电凝聚、光催化技术在染料水处理中的联合应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电凝聚技术和光催化技术分别在废水处理中被广泛运用,单项技术在用于处理有机废水方面也各有特点。电凝聚法能使微细固体颗粒和胶体凝聚,电解质分解,使有机物吸附、上浮,并被氧化还原。电凝聚不仅可以有效地去除悬浮物、胶体物质,并可去除硅、铁、锰等离子,还可以起到杀菌、脱色、除氟和软化水的作用。电凝聚通过阳极反应产生的羟基自由基(·OH)、臭氧等能有效降解有机物质,这种降解途径使有机物分解更加彻底,不易产生有毒害的中间产物,更符合环境保护的要求。光催化技术在较短时间内去除有机污染物的效果并不显著,但是该方法可以破坏染料分子中的生色基团,使污染水体的色度大大降低,使有机高分子分解成较小的有机分子,便于后续的生化处理。
     电凝聚和光催化两项技术都可以作为有机废水的预处理手段使用,但至今尚未见到关于二者联合运用的报道。研究电凝聚和光催化联合处理工艺在水处理领域具有广泛的发展空间和良好的应用前景。
     实验采用电凝聚、光催化联合处理工艺,以序批的操作方式对有代表性的活性艳红X-3B染料水进行处理,探索了此联合处理工艺和操作方式的可行性、有效性。这是本论文的创新点和精华所在。
     实验中分别对影响电凝聚和光催化处理效果的有关参数进行了探讨,实验结果表明,用两种方法分别处理X-3B染料水时,都可以达到满意的脱色效果。通过试验比较两种处理效果:电凝聚对较高浓度染料废水能有效的进行处理,不论是色度和COD去除率都能达到70%~95%;光催化技术适宜处理低浓度染料废水,在用光催化处理低浓度的X-3B染料水时,运用悬浮型TiO_2催化剂进行实验操作,在适当的光强和光照剂量下,对色度的去除效果显著。
     单纯的电凝聚处理活性艳红X-3B染料水耗时长;单纯的光催化处理要求初始浓度不能过高,色度过高不利于紫外光线的透过;通过两项技术的联合运用可克服上述单项技术不足,充分发挥二项技术的最佳效能,提高对活性艳红X-3B染料水的总体处理效果。高浓度染料废水先经过电凝聚处理,使水中的有机分子大大减少,水体变清,有利于提高后续光催化处理效果,进一步提高活性艳红X-3B染料水的脱色率和CODcr去除率。因此在联合处理工艺中研究了先电凝聚后光催化的联合处理工艺。
     实验结果证实,电凝聚、光催化联合处理工艺对于较高浓度活性艳红X-3B染料水的处理可行、有效;序批式操作完全适合电凝聚、光催化的联合处理工艺。
Electrocoagulation and photocatalysis, each of which has own characteristic for organic wastewater treatment, are extensively used in wastewater treatment respectively. By electrocoagulation the tiny solids and colloids can be coagulated; electrolytes are decomposed; organics are adsorbed and floated, then oxidized or deoxidized. By electrocoagulation the suspended solids and colloids can be removed, as well as silicon ions, iron ions, manganese ions etc. In addition to these, it can be used for disinfection, decolonization, fluorin removal and water demineralization. During the course of electrocoagulation the organics should be degraded effectively by hydroxy free radical (-OH), ozone etc. created from anode reaction. The approach makes organics degraded more thoroughly, with little toxic intermedia product, which accord with environmental conservation. It is not apparent to remove organic wastes by photocatalysis, however, which might destroy some organic dye molecular diazonium color base, making chroma
    of polluted water decrease greatly and converting organic high molecule to tiny organic molecule which is helpful to following biochemical polishing treatment.
    Both of the two processes are used to primary treatment of organic wastewater, but so far there have never been reports about the combination of them used for wastewater treatment. The complex process, namely the combination of electrocoagulation and photocatalysis has extensive developing space and wonderful prospect in the field of water purification.
    Representative stuff-RBBRX-3B selected are degraded by the combination of electrocoagulation and photocatalysis in this paper. The feasibility, validity of the technology is probed. This is the technical innovation in the field of water treatment, and this is also the most important section of the thesis.
    The relevant parameters that influence treatment efficiency of electrocoagulation and photocatalysis in the experiment are studied separately. The results show that stuff-RBBRX-3B water is discolored perfectly when the two processes are used to treat the water respectively. Comparing the two results experimentally: electrocoagulation is effective to high concentration dyes aqueous solution, both the efficiency removal of chroma and that of organic matter can get 70%~95%; photocatalysis is suitable for low concentration dyes aqueous solution. When low density stuff-RBBRX-3B water is treated by photocatalysis, suspending catalyst are used in the experiment. Under the proper intensity and dosage of light, the effect of chroma removal is remarkable.
    It is time-consuming to treat stuff-RBBRX-3B water only by electrocoagulation; it is desired for photocatalysis that the initial density is not too high which bring about high chroma retarding permeation of ultraviolet radiation; therefore the interest of the combining treatment
    
    
    process is that the water is treated first by electrocoagulation, then by photocatalysis.
    It is feasible and effective for high concentration stuff-RBBRX-3B with the electrocoagulation and photocatalysis combined treatment process. The association of two techniques might make up for each other, increasing overall treatment efficiency of stuff-RBBRX-3B water. First high concentration dyes aqueous solution is cleansed by electrocoagulation, becoming clear with all kinds of wastes reduced, which is favorable to improve the result of the following photocatalysis treatment and further elevate the colority removal and the CODcr removal of stuff-RBBRX-3B water.
引文
[1] 田春荣.染料化合物多相光催化氧化过程中氮的转化机理研究[D].中国科学院生态环境研究中心,硕士论文,2000.
    [2] 张林生,蒋岚岚.染料废水的脱色方法[J].化工环保,2000,20:14~18.
    [3] 李家珍.染料、染色工业废水处理(第一版)[M];化学工业出版社,1997,74~75.
    [4] 朱乐辉,蒋展鹏.染料废水及其治理[J].环境与开发,1994,9(3):299~302.
    [5] 郑冀鲁,范娟,阮复昌.印染废水脱色技术与理论述评[J].环境污染治理技术与设备,2000,(5):29~35.
    [6] 国家环保局、纺织工业部编.纺织印染废水—我国儿种工业废水治理技术研究[M].北京:化学工业出版社,1988.
    [7] 王振东,张志祥.印染废水的污染与控制[J].环境科学与技术,2001(1):21.
    [8] 王菊生主编.染整工艺原理(二)[M].纺织工业出版社,1990,6(第1版):66~68,79~88.
    [9] 张友杰,李念平主编有机波谱学教程[M].华中师范大学出版社,1990,11(第1版):4~8.
    [10] 冀滨弘等,染料工业废水处理的现状与进展[J].污染防治技术,1998,11(4):250~253.
    [11] 丁忠浩.有机废水处理及应用[M].化学工业出版社,2002.
    [12] 雷乐成,汪大翚著.水处理高级氧化技术[M].化学工业出版社,2001.
    [13] A. Erswellet. Desalination. 1998(70)157~167.
    [14] Denisova TI, Meleshevich SI, Sheka lA. Sorption of anionic dyes by silico-poly (methyl siloxanes).ZH. Prikl. Khim, 1989, 62 (5):1182~1184.
    [15] Subbotina E A, Tarasevich Y I, Orazmuradov A O. Adsorption of direct dyes on organically substituted montmorillonite. Izu. Akad Nauk Turkm SSR, Ser. Fiz—Tekh..
    [16] 乌锡康等.镁盐对水溶性阴离子染料废水的脱色研究[J].中国环境科学,1994,14(5):359~360.
    [17] 张林生,B.Dobias.染料废水综合混凝—电气浮脱色处理[J].给水排水,1993,(6):22~26.
    [18] 张雪馨,游瑞生等.一种新型的染料废水脱色混凝剂[J].环境科学,1990,11(5):78~83.
    [19] Matsunaga T. et al, TIN Electrode Reaction for Disinfection of Drinking water, War. Res, 2000,34(12),3117-3122.
    
    
    [20] Ciardlli G. et al, The Treatment and Reuse Of Wastewater in the Textile Industry by Means of Ozonation and Electrofloccuation, Wat. Res., 2001, 35 (2), 567~572.
    [21] Li X. Z. et al., Photooxidation of wool Dye and TCP in Aqueous Solution Using an innovative TiO_2 Mesh lectrode. Wat. sci. Tech., 2000, 42(12),181-188.
    [22] Sheng H. Lin. Ming L. Chen. was. Res., 1997, 31 (4):868~876.
    [23] Sheng H. Lin. Ming L. Chen. was. Res., 1994, 28(2):277~282.
    [24] 李鸿林等,混凝沉淀一二氧化氯氧化法处理印染废水[J].化工环保,1999,19:223-226.
    [25] 李亚新,国外印染废水的电化学处理[J].给水排水,1999,25(7):42~44.
    [26] 戴日成,张统等,印染废水水质及处理技术综述[J].给水排水,2000,26(10):33~37.
    [27] 陈繁忠等,废水净化的电化学技术进展[J].重庆环境科学,1997,19(6):19~21.
    [28] 蔡天明.微电解—水解酸化/接触氧化工艺处理染化废水的研究[J].环境工程,1999,17(4):17~30.
    [29] 熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5~8.
    [30] Kastening B., Muller. M., J. Electronal. Chem. 374, 1994, p159~163.
    [31] Costarramone N., Hazourli. S., Bonnecaze G. and Astruc M., Environ. Technol. 15, 1994, p199~203.
    [32] Manye P.J.,Shackleton. R.,J. AppL. Electrochem.,15(5), 1985, p745~754.
    [33] 李硕文.活性炭吸附—H_2O_2氧化法处理染色废水的试验研究[J].化工环保,1997,17(3).131~134.
    [34] 赵少陵,贾金平.活性炭纤维电极法处理印染废水的应用研究[J].上海环境科学,1997,16(5),24~27.
    [35] Zimmer, el al, Electrochemical processes for decomposition of organic maste[J]. Wiss. Z. Tech. Univ. Dresden, 1997,46 (4): 80~85.
    [36] T.C. Franklin, et al, Destruction of balogenated hydrocarbons accompanied by generation of electricity[J]. Electrochem. Soc. 1992,139:2192~2195.
    [37] 沈东升,冯孝善,沈盖民等.我国印染废水处理技术的现状和发展趋势[J].环境污染与防治,1996,18(1):26~28.
    [38] 伸齐国.染料废水脱色刍议[j].污染防治技术,1994,7(3):50-2,56.
    [39] 瞿晓萌,李道堂.有机污染源水生物预处理微生物种的分离筛选[J].环境科学,2000.2(5):77~79.
    [40] 钱易.环境科学与工程进展[M].清华大学出版社,1998.
    
    
    [41] 徐亚同,黄民生主编.废水生物处理的运行管理与异常对策[M].化学工业出版社,2003,1.
    [42] 许宜铭,陈效良.光化学法处理含铬含氰废水的研究[J].环境科学,1991,13(3),45.
    [43] 傅宏祥,吕功煊,李树本.有机物存在下的六价铬光致还原[J].物理化学学报,1997,13(2),106.
    [44] Fu, H.;Lu, G.;Li, S. Adsorption and photoinduced reduction of Cr(Ⅵ)ion in Cr(Ⅵ)-4CP aqueous system in the presence of TiO2 as photocatalyst, J. Photochem. Photobiol. A;Chem. 1998,114,81.
    [45] Hoffmann, M.R.;Martin, S.T.;Choi, W.;Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. rev., 1995, 95, 69~96.
    [46] wang, C.M,; Mallouk, T.E. Wide—range turning of the titanium dioxide flat—band potentials by adsorption of fluoride and hydrofluoric acid, J. Phys. Chem. 1990, 94, 4276-4280.
    [47] D' Oliveira, J.—C; Al-Sayyed G; Pichat, P. Photodegradation of 2— and 3-chorphenol in TiO2 aqueous suspensinns, Environ. Sci. Technol. 1990,24, 990~996.
    [48] J.R. Harbour and M.L. Hair, Detection of superoxide ions in nonaqueous media generation by photolysis of pigment dispersions, J. Phys. Chem., 1978,82,1397~1399
    [49] J. R. Harbour and M.L. Hair, Superoxide generation in the photolysis of aqueous cadmium sulfide dispersions. Detection by spin trapping, j. Phys. Chem. 1977, 81,1791~1796.
    [50] M. A. Grela, M.E.J. Coronel, A. J. Colussi, Quantitative spin—trapping studies of weakly illuminated titanium dioxide sols. Implication for the mechanism of photocatalysis, J. Phys. Chem. 1996,100,16940-16946.
    [51] Hoffinann, A. J.;Carraway, E.R.; Hofhann, M. Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ. Sci. Technol. 1994,28,776-785.
    [52] H. Gerischer and A. Heller, The role of oxygen in photooxidation of organic molegules on semiconductor particles, J. phys. Chem., 1991, 95, 5261.
    [53] J. Schwitzgebel, J.G. Eberdt, H. Gerischer, and A. Heller, Role of the oxygen molecule and of the photogenerated electron in TiO_2-photocatalyzed air oxidation reactions, J. phys. Chem, 1995,99,5633-5638.
    [54] Minero, C.; Maurino, V.; Calza, P; Pelizzetti, E. New J. Chem. 1997, 21, 841~842.
    
    
    [55] Piccinini, P.; Minero, C.; Vincenti, M.; Pelizzetti, E. Photocatalytic interconversion of nitrogen—containing benzene derivatives, J. Chem. Soc. Faradny Trans. 1997,93,1993~2000.
    [56] Hoffmann, M.R.; Martin, s.T;Choi, W.; Bahnernann, D.W. Environmental applications of semiconductor photocatalysis, Chem. Rev. 1995, 95, 69~96.
    [57] Vasudevan, D.; Stone, A.T. Environ. Sci. Technol. 1996, 30,1604~1613.
    [58] Dagan, G.; Tomkiewicz, M. Titanium dioxide aerogels for photocatatytic decontamination of aquatic environments, J. Phys. Chem. 1993,97, 12651~12653.
    [59] Chen, H.Y.; Zahraa, O.; Bouchy, M.; Thomas, F.; Bottero;J. Adsorption properties of TiO_2 related to the photocatalytic degradation of organic contaminants in water. J. Photochem. PHotobiol. A 1995,85,179~193.
    [60] 张汉民等.分散染料废水光催化脱色效果研究[J].适用技术市场,1997;9:3~5.
    [61] 曾庆福.水溶性染料废水的光催化脱色技术研究[J].印染,2000:3:34~37.
    [62] 阮新潮,曾庆福.印染废水终端处理工艺[J].自然杂志,2001,23(6).328~331.
    [63] 许保玖主编.给水处理理论[M].北京:中国建筑工业出版社,2000.
    [64] 顾夏声等主编.水处理工程[M].北京:清华大学出版社,1985.
    [65] K Rajeshwar, J G Labanez, G M Swain. Electrochemistry and the Environment, J. Appl. Electrochem.,1994,24(10):1077~1091.
    [66] 尚国干等.改进的电解—气浮法处理印染废水[J].化工环保,1993,13(5):285~288.
    [67] Kenedy M. Electerochemical waster treatment technology for textile[J]. American Dyestuff Reporter, 1991, 80(9): 26,28,94.
    [68] 熊方文等.脉冲电解处理工业污水技术[J].工业水处理,1990,10(2):10lo—12.
    [69] 高良进等.高压脉冲电絮凝浮上法处理印染废水门[J].水污染与防治,1992,14(5)10~13.
    [70] 黄清文.高压脉冲在污水处理中的应用[J].电子世界,1994,(1):10~11.
    [71] 李冬黎 何湘宁.脉冲电源污水处理技术[J].高压电技术,2001,27(6),22~23.
    [72] 吴浩汀,刘立伟等.活性艳红X—3B染料清洁生产工艺研究[J].农村生态环境.2002,18(3).59-60.
    [73] 漆新华,庄源益等,纳米TiO_2催化染料活性艳红X—3B光降解[J].城市环境与城市生态.2002,15(6),14~16.
    [74] 刘广立,袁宏林.管式电凝聚器的特性及对亲水性染料脱色试验研究[J].西安建筑科技大学学报.1998,30(4),383~386.
    [75] 魏平方,许春田.双极铝电极电凝聚除氟研究[J].油气田环境保护.2000,10(1).20~23
    
    
    [76] 张振家,郭晓燕,周长波编.工业废水处理站工艺原理与维护管理[M].化学工业出版社,2003,2.
    [77] 郑小明,周仁贤编.环境保护中的催化治理技术[M].化学工业出版社,2003,2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700