 [J]. Journal of Non-Crystalline Solids, 2003,330: 50-60.
    [9] D. Tatar, M.L. ?veco?lu, G. ?zen. Microstructural characterization and crystallization of (1?x)TeO2–xCdF2 (x = 0.10, 0.15, 0.25 mol) glasses[J]. Journal of the European Ceramic Society, 2008,28: 3097-3106.
    [10] O. Noguera, S. Suehara. High nonlinear optical properties in TeO2-based glasses: A modifier’s influence study from the localized hyperpolarizability approach[J]. Journal of Non-Crystalline Solids, 2008, 354: 188-192.
    [11] Y.F. Chen, Q.H. Nie, T.F. Xu, S.X. Dai, X.S. Wang, X. Shen. A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses[J]. Journal of Non-Crystalline Solids, 2008,354:3468-3472.
    [12] J.C. Sabadel, P. Armand, D. Cachau-Herreillat, P. Baldeck, O. Doclot, A. Ibanez, E. Philippot. Structural and Nonlinear Optical Characterizations of Tellurium Oxide-Based Glasses: TeO2–BaO–TiO2[J]. Journal of Solid State Chemistry, 1997,132: 411-419.
    [13] M. Udovic, P. Thomas, A. Mirgorodsky, O. Masson, T. Merle-Mejean, C. Lasbrugnas, J.C. Champarnaud-Mesjard, T. Hayakawa. Formation domain and characterization of new glasses within the Tl2O–TiO2–TeO2 system[J]. Materials Research Bulletin, 2009,44: 248-253.
    [14]任军江,黄文旵,林健,孙真荣,黄玉华.碲铌铅玻璃的三阶非线性光学特性[J].光电子·激光, 2002,13(6) : 590-592.
    [15]林健,黄文旵,孙真荣,王海波,罗丽庆.稀土掺杂碲铌锌系统玻璃的非线性光学性能[J].功能材料, 2004,35(6) : 745-747.
    [16]赵振宇,施家添,孙真荣,林健,黄文旵,王祖赓.掺铕碲铌锌玻璃的三阶非线性光学特性[J].科学通报, 2004,49(23) : 2400-2402.
    [17] E.S. Yousef, M. Hotzel, C. Rüssel. The effect of CdS addition on linear and non-linear refractive indices of glasses in the system TeO2/Nb2O5/ZnO[J]. Journal of Non-Crystalline Solids, 2008,354: 4675-4680.
    [18]王艳玲.碲酸盐玻璃的非线性特性研究[D].宁波:宁波大学,2008: 57-60.
    [19] B. Jeansannetas, P. Thomas, J.C. Champarnaud-Mesjard, B. Frit. Crystal structure of Tl2Te3O7[J]. Materials Research Bulletin, 1997, 32(1) : 51-55.
    [20] B. Jeansannetas, P. Thomas, J.C. Champarnaud-Mesjard, B. Frit. Crystal structure ofα-Tl2Te2O5[J]. Materials Research Bulletin, 1998,33(11) : 1709-1716.
    [21] J.P. Laval, N.J. Boukharrata, P. Thomas. New oxyfluorotellurates(IV): MTeO3F (M = Fe-III, Ga-III and Cr-III) [J]. Acta Crystallographica Section C-Crystal Structure Communications, 2008,64: I12-I14.
    [22] R.L. Frost, E.C. Keeffe. Raman spectroscopic study of the tellurite mineral: poughite Fe23+SO4(TeO3)2·3H2O– a multi-anion mineral[J]. Journal of Raman Spectroscopy, 2008,39: 1794-1798.
    [23] R.L. Frost, M.J. Dickfos, E.C. Keeffe. Raman spectroscopic study of the tellurite minerals: emmonsite Fe23+Te34+O9·2H2O and zemannite Mg0.5[Zn2+Fe3+(TeO3)3]4·5H2O[J]. Journal of Raman Spectroscopy, 2008,39: 1784-1788.
    [24] R.L. Frost, J. Cejka, M.J. Dickfos. Raman spectroscopic study of the uranyl tellurite mineralmoctezumite PbUO2(TeO3)2[J]. Journal of Raman Spectroscopy, 2009,40: 38-41.
    [25] R.L. Frost. Tlapallite H6(Ca,Pb)2(Cu,Zn)3SO4(TeO3)4TeO6, a multi-anion mineral: A Raman spectroscopic study[J]. Spectrochimica Acta Part A, 2009,72: 903-906.
    [26] R. Nayak, V. Gupta, AL. Dawar, K. Sreenivas. Optical waveguiding in amorphous tellurium oxide thin films[J]. Thin Solid Films, 2003,445: 118-126.
    [27] N. Dewan, K. Sreenivas, V. Gupta. Properties of crystallineγ-TeO2 thin film[J]. Journal of Crystal Growth, 2007,305: 237-241.
    [28] N. Dewan, K. Sreenivas, V. Gupta. Comparative study on TeO2 and TeO3 thin film forγ-ray sensor application[J]. Sensors and Actuators A: Physical, 2008,147: 115-120.
    [29] X. Gong, X. Shang, D. Zhang. Study on SAW Characteristics of Amorphous-TeO2/36°Y-X LiTaO3 Structures[J]. IEEE International Ultrasonics Symposium Proceedings, 2008, 1011-1012.
    [30] M. Pregelj, D. Arcon, A. Zorko, O. Zaharko, LC. Brunel, H. van Tool, A. Ozarowski, S. Nellutla, H. Berger. Temperature dependence of antiferromagnetic resonance mode in two-dimensional system Ni5(TeO3)4Br2[J]. Physica B, 2008,403: 950-951.
    [31] C.H. Choi, J.Y. Choi, K.H. Cho, M.J. Yoo, S. Nahm, C.Y. Kang, S.J. Yoon, J.H. Kim. Effect of oxygen vacancies on the electrical properties of Bi6Ti5TeO22 thin film[J]. Electrochemical and Solid-State Letters, 2008,11(11) : G51-G54.
    [32] CH. Choi, J.Y. Choi, K.H. Cho, M.J. Yoo, J.H. Choi, S. Nahm, C.Y. Kang, S.J. Yoon, H.J. Lee. Structural and electrical properties of Bi6Ti5TeO22 thin films grown on Pt/Ti/SiO2/Si Substrate[J]. Journal of the Electrochemical Society, 2008,155(4) : G87-G90.
    [33]李青会,孙洁林,王海凤,干福熹.原子力显微镜对TeOx薄膜中短波长静态记录点结构的分析[J].光学学报, 2001,21(10) : 1177-1181.
    [34]李青会,干福熹. Sb掺和对TeOx薄膜光学和静态记录特性的影响[J].光子学报, 2001,30(11) : 1421-1424.
    [35] Q.H. Li, D.H. Gu, F.X. Gan. TeOx Thin Films for Write-Once Optical Recording Media[J]. Journal of Material Science and Technology, 2004,20(6) : 678-690.
    [36]李青会,顾冬红,干福熹. TeOx和Ag-In-Sb-Te-O薄膜动态存储特性的测试[J].中国激光, 2003,30(5) : 445-448.
    [37] L. Weng, S.N.B. Hodgson. Sol-gel processing of TeO2-TiO2-PbO thin films[J]. Journal of Non-Crystalline Solids, 2002,297: 18-25.
    [38] S.N.B. Hodgson, L. Weng. Preparation of tellurite thin films from tellurium isopropoxide precursor by sol-gel processing[J]. Journal of Non-Crystalline Solids, 2000,276: 195-200.
    [39] S.N.B. Hodgson, L. Weng. Sol-Gel Processing of Tellurium Oxide and Suboxide Thin Films with Potential for Optical Data Storage Application[J]. Journal of Sol-Gel Science and Technology, 2000,18: 145-158.
    [40] L. Weng, S.N.B. Hodgson. Sol-gel processing of tellurite materials from tellurium ethoxideprecursor[J]. Materials Science and Engineering, 2001,B87: 77-82.
    [41] L. Weng, S.N.B. Hodgson, J. Ma. Preparation of TeO2-TiO2 thin films by sol-gel process[J]. Journal of Materials Science Letters, 1999,18: 2037-2039.
    [42] S.N.B. Hodgson, L. Weng. Processing and characterisation of sol-gel glasses and powders in the system TeO2-TiO2[J]. Journal of Materials Science, 2002,37: 3059-3066.
    [43] L. Weng , S.N.B. Hodgson. Multicomponent tellurite thin film materials with high refractive index[J]. Optical Materials, 2002,19: 313-317.
    [44] L. Weng, S.N.B. Hodgson, X. Bao, K. Sagoe-Crentsil. Achieving controllable sol-gel processing of tellurite glasses through the use of Te(VI) precursors[J]. Materials Science and Engineering B, 2004, 107: 89-93.
    [45] S. Coste, A. Lecomte, P. Thomas, J.C. Champarnaud-Mesjard, T. Merle-Méjean, R. Guinebretière. Sol–gel processing and microstructure of TeO2 materials[J]. Journal of Non-Crystalline Solids, 2004,345&346: 634-638.
    [46] A. Lecomte, F. Bamière, S. Coste, P. Thomas, J.C. Champarnaud-Mesjard. Sol–gel processing of TeO2 thin films from citric acid stabilised tellurium isopropoxide precursor[J]. Journal of the European Ceramic Society, 2007,27: 1151-1158.
    [47] S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean, J.C. Champarnaud-Mesjard. Sol-gel synthesis of TeO2-based materials using citric acid as hydrolysis modifier[J]. Journal of Sol-Gel Science and Technology, 2007,41: 79-86.
    [48]辜敏,P. Thomas,鲜晓红,卿胜兰. TeO2-SiO2的溶胶-凝胶制备及红外光谱分析[C].中国化学会第25届年会会议论文集.长春:2006, 03-O-018.
    [49] A. Huriet, S. Daniele, L.G. Hubert-Pfalzgraf. Effect of titanium additives on the growth of tellurium dioxide crystals in a sol-gel process[J]. Materials Letters, 2005,59: 2379-2382.
    [50] J. Liu, J.M. O’Reilly, T.W. Smith, P.N. Prasad. Photopatterning hybrid sol–gel glass materials prepared from ethylene tellurate and alkoxysilane[J]. Journal Journal of Non-Crystalline Solids, 2005,351: 2440-2445.
    [51] R. Shacham, D. Avnir, D. Mandler. Electrodeposition of Methylated Sol-Gel Films on Conducting Surfaces[J]. Advanced Materials, 1999,11(5) : 384-388.
    [52] R. Shacham, D. Mandler, D. Avnir. Electrochemically Induced Sol-Gel Deposition of Zirconia Thin Films[J]. Chemistry A European Journal, 2004,(10) : 1936-1943.
    [53] M. Sheffer, A. Groysman, D. Mandler. Electrodeposition of sol–gel films on Al for corrosion protection[J]. Corrosion Science, 2003,45: 2893-2904.
    [54] M. Sheffer, A. Groysman, D. Starosvetsky, N. Savchenko, D. Mandler. Anion embedded sol–gel films on Al for corrosion protection[J]. Corrosion Science, 2004,46: 2975-2985.
    [55] S. Sayen, A. Walcarius. Electro-assisted generation of functionalized silica films on gold[J]. Electrochemistry Communications, 2003, 5(5) : 341-348.
    [56] A. Walcarius, E. Sibottier. Electrochemically-Induced Deposition of Amine-Functionalized Silica Films on Gold Electrodes and Application to Cu(II) Detection in (Hydro)Alcoholic Medium[J]. Electroanalysis, 2005,17(19): 1716-1726.
    [57] E. Sibottier, S. Sayen, F. Gaboriaud, A. Walcarius. Factors Affecting the Preparation and Properties of Electrodeposited Silica Thin Films Functionalized with Amine or Thiol Groups[J]. Langmuir, 2006,22(20) : 8366-8373.
    [58] L. Shapiro, D. Mandler. Formation of a molecular glue based on the electrochemical reduction of 4-hydroxyphenyldiazonium for the attachment of thin sol-gel film on glassy carbon[J]. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2007,221(9) : 1237-1243.
    [59] R. Shacham, D. Avnir, D. Mandler. Electrodeposition of Dye-Doped Titania Thin Films[J]. Journal of Sol-Gel Science and Technology, 2004,31: 329-334.
    [60] O. Nadzhafovaa, M. Etienneb, A. Walcariusb. Direct electrochemistry of hemoglobin and glucose oxidase in electrodeposited sol–gel silica thin films on glassy carbon[J]. Electrochemistry Communications, 2007, 9(5) : 1189-1195.
    [61] WZ. Jia, K. Wang, ZJ. Zhu, HT. Song, XH. Xia. One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process[J]. Langmuir, 2007,23(23) : 11896-11900.
    [62] R. Toledano, R. Shacham, D. Avnir, D. Mandler. Electrochemical Co-deposition of Sol?Gel/Metal Thin Nanocomposite Films[J]. Chem. Mater., 2008,20(13) : 4276-4283.
    [63] M. Sheikbahae; AA. Said; EW. Vanstryland. High-Sensitivity, Single-Beam n2 Measurements[J]. Optics Letters, 1989,14(17): 955-957.
    [64]祁胜文,杨秀琴,陈宽,张连顺,王新宇,许棠,周文远,张春平,田建国. Z-扫描技术与非线性光学材料性质的测量[J].物理实验, 2003,23(12) : 14-19.
    [65] M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. van Stryland. Sensitive Measurement of Optical Nonlinearities Using a Single Beam[J]. IEEE Journal Of Quantum Electronics, 1990,26(4) : 760-769.
    [66] W. Zhao, P. Pallfy-Muhoray. Z-scan technique using top-hatbeams[J]. Applied Physics Letters, 1993, 63: 1613-1616.
    [67] H.P. Li, B. Liu, C.H. Kam, Y.L. Lam, W.X. Que, L.M. Gan, C.H. Chew, G.Q. Xu. Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles[J]. Optical Materials, 2000, 14(4): 321-327.
    [68] J. Wang, M. Sheik-Bahae, A.A. Said. Time resolved Z-scan measurements of optical nonlinearities[J]. J. Opt. soc. Am. B, 1994, 11(6): 1009-1017.
    [69] M. Sheik-Bahae, J. Wang, R. de Salvo. Measurement of nondegenerate nonlinearities using a two color Z-scan[J]. Optics Letters, 1992,17(4): 258-260.
    [70] T. Xia, D.J. Hagan, M. Sheik-Bahae, E.W. Van Stryland. Eclipsing Z-Scan Measurement of Lambda/10(4) Wave-Front Distortion[J]. Optics Letters, 1994, 19(5): 317-319.
    [71] M. Martinelli, S. Bian, J.R. Leite, R.J. Horowicz. Sensitivity enhanced reflection Z-scan by oblique incidence of a polarized beam[J]. Applied Physics Letters, 1998,72(12): 1427-1429.
    [72]杨少辰,李志娟,刘夏萍,刘依真.利用光束波前畸变扫描研究介质的非线性光学性质[J].北方交通大学学报, 1997,21(4): 466-471.
    [73]上海辰华仪器公司.仪器使用说明书. 2005.
    [74]李强.添加剂PEG、Cl-、SPS作用下的铜电结晶过程研究[D].重庆:重庆大学, 2007: 14-17.
    [75]查全性等著.电极过程动力学导论[M].第三版.北京:科学出版社, 2002: 213-235.
    [76]王建祺,吴文辉,冯大明编著.电子能谱学(XPS/XAES/UPS)引论[M].第一版.北京:国防工业出版社, 1992:38-98.
    [77]杨于兴. X射线衍射分析(修订版)[M].上海:上海交通大学出版社, 1994: 89-103.
    [78]黄子卿著.电解质溶液理论导论(修订版)[M].北京:科学出版社, 1983: 20-70.
    [79]曹楚南,张鉴清.电化学阻抗谱导论[M].第一版.北京:科学出版社, 2002: 15-52.
    [80]夏熙,刘洪涛,刘洋. Ce4+/Ce3+氧化还原体系线性极化与交流阻抗研究[J].化学学报, 2002, 60(9):1630-1636.
    [81]叶奇,康志新,李元元.铜表面有机镀膜及薄膜性能研究[J].功能材料,2008,39(3): 443-445.
    [82]吴维昌,冯洪清,吴开治.编译.标准电极电位数据手册[M].北京:科学出版社,1991:224-227.
    [83] (日)小久见善八编著.郭成言译.电化学[M].北京:科学出版社,2002:147-164.
    [84]刘勇,罗义辉,魏子栋.脉冲电镀的研究现状[J].电镀与精饰,2005,27(5): 25-29.
    [85]姚凤仪,郭德威,桂明德.无机化学丛书,第5卷[M].北京:科学出版社, 1990, 326-327.
    [86]张庆礼,殷绍唐,王召兵,孙敦陆,万松明.吸收光谱测量晶体折射率的简易方法[J].人工晶体学报, 2007, 36(1): 110-113.
    [87] H.L. Fan, X.Q. Wang, Q. Ren, T.B. Li, X. Zhao, J. Sun, G.H. Zhang, D. Xu, Z.H. Sun, G. Yu. Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse[J]. Applied Physics A: Materials Science & processing, 2010,99: 279-284.
    [88] M. Yin, H.P. Li, S.H. Tang, W. Ji. Determination of nonlinear absorption and refraction by single Z-scan method[J]. Applied Physics B: Lasers and Optics, 2000,70: 587-591.
    [89]费浩生.非线性光学[M].第一版.北京:高等教育出版社, 1990: 179-322.
    [90] S. Debrus, J. Lafait, M. May, N. Pin?on, D. Prot, C. Sella, J. Venturini. Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites[J]. Journal of Applied Physics, 2000,88(8): 4469-4475.
    [91] Y.H. Wang, Y.M. Wang, J.D. Lu, L.L. Ji, R.G. Zang, R.W. Wang. Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass[J]. Optics Communications, 2010, 283: 486-489.
    [92]杨文琴,佟明红,孙真荣,丁良恩,王祖赓.稠环芳烃有机物的三阶非线性光学性能研究[J].光谱学与光谱分析, 2000,20(5): 658-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700