碳纳米管增强酚醛树脂/石墨双极板复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在环境与能源备受人类关注的今天,具有能量转化率高(40-60%),污染少的质子交换膜燃料电池(PEMFC)的研究与开发越来越受到各国政府和科技人员的重视。双极板是其中的重要组成部分,其成本、重量分别占PEMFC的45%和80%,因此研究开发新型双极板材料、降低双极板的成本以及重量,对于促进燃料电池的商业化发展具有重要的意义。
     本研究在总结目前双极板材料及制备工艺的研究现状的基础上,根据美国能源部对树脂/石墨复合材料双极板的性能要求,以弯曲强度和导电率作为重点考虑的目标,利用廉价的石墨和酚醛树脂作为基体,以降低双极板材料的成本;采用碳纳米管对其进行增强,在保证导电性能的基础上,可提高复合材料的强度,利于制备薄的双极板,从而降低双极板体积和重量。主要研究内容如下:
     第一,采用粉体原材料、低温模压方式制备酚醛树脂/石墨复合材料,并系统研究复合材料的制备工艺对其性能的影响,从而确定复合材料的最佳制备工艺参数。
     首先,采用单因素实验法制备酚醛树脂/石墨复合材料,研究工艺参数对酚醛树脂/石墨复合材料的影响。结果发现:复合材料导电率随酚醛树脂的增加而增加,而弯曲强度则出现下降趋势;压制温度与时间对复合材料性能的影响相似,复合材料导电率随压制温度和时间的上升出现波浪上升的趋势,而弯曲强度出现先增加后减小的趋势;压力与石墨粒径对复合材料性能的影响相似,复合材料的导电率和弯曲强度均随着压力和石墨粒径的增加,出现先增加后减小的趋势;酚醛树脂为15wt%,压制温度为240℃,压制时间为60min,压力为30MPa,石墨粒径为105-150μm此时,复合材料的性能最佳:导电率为142s/cm,弯曲强度为61.6MPa。
     其次,以石墨含量、压制温度以及压制时间为主要研究对象,采用正交实验对复合材料制备工艺参数进一步优化。结果发现:石墨含量对复合材料的导电率与弯曲强度影响显著,压制时间与压制温度对复合材料的性能影响不显著;在单因素与正交试验中,复合材料的弯曲强度随着石墨含量的增加而减小,对于复合材料的导电率,单因素试验中,随石墨含量的增加而增加,而在正交实验中,却出现先增加后减小的趋势;确定复合材料的最佳工艺为:石墨含量为85wt%,压制时间和温度分别为100min、260℃,此时,复合材料导电率与弯曲强度分别为171.2 s/cm和59.7MPa。
     第二,成功制备碳纳米管增强酚醛树脂/石墨复合材料,并研究碳纳米管的表面处理以及含量对所研究的复合材料性能的影响,从而确定碳纳米管增强复合材料的最佳制备工艺参数。
     首先采用空气氧化法对碳纳米管进行纯化处理,利用透射电镜(TEM)、热重分析(TGA)对碳纳米管纯化前后进行观察和分析,碳纳米管经过纯化后,表面光洁,无缠绕现象,无定型碳等杂质得到了有效地去除。
     其次,首次采用Fenton/紫外线(ultraviolet,UV)对碳纳米管进行表面处理,并用处理后的碳纳米管来增强酚醛树脂/石墨复合材料。研究其工艺参数(Fenton试剂中Fe~(2+)和H_2O_2的配比、pH值以及反应时间)对碳纳米管表面官能团以及复合材料性能的影响,并确立Fenton/UV处理方式的最佳工艺参数。
     结合红外光谱分析(FTIR)以及复合材料的性能,通过与不同的Fenton试剂法(Fenton、Fenton/超声波(ultrasonic,US))相比发现:紫外线的引入,不仅能够在碳纳米管表面引入更多的羟基官能团,而且能够引入少量的羧基官能团,可有效提高碳纳米管与基体之间的结合,从而提高了复合材料的性能。
     Fenton/UV处理方式中,其工艺条件是影响碳纳米管与基体之间界面结合的一个主要因素。结合FTIR、X射线衍射(XRD)手段以及复合材料的性能,研究Fenton/UV处理方式的工艺条件对碳纳米管表面结构和复合材料性能的影响,并确定Fenton/UV处理方式的最佳工艺条件为:Fe~(2+)与H_2O_2之间的配比为1:40,pH=3以及反应时间为3h。
     再次,研究碳纳米管含量对复合材料性能的影响。结果发现:实验体系内,随着碳纳米管含量的增加,复合材料的弯曲强度和导电率出现增加的趋势;在碳纳米管含量为5wt%时,复合材料的性能达到最佳值:弯曲强度和导电率分别为81.2MPa和195.4s/cm,相比增强前复合材料性能分别提高了36.0%和14.1%。
     第三,以TEM、拉曼光谱(Raman spectra)手段,并结合FTIR研究Fenton试剂法对碳纳米管的改性机理。
     研究结果表明:Fenton试剂法对碳纳米管的改性机理是Fenton反应产生的羟基自由基优先利用其强亲电子加成性,与碳纳米管管壁的不饱和双键(C=C)发生电子加成反应,在碳管表面引入羟基;之后利用其强氧化性对羟基进行氧化,生成羧基,从而实现对碳纳米管的表面改性。
     第四,借助扫描电镜(SEM),研究碳纳米管复合材料的增强机理。碳纳米管与作为粘结剂的酚醛树脂结合处于强结合状态。复合材料的增强机制主要是具有皮芯结构碳纳米管的脱粘及“拔出效应”。
     第五,研究碳纳米管增强酚醛树脂/石墨复合材料弯曲强度的预估理论。利用碳纤维复合材料理论,考虑了碳纳米管的长度有效系数和取向系数的影响,从而给出所研究的复合材料的弯曲强度预估公式。复合材料弯曲预估公式在碳纳米管含量较低(<4wt%)时,复合材料弯曲强度的预估值与实测值较为吻合,能够较好地对复合材料的弯曲强度进行预估。
More attention has been paid to the development and research of the polymer electrolyte membrane fuel cell(PEMFC) by internal and external conuntries, due to its high percent conversion of energy and little pollution. Bipolar plate is one of the most important components of PEMFC, which accounts for 45% and 80% of the stack cost and weight. So, developing new bipolar plate material and reducing its cost and weight can promote the industrialization of PEMFC.
     Carbon nanotubes(CNTs) reinforced phenol formaldehyde(PF) resin/graphite composite was prepared on the basis of summarizing current reasearch of bipolar plate material and preparation. According to property demand on resin/graphite bipolar plate by Department of Energy (USA), the bending strength and conductivity were considered as major factor during the research. In my research, cheaper graphite and PF resin was used as matrix to reduce the cost of bipolar plate; CNTs was used to reinforce the PF resin/graphite composite to reduce the capacity and weight of bipolar plate. The main research content is as follows:
     Firstly, PF resin/graphite composite was prepared by low temperature and hot pressure molding formation. The effect of preparation technology on properties of composite was also studied, then the technological parameter of composite was optimized.
     PF resin/graphite composite was prepared by single-factor test at first. The effect of preparation technology on properties of composite was also studied. The results show that the conductivity decreases and bending strength increase with the increasing of PF resin content; that the effect of molding temprature on prperties of composite is similar to that of molding tempratur, the conductivity vary wave-like and bending strength will increase firstly and then decrease with the increasing of molding temprature and time; that the effect of molding pressure on prperties of composite is similar to that of graphite size, the conductivity and bending strength will increase firstly and then decrease with the increasing of pressure and graphite size; and the best conductivity and bending strength of the composite are 142 s/cm and 61.6 MPa, respectively, when its PF resin content is 15wt% and graphite size is 105 - 150μm molded at 240℃and 30MPa for 60min.
     Then, orthogonal test was used to keep on optimizing the technological parameter (graphite content, molding temprature and time). The results show that the effect of graphite content on the properties of composite is obvious, the effects of curing temperature and time are not obvious; that the bending strength of composite reduces with the increasing of the graphite content in single-factor and orthogonal test; that the conductivity of composite increases with increasing of graphite content in single-factor test, but it increases firstly and then decreases with the increasing of the graphite content in orthogonal test; that the optimal association of conductivity is that graphite content is 85%, and that molding temprature and time are 260℃and 100min, when its conductivity and bending strength is 171.2 s/cm and 59.7MPa.
     Secondly, the CNTs reinforced PF resin/graphite composite was prepared, and the effects of CNTs 's surface treatment and content on properties of composite were also studied to get the optimal preparation technological parameters.
     CNTs were purification treated by air oxydation treatment. The CNTs before and after purification treatment were observed by TEM and DTG, which showes that CNTs after purification are clear and smooth, that CNTs were purified effectively.
     Then, CNTs were surface treated by Fenton/ ultraviolet(UV), which is the first time to be used in the surface treatment for CNTs, then was used to reinforce the PF resin/graphite composite. The effects of the technological parameters of Fenton/UV on surface of CNTs and properties of composite were also studied, which include the mached between Fe~(2+) and H_2O_2, the pH value in Fenton regents and reaction time.
     Compared with other Fenton regents reaction (Fenton、Fenton/US)by FTIR, Fenton/UV treatment can generate large quantity of hydroxyl groups and a little of carboxyl groups on the sidewall of CNTs, which can improve the interfacial binding between CNTs and matrix, then can improve the properties of composite.
     The technological conditions are important factors, which can effect the interface bonding between CNTs and matrix. The effects of technological conditions on surface of CNTs and properties of composite were studied by FTIR, XRD. On the basis of it, the best technological conditions are: M_(Fe~(2+)) : M_(H_2O) = 1:40, pH=3 and reaction timeis 3h.
     Then, the effects of CNTs content on the properties of composite were studied. The results show that the conductivity and bending strength increase with the increasing of CNTs in the experiment system; that the best conductivity and bending strength of the composite are 81.2 MPa and 195.4 s/cm when CNTs content is 5wt%, respectively, which improved 36.0% and 14.1% compared with PF resin/graphite composite.
     Thirdly, the mechanism of Fenton regents reaction treated CNTs was studied by TEM, Raman spectra and FTIR. The results show that hydroxyl radical generated in the Fenton reation can attack the unsaturated bonds C=C on the sidewalls by electrophilic addition reaction, introducing hydroxyl groups on the sidewalls of CNTs; then the hydroxyl groups was oxidized to carboxyl groups by oxidation susceptibility of hydroxyl radical.
     Fourthly, the reinforcement mechanism of composite were studies by SEM. The results show that the boundary between CNTs and PF rensin is on strong bonding state; that the sticky point and "pull-out" effect of CNTs with skin-core structure is the reinforcement mechanism of composite.
     Fifthly, the bending strength forecast equation on the CNTs reinforced PF resin/graphite composite was concluded by using composite mechanical theory. The CNTs length cofficient, and CNTs oriental coefficient were considered and their analytic equations were also concluded, and the discreet value is inosculated with the experiment value when CNTs content is lower(<4wt%) for the bending strength of composite.
引文
1 衣宝廉.燃料电池-原理,技术,运用[M].北京:化学工业出版社,2004:1.
    
    2 J. Molenda, K. Swierczek, W. Zajac. Functional materials for the IT-SOFC[J]. J. Power Sources, 2007,173(2): 657-670.
    
    3 H.-S. Park, Y.-H. Cho, Y.-H. Cho, et.al. Performance enhancement of PEMFC through temperature control in catalyst layer fabrication[J]. Electrochimica Acta, 2007, 53(2): 763-767.
    
    4 T.Apichai, M Phochan., T. Supaporn. Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell[J]. Energy, 2007, 32(12): 2401-2411.
    
    5 M. Luis, B. Dieter. Concentration and ohmic losses in free-breathing PEMFC [J]. J. Power Sources, 2007, 173(1): 367-374.
    
    6 MM. Hussain, I. Dincer, X. Li. A preliminary life cycle assessment of PEM fuel cell powered automobiles [J]. App. Therm. Eng., 2007, 27(13): 2294-2299.
    
    7 P. Zhou, C.W. Wu, G.J. Ma. Contact resistance prediction and structure optimization of bipolar plates[J]. J. Power Sources, 2006, 159(2): 1115-1122.
    
    8 A. A. Kulikovsky. General relations for power generated and lost in a fuel cell stack [J]. Electrochimica Acta, 2007, 53(3): 1346-1352.
    
    9 Y.J. Ren, C.L. Zeng. Corrosion protection of 304 stainless steel bipolar plates using TiC film produced by high-energy micro-arc alloying process [J]. J. Power Sources, 2007, 171(2): 778-782.
    
    10段惠彬.对我国石墨资源开发与利用的探讨[J].中国矿业,2001,10(6):21-23.
    
    11 H. Allen, C. Tapas, S. Priscila. Bipolar plates for PEM fuel cells: A review [J]. Int. J. Hydro. Ener., 2005, 30(12): 1297-1302.
    
    12 M.K. Kwang, Y.K. Kyoo. A new alloy design concept for austenitic stainless steel with tungsten modification for bipolar plate application in PEMFC [J]. J. Power Sources, 2007, 173(2): 917-924.
    
    13 H.P. Maheshwari, R.B. Mathur, T.L. Dhami. Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications [J]. J. Power Sources, 2007, 173(1): 394-403.
    
    14 Y. Wang, O.D. Northwood. An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments [J]. Int. J. Hydro. Ener., 2007,??32(7): 895-902.
    
    15 A.M. Lafront, E. Ghali, A.T. Morales. Corrosion behavior of two bipolar plate materials in simulated PEMFC environment by electrochemical noise technique [J]. Electrochimica Acta, 2007, 52(15): 5076-5085.
    
    16 S.R. Dhakatea, R.B. Mathur, B.K. Kakati, et al. Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell [J]. Int. J. Hydro. Ener., 2007, 32(1): 1-7.
    
    17 H.S. Lee, H.J. Kim, S.G. Kim, et al. Evaluation of graphite composite bipolar plate for PEM (proton exchange membrane) fuel cell: Electrical, mechanical, and molding properties [J]. J. Mate. Proc. Tech., 2007,187-188: 425-428.
    
    18 L. Du, Sadhan C. Jana. Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells [J]. J. Power Sources, 2007,172(2): 734-741.
    
    19 C.E. Roger, L.L. Warren, Williamat. Separator plate for electrochemical cells [P]. USP: 4301222, 1981.
    
    20 Joola, CityJ. Process for production of a porous monolithic graphite plate [P]. USP: 4782586,1988.
    
    21 R.C. Makkus, A.H.H. Janssen, F.A. De Bruijn, et al.. Stainless steel for cost -competitive bipolar plates in PEMFCs [J]. Fuel Cell Bulletin, 2000, 3(17): 5-9.
    
    22阴强,李爱菊,王威强,等.质子交换膜燃料电池双极板材料的研究[J].材料导报,2005, 19:246-249.
    
    23由宏新,何广利,丁信伟,等.质子交换膜燃料电池金属双极板材料研究进展[J].中国 腐蚀与防护学报,2003,23(6):375-379.
    
    24 D.P. Davies, P.L. Adcock, M. Turpin, et al. Stainless as a bipolar plate material for solid polymer fuel cells [J]. J. Power Sources, 2000, 86(1-2): 237-242.
    
    25 D.P. Davies, P.L. Adcock, M. Turpin, et al. Bipolar plate materials for solid polymer fuel cells [J]. J. Appl. Electrochem,. 2000, 30(1): 101-105.
    
    26 Robert C. Markkus, Armo H. Janssen, Frank A. de Bruijn, et al. Use of stainless steel for cost competitive bipolate plates in SPFC[J]. J. Power Sources, 2000, 86(1-2): 274-282.
    
    27 H. Regina, B. Siegfried, W. Manfred. Fuel cell and use of iron-based alloys for the construction of fuel cells [P]. USP: 6300001, 2001.
    28 P.L. Hentall, L.J. Barry, GO. Mepsted, et al. New materials for polymer electrolyte membrance fuel cell current collectors [J]. J. Power Source, 1999, 80(1-2): 235-241.
    29 Y. Li, W.J. Meng, Swathirajan, et al. Corrosion resistant PEM fuel cell [P]. USP: RE37284E, 2001.
    30 A.B. Laconti, A.E. Griffith, C.C. Cropley, et al. Titanium carbide bipolar plate for electrochemical devices[P]. USP: 6083641, 2000.
    31 C.E. Hinton, C. L. Scortichini, R. D. Mussell. Bipolar plates for electrochemical cells[P]. USP: 6103413,2000.
    32 J. Wind, R. Spith, W. Kaiser. Metallic bipolar plates for PEM fuel cells [J]. J. Power Source, 2002, 105(2): 256-260
    33 Y. Wang, Derek O. Northwood. An investigation into the effects of a nano-thick gold interlayer on polypyrrole coatings on 316L stainless steel for the bipolar plates of PEM fuel cells[J]. J. Power Sources, 2008, 175(1): 40-48.
    34 Y. Wang, Derek 0. Northwood. An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells[J]. J. Power Sources, 2007, 165(1): 293-298.
    35 Y. Wang, Derek 0. Northwood. An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments[J]. Inter. J. Hydro. Ener., 2007, 32(7): 895-902.
    36 W.-S. Jeon, J.-G. Kim, Y.-J. Kim, J.-G. Han. Electrochemical properties of TiN coatings on 316L stainless steel separator for polymer electrolyte membrane fuel cell[J]. Thin solid films, 2008, 516(11): 3669-3672.
    37 Y.J. Ren, C.L. Zeng. Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process[J]. J. Power sources 2007, 171(2): 778-782.
    38 Y. Fu, M. Hou, G.Q. Lin, Junbo Hou, et. al. Coated 316L stainless steel with Cr_xN film as bipolar plate for PEMFC prepared by pulsed bias arc ion plating[J]. J. Power Sources, 2008, 176(1): 282-286.
    39 W.-Y. Ho , H.-J. Pan, C.-L. Chang, et al. Corrosion and electrical properties of multi-layered coatings on stainless steel for PEMFC bipolar plate applications[J] . Surface and Coating, 2007,202(4-7): 1297-1301.
    
    
    40 S.-T. Hong, K.S. Weil. Niobium-clad 304L stainless steel PEMFC bipolar plate material Tensile and bend properties[J]. J. Power Sources, 2007,168(1): 408-417.
    
    41 H.L. Wang, J.A.Turner, X.N. Li, et al. SnO2: F coated austenite stainless steels for PEM fuel cell bipolar plates[J]. J. Power sources, 2007,171(2): 567-574.
    
    42 H.L. Wang, J.A.Turner. SnO2: F coated ferritic stainless steels for PEM fuel cell bipolar plates[J]. J. Power sources, 2007,170(2): 387-394.
    
    43 F.Tomokazu, Y.Takayuki, M.Shin-Ichi, et al. Carbon -coated stainless steel as PEFC bipolar plate material[J]. J. Power Sources, 2007, 174(1): 199-205.
    
    44 C. -Y. Chung, S.-K. Chen, P.-J. Chiu, et al. Carbon film-coated 304 stainless steel as PEMFC bipolar plate [J]. J. Power Sources, 2008, 176(1): 276-281.
    
    45 S. Yoshiyuki. Electrically conductive amorphous carbon coating on metal bipolar plates for PEMFC[J]. Surface and Coating Technology, 2007, 202(4-7): 1252-1255.
    
    46 Y. Wang, Derek O. Northwood. An investigation into polypyrrole-coated 316L stainless steel as a bipolar plate material for PEM fuel cells[J]. J. Power Sources, 2006, 163: 500-508
    
    47 S. Joseph, J.C. McClure, P.J. Sebastian, et al. Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates[J]. J. Power Sources, 2008, 177(1): 161-166.
    
    48 H.J. Davis. Composite bipolar plate separator structure for polymer electrolyte membrane (PEM) electrochemical and fuel cells[P]. USP: 2359186,2001.
    
    49 O.J. Murphy. Low cost, light weight, high power density PEM fuel cell stack [J]. J. EletrochemicaActa, 1998,43(24): 3829-3294
    
    50 S.-S. Hsieh, C.-F. Huang, C.-L.Feng. A novel design and micro-fabrication for copper (Cu) electroforming bipolar plates[J]. Micron, 2008, 39(3): 263-268.
    
    51信息产业部电子第十八研究所.质子交换膜燃料电池镶嵌结构双极板[P].GB:2429919, 2001.
    
    52 K.S. Dhathathreyan, P. Sridhar, G. Sasikumar. Development of polymerelectrolyte membrane fuel cell stack[J]. Int. J. Hydrogen Energy, 1999, 24 (11): 1107-1115.
    
    53 B. Zhu, B.C. Mei, C.H. Shen, et al. Study on the electrical and mechanical properties of polyvinylidene fluroide/titanium silicon carbide composite bipolar plates[J]. J. Power Sources, 2006, 161(2): 998-1001.
    
    54 Y. Fukui, M. Massnori, M.Saito. Separator for low temperature type fuel cell and method??production thereof[P]. CNP: 1273699A. 2000.
    
    55 Priyanka H. Maheshwari, R.B. Mathur, T.L. Dhami. Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications[J]. J. Power Sources, 2007, 173(1): 394-403.
    
    56 M. Wu, Leon L. Shaw. A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates[J]. J. Hydro Enerygry, 2005, 30(4): 373-380.
    
    57 M. Wu, Leon L. Shaw. On the improved properties of injection-molded carbon nanotube-filled PET/PVDF blends[J]. J. Power Source, 2004, 136(1): 37-44.
    
    58 M. Wilson, D. Busich. Composite bipolar plate for electrochemical cells[P]. WOP, 00/25372. 2000.
    
    59 http://wwwl.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells. pdf. website, 2007.
    
    60 J.R. Lawrance. Low cost bipolar current collector-separator for electrochemical cells[P], USP:214969, 1980.
    
    61 M.S. Wilson, D. N. Busick. Composite bipolar plate for electrochemical cells[P], USP: 248467. 2001.
    
    62 G.H. Chen, C.L. Wu, W.H. Weng, et al. Preparation of polystyren/graphite nanosheet composite[J]. Polymer, 2003,44(6): 1781-1784.
    
    63 A. Heinzel, F. Mahlendorf, O. Niemzig, et al. Injection moulded low cost bipolar plates for PEM fuel cells[J]. J. Power sources, 2004, 131(1): 35-40.
    
    64 H.-C. Kuan, C.-C. Ma, K.-H.Chen, et al. Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell[J]. J. Power Sources, 2004, 134(1): 7-17.
    
    65沈春辉,潘牧,罗志平,等.石墨/聚合物复合材料双极板的研究进展[J].材料导报,2005, 19(3):86-88.
    
    66 L. Du, C. Jana Sadhan. Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells[J]. J. Power Sources, 2007, 172(2): 734-741.
    
    67 H.S. Lee, H.J. Kima, S.G. Kima, et al. Evaluation of graphite composite bipolar plate for PEM (proton exchange membrane) fuel cell: Electrical, mechanical, and molding properties[J]. J. Mate. Prcocessing Tech., 2007, 187-188(1): 425-428.
    
    68 R.C. Emanuelson, W.L. Luoma, W.A. Taylor. Separator plate for electrochemical cells[P]. USP: 4301222, 1981.
    
    69 A. Pellegrl. Bipolar separator for electrochemical cells and method of preparation[P]. USP: 4198178,1980.
    
    70王彦明,王威强,李爱菊,等.新型R/C复合材料的湿法与干法制备工艺及其性能分析 [J].材料导报,2006,20(1):143-145.
    
    71王彦明,王威强,李爱菊,等.酚醛树脂/石墨模压成型复合材料双极板的制备与性能 [J].机械工程材料,2006,30(6):34-37.
    
    72王彦明,王威强,李爱菊,等.新型石墨基复合材料导电性能与力学性能影响因素的机 理分析[J].材料科学与工程学报,2006,24(1):82-85.
    
    73 C.H. Shen, M. Pan, Q. Wu, et, al. Performance of an aluminate cement /graphite conductive composite bipolar plate[J]. J. Power Sources, 2006,159: 1078-1083.
    
    74 C.H. Shen, M. Pan, Z.F. Hua, et al. Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells[J]. J. Power Sources, 2007,166: 419-423.
    
    75沈春晖,潘牧,罗志平,等.水泥/石墨导电复合材料的导电率和含水率研究[J].电源 技术,2005,29(8):499-501.
    
    76 C.-Y. Yen, S.-H. Liao, Y.-F. Lin, et al. Preparation and properties of high performance nanocomposite bipolar plate for fuel cell[J]. J. Power Sources, 2006,162: 309-315.
    
    77 A.G. Sgl Carbo (DE). Bipolar plates for fuel cell stacks[P]. EPP: 1223630, 2002.
    
    78 H. Maheshwari Priyanka, R.B.R. Mathu, T.L. Dhami. Fabrication of high strength and a low weight compositebipolar plate for fuel cell applications[J]. J. Power Sources, 2007, 173(2) : 394-403
    
    79 L.N. Song, M. Xiao, X.H. Li, et al. Short carbon fiber reinforced electrically conductive aromatic polydisulfide/expanded graphite nanocomposites[J]. Mater. Chem. and Phys., 2005, 93(1): 122-128.
    
    80阴强,李爱菊,邵磊,等.碳纤维增强酚醛树脂/石墨双极板复合材料性能及其界面结合 [J].现代化工,2007,27(1):46-48.
    
    81 L. Du, C. Jana Sadhan. Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells[J]. J. Power Sources, 2007, 172(2): 734-741.
    
    82 S. Radhakrishnan, B.T. Ramanujam, S.A. Adhikari, et al. High-temperature, polymer graphite hybrid composites for bipolar plates:Effect of processing conditions on electrical properties[J]. J.Power Sources, 2007, 163(2): 702-707.
    83 D. Radwan, S. Jaafar. Electrical properties of carbon-based polypropylene composites for bipolarplates in polymer electrolyte membrane fuel cell (PEMFC)[J]. J. Power Sources, 2007, 171(2): 424-432.
    84 K.K. Biraj, D. Dhanapati. Differences in physico-mechanical behaviors of resol(e) and novolac type phenolic resin based composite bipolar plate for protonexchange membrane (PEM) fuel cell[J]. Electrochimica Acta, 2007, 52 (25): 7330-7336.
    85 H. Wolf, M. Willert-Porada. Electrically conductive LCP-carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell[J]. J. Power Sources, 2006,153(1): 41-46.
    86 S. Iijima. Helical microtubules of graphite carbon[J]. Nature, 1991, 345: 56-58.
    87 姬海宁,张怀武。纳米碳管的研究与发展[J].磁性材料及器件,2001,32(4):37-40.
    88 X. Zhou, J. Zhou, Z.O. Yang. Induced fragmentation of multiwall carbon nanotubes in a polymer matrix[J]. Phys. Rev.B 2000, 62:13692-13698.
    89 M.M.J. Treae, W. Ebbesen, J.M. Gibson, et al. Exceptionally high Young modulus observed for individual carbon nanotubes[J]. Nature, 1996,381: 678-675.
    90 W.E. Wong, P.E. Sheehan, C.M. Lieber, et al. Surface functionalities of multi-wall carbon nanotubes[J]. Science, 1997,277: 1971-1978.
    91 C. Bower, R. Rosen, L. Jin, et al. Deformation of carbon nanotubes in nanotube -polymer composites[J]. Appl. Phys. Lett., 1999, 74(22): 3317-3324.
    92 D.A. Walters, L.M. Ercson, M.J.Casavnat, et al. Elastic strain of freely suspended single wall carbon nanotube ropes[J] Appl. Phys. Lett., 1999, 74(25): 3803-3807.
    93 S. Iijima, C. Brbaee, A. Maiti. Structural flexibility of carbon nanotube[J]. J. Chem. Phys., 1996, 104(5): 2089-2092.
    94 M.S. Dresselhaus, G. Dresselhaus, R. Saiot. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883-889.
    95 B.Q. Wei, R. Vaitai, P.M. Ajayan, et al. Fluorescence of a multi-walled nanotubes-polymer composites[J]. Appl. Phys. Lett., 2001, 79: 1172-1177.
    96 S. Berber, Y.K. Kwon, D. Tomnaek, et al. Unusually high thermal conductivity of carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84: 4613-4621.
    97 L.S. Schadler, S.C. Giannaris, P.M.L. Ajayan. Load tranfer in carbon nanotube epoxy composite [J]. Appl. Phy. Lett., 1998, 73: 3482-3844.
    98 H.D. Wagner, O. Louris, Y. Feldman, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix[J]. Appl. Phys. Lett., 1998, 72(2): 188-190.
    99 J.W. An, D.H. You, D.S. Lim. Tribological properties of hot-pressed alumina-CNT composites [J]. Wear, 2003, 255(1-6): 677-681.
    100 G.D. Zhan, J.D. Kuntz, J. Wan, et al. Single-wall carbon nanotubes as attractive toughing agents in alumina based nanocomposites[J]. Nat. Mater., 2003, 2: 38-42.
    101 L.X. Pang, K.N. Sun, S. Ren, et al. Fabrication and microstructure of Fe_3Al matrix composite reinforced by carbon nanotube[J]. Mater. Sci. Eng. A, 2007,447(1-2): 146-149.
    102 G.L. Hwang, K.C. Hwang. Carbon nanotube reinforced cerimics[J]. J.Mater.Chem, 2001, 11(6): 1722-1725.
    103 C. Balazsi, Z. Bonya, F. Weber, et al. Preparation and characterization of carbon nanotbue reinforced silicon nitride composite[J]. Chem. Phys. Lett., 2002,352(1-2): 20-25.
    104 J.N. Coleman, S. Curran, A.B. Daton, et al. Percolation-diminated conductivity in a conjugated- polymer-carbon nanotube composite[J]. Phys. Rev. B, 1998, 58: 7492-7595.
    105 A.B. Dalton, H.J. Byrne. J.N. Coleman, et al. Optical absorption and fluorescence of a multi-walled nanotubes-polymer composites[J]. Synth. Met. 1999, 102(1-3): 1176-1177.
    106 S. Curran, A.P. Davey, J.N. Coleman, et al. Evolution and evaluation of the polymer/nanotube composite[J]. Synth. Met., 1999, 103(1-3): 2559-2562.
    107 J. Fan, M. Wan, D. Zhu, et al. Synthesis, characterizations, and electrochemical synthesis of polypyrrole nanotubes[J]. J. Appli. Poly. Sci., 1999, 74(11): 2605-2610.
    108 E. Flahaut, A. Peigney, C. Laurent, et al. Carbon nanotube-metal-oxide nanotubes: microstructure, electrical conductivity and mechanical properties[J]. Acta. Mater., 2000, 48(14): 3803-3812.
    109 J. Tans, A. Verschueren. Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393(6682): 240-242.
    110 H. Henry, A. Dietrieh, K. Andreas, et al. Development and testing of HVOF-sprayed tungsten carbide coatings applied to moulds for concrete roof tiles[J]. Wear, 2004, 256(1-2): 81-87.
    111 E.P. Zegers, B.A. Willimas, E.M. Fisher. Suppression of nonpremixed flames by fluorinated ethanes and propanes[J]. Combustion and Flame, 2000,121(3): 471-487.
    112 0. Alexeev, B.C. Gates. Iridium Clusters Supported on Y-Al_2O_3: Structural characterization and catalysis of toluene hydrogenation[J]. J. Catalysis, 1998,176(2): 310-320.
    113 F. Boccuzzi, A. Chiorino, M. Mnazoli, et al. Au/TiO_2 nanostructured catalyst: effects of gold particle sizes on CO oxidation at 90 K[J]. Mater. Sci. Eng. C, 2001,15(1-2): 215-220.
    114 Y.Q. Liu, L. Gao. A study of electrical properties of carbon nanotube-NiFe_2O_4 composite: effect of the surface treatment of the carbon nanotubes[J]. Carbon, 2005,43(1): 47-52.
    115 M.L. Sham, J.K. Kim. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments[J]. Carbon, 2006, 44(4): 768-777.
    116 R. Lago, S. Tsang. K. Lu, et al. Carbon nanotubes with small palladium metal crystallites-the effect of surface acid Groups[J]. J. Chem. Soc- Chem. Commu., 1995, 13: 1355-1356.
    117 S.C. Tsang, Y.K. Chen, J.P.F. Harris, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994,372(6502): 159-162.
    118 K.C. Hwang. Patterned growth of well-aligned carbon nanotube arrays on quartz substrates[J]. J. Chem. Soc- Chem. Commu., 1995, 13: 1173-1175.
    119 H. Hiura, T.W. Ebbesen, K.Tanigaki. Opening and purification of carbon nanotubes in high yields[J]. Adv. Mater., 1995, 7(3): 275-276.
    120 R.Q. Yu, L.W. Chen, Q.P. Liu, et al. Selective determination of nanogram γ-Globulin in human blood serum by resonance light scattering of functionalized nano-PbS[J]. Chem. Mater., 1998,10(3): 718-722.
    121 J. Liu, A.G Rinzler, H.J. Dai, et al. Fullerene pipes[J]. Science, 1998, 280(5367): 1253-1256.
    122 Y.C. Xing. Lattice fringe signatures of epitaxy on nanotubes[J]. J. Phys. Chem. B, 2004, 108(50): 19255-19259.
    123 Y.C. Xing, L. Li, C.C. Chusuei, et al. Sonochemical oxidation of multiwalled carbon nanotubes[J]. Langmuir, 2005, 21(9): 4185-4190.
    124 R.V. Hull, L.Li, Y.C. Xing, et al. Pt Nanoparticle binding on functionalized multiwalled carbon nanotubes[J]. Chem. Mater., 2006, 18(7): 1780-1788.
    125 Y.B. Wang, Z. Iqbal, S. Mitra. Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes[J]. Carbon, 2005, 43(5): 1015-1020.
    126 M.S. Raghuveer, S. Agrawal, N. Bishop et al. Microwave-assisted single-step functio -nalization and in situ derivatization of carbon nanotubes with gold nanoparticles[J]. Chem.
    ??Mater., 2006,18(66): 1390-1393.
    
    127 Z. Shi, Y. Lian, X. Zhou. Chemical method of opening and filling carbon nanotubes[M]. Chemical Communieations, 2000: 461-462.
    
    128 W. Zhao, C.H. Song, P.E. Pehrsson. Water-soluble and optically pH-Sensitive single-walled carbon nanotubes from Surface Modification[J]. J. Am. Chem. Soc, 2002, 124(42): 12418-12419.
    
    129 D.B. Mawhinney, V. Naumenko, R.E.Smalley. Surface defect site density on single walled carbon nanotubes by titration[J]. Chem. Phys. Lett., 2000, 324(1-3): 213-216.
    
    130 H. Hu, P. Bhowmik, B. Zhao, et al. Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration[J]. Chem. Phys. Lett., 2001, 345(1-2): 25-28.
    
    131 S. Niyogi, H. Hu, M.A. Hamon, et al. Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs) [J]. J. Am. Chem. Soc, 2001, 123(4): 733-734.
    
    132 B. Zhao, H. Hu, S. Niyogi, et al. Chromatographic purification and properties of soluble single-walled carbon nanotubes[J]. J. Am. Chem. Soc, 2001, 123(47): 11673-11677.
    
    133 J. Chen, M.A. Hamon, H. Hu, et al. Solution properties of single-walled carbon nanotubes [J]. Science, 1998,282(5386): 95-98.
    
    134 M.A. Hamon, J. Chen, H. Hu, et al. Dissolution of single-walled carbon nanotubes[J]. Adv. Mater., 1999,11(10): 834-840.
    
    135李博,廉永福.单壁碳纳米管的化学修饰[J].高等化学学报,2000,21(4):1633-1635.
    
    136 S. Banerjee, S.S. Wong. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures[J]. Nano Letters, 2002,2(3): 195-200.
    
    137 K. F. Fu, W. J. Huang, Y. Lin, et al. Defunctionalization of functionalized carbon nanotubes[J]. Nano Letters, 2001, 1(8): 439-441.
    
    138 J. Chen, A.M. Rao, S. Lyuksyutov, et al. Dissolution of full-length single-walled carbon nanotubes[J]. J. Phys. Chem. B 2001, 105(13): 2525-2528.
    
    139 S. Banerjee, S.S. Wong. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis[J]. J. Phys. Chem. B, 2002, 106(47): 12144-12151.
    
    140 S. Banerjee, T. Hemraj-Benny, M. Balasubramanian, et al. Ozonized single-walled carbon nanotubes investigated using NEXAFS spectroscopy[M], Chem.Commun., 2004: 772-773.
    
    141 S. Banerjee, S.S. Wong. Demonstration of diameter-selective reactivity in the sidewall ozonation of SWNTs by resonance Raman Spectroscopy [J]. Nano Letters, 2004, 4(8): 1445-1450.
    142 D.B. Mawhinney, V. Naumenko, A. Kuznetsova, et al. Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K[J]. J. the Am. Chem. Soc, 2000, 122(10): 2383-2384.
    143 L. Cai, J.L. Bahr, Y.Yao, et al. Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers[J]. Chem. Mater., 2002, 14(10): 4235-4241.
    144 Z. Konya, I. Vesselenyi, K. Niesz, et al. Functionalization and purification of single-walled carbon nanotubes[J]. Chem. Phys. Lett., 2002, 360:429-435.
    145 R. Barthos, D. Mehn, A. Demortier, et al. Functionalization of single-walled carbon nanotubes by using alkyl-halides[J]. Carbon, 2005,43(2): 321-325.
    146 H.L. Pan, L.Q. Liu, Z.X. Guo, et al. Surface functionalities of multi-wall carbon nanotubes [J]. Nano letters, 2003, 3(1): 29-34.
    147 S. Pekker, J.-P. Salvetat, E. Jakab, et al. Hydrogenation of carbon nanotubes and graphite in liquid ammonia[J]. J. Phys. Chem. B, 2001, 105(33): 7938-7943.
    148 B.N. Khare, M. Meyyappan, A.M. Cassell, et al. Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge[J]. Nano Letters, 2002, 2: 73-79.
    149 B.N. Khare, M. Meyyappan, J. Kralj, et al. A glow-discharge approach for functionalization of carbon nanotubes[J]. Appl. Phys. Lett., 2002, 81(27): 5237-5245.
    150 K.S. Kim, D.J. Bae, J.R. Kim, et al. Modification of electronic structures of a carbon nanotube by hydrogen functionalization[J]. Adv. Mater., 2002,14(24): 1818-1821.
    151 E.T. Mickelson, C.B. Huffman. Fluorination of single-wall carbon nanotubes[J]. Chem. Phys. Lett., 1998,296(32): 188-194.
    152 R.K. Saini, I.W. Chiang, H.Q. Peng. Covalent sidewall functionalization of single wall carbon nanotubes[J]. J. Am. Chem. Soc, 2003, 125(12): 3617-3621.
    153 H. Hu, B. Zhao, M.A. Hamon. Sidewall functionalization of single-walled carbon aanotubes by addition of dichlorocarbene[J]. J. Am Chem. Soc, 2003, 125(48): 14893-14900.
    
    
    154 M. Holzinger, J. Abraham, P. Whelan. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes[J]. J. Am. Chem. Soc, 2003,125(28): 8566-8580.
    
    155 M. Holzinger, O. Vostrowsky H. Andreas,et al. Cover picture[J]. Ange. Chemie. Inter. Edit., 2001,40(21): 3927-3927.
    
    156 J.L. Bahr, J. Yang, J.M.Tour, et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A Bucky Paper Electrode[J]. J. Am. Chem. Soc, 2001, 123(27): 6536-6542.
    
    157 J.L. Bahr, J.M. Tour. Highly functionalized carbon nanotubes using in situ generated diazonium compounds[J]. Chem. Mater., 2001,13(11): 3823-3824.
    
    158 S. Banerjee, M.G.C. Kahn, S.S. Wong. Rational chemical strategies for carbon nanotube Functionalization[J]. Chemistry-A European Journal, 2003, 9(9): 1898-1908.
    
    159 C.A. Dyke, J.M. Tour. Unbundled and highly functionalized carbon nanotubes from aqueous reactions[J]. Nano Letters, 2003, 3(9): 1215-1218.
    
    160 W. Li, Y. Bai, Y.K. Zhang, et al. Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes[J]. Synthetic Metals, 2005,155(13): 509-515.
    
    161宋义虎,王沽江,郑强,等.高密度聚乙烯/石墨导电复合物的PTC行为及其热循环稳定 性[J].功能高分子学报,2001,14(1):38-40.
    
    162龙春光,王霞瑜.聚苯酯/石墨/聚甲醛复合材料的制备及摩擦学性能[J].高分子材料科学 与工程,2004,20(6):200-203.
    
    163黄明宇,倪红军,廖萍,等.PF/MCMB/石墨/CF复合材料燃料电池双极板的研制[J].工 程塑料的应用,2006,34(9):37-39.
    
    164 R.C. Talar, S. Rabii. Electronic properties of graphite: A united theoretical study [J]. Phys. Rev. B, 1982,25(6): 4129-4135.
    
    165 Q. Yin, A.J. Li, W.Q. Wang, et al. Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate[J]. J. Power Sources, 2007, 165(2): 717-721.
    
    166韩永芹,刘长维,陶嵘.新型导电复合材料性能的研究[J].工程塑料应用,2004,32(1): 10-13.
    
    167赵晓旭,王立新,陈刚,等.新型炭/改性酚醛树脂(C/R)复合材料的研究[J].炭素,2001, 1:25-27.
    
    168黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社,2003:75-80.
    
    169周钟琼,李劲,李京,等.环氧与酚醛改性环氧涂层固化反应与吸水性关系的研究[J].中 国腐蚀与防护学报,1997,17(3):173-180.
    
    170胡享军,罗翰林.热塑性酚醛树脂制备玻璃炭的初步研究[J].炭素技术,1994,(5):15-19.
    
    171杨玉昆.合成粘胶剂[M].北京:科学出版社,1980.387-388.
    
    172 C. Anunay, Lan R. Harrison. Small-Angle X-ray Scattering (SAXS) in carbonized phenolic resins[J]. Carbon, 1994, 32(5): 953-960.
    
    173阴强,李爱菊,孙康宁,等.高性能酚醛树脂/石墨双极板导电复合材料的制备[J].现代 化工,2007,27(n1):46-49.
    
    174 J.G. Wang, Q.G. Guo, L. Liu. et al. Study on the microstructural evolution of high temperature adhesives for graphite bonding[J]. Carbon, 2002,40(13): 2447-2496.
    
    175 C.E. Roger, L.L. Warren, A.T. William. Method for making improved separator plates for electrochemical cells[P]. USP: 4360485,1982.
    
    176中国科学院数学研究所数理统计组.正交试验法[M].北京:人民教育出版社,1975:2-6.
    
    177中国科学院数学研究所数理统计组.方差分析[M].北京:科学出版社,1981:20-23.
    
    178项可风,吴启光.试验设计与数据分析[M].上海:上海科学技术出版社,1989:1-6.
    
    179方开泰.均匀设计与均匀设计表[M].北京:北京出版社,1994:11-13.
    
    180 P.M. Borsenberger, L.E. Contois. D.C. Hoesterey. Symmetries and application of the wave equations governing radial motion of the Blatz-Ko materials[J]. J. Chem. Phys., 1978, 68: 637-644.
    
    181 P.M. Borsenberger, L.E. Contois. Application of the wave equations governing radial motion[J]. J. Appl. Phys., 1979, 50: 914-926.
    
    182董树荣,张孝彬,徐江平,等.新型纳米材料-碳纳米管[J].材料科学与工程,1998, 16(2):19-22.
    
    183 S.G. Schrank, H.J. Jose, R. Moreira, et al. Applicability of Fenton and H_2O_2 reactions in thetreatment of tannery wastewaters[J]. Chemosphere, 2005, 60(5): 644-655.
    
    184 R. Liu, H.M. Chiu, C.S. Shiau. et al. Degradation and sluge production of textile dyes by Fenton and photo-Fenton processes[J]. Dyes Pigments, 2007, 73(1): 1-6.
    
    185 W.S. Chen, C.N. Juan, K.M. Wei. Mineralization of dinitrotoluenes and trnitrotoluene of spentacid in toluene nitration process by Fenton oxidation[J]. Chemosphere, 2005, 60(8):??1072-1079.
    
    186刘勇弟,徐寿昌.几种类Fenton试剂的氧化特性及在工业废水处理中的应用[J].上海环 境科学,1994,13(3):26-34.
    
    187 R. Maciel, G.L. Scant'Anna, M. Dezotti. Phenol removal from high salinity effluents usingFenton's reagent and photo-Fenton reacions[J]. Chemosphere, 2004, 57(7): 711-719.
    
    188 S. Hilla, K.K. Yasemin, GL. Karl. Degradation of the pharmaceutical Metronidazole via UV,Fenton and photo-Fenton processes[J]. Chemosphere, 2006, 63(2): 269-76.
    
    189曹茂盛,刘海涛,李辰砂,等.碳纳米管表面处理技术的研究[J].中国表面工程, 2002,57:32-36.
    
    190彭峰,蒋菁雯,王红娟,等.碳纳米管负载的Fe_2O_3催化剂制备[J].无机化学学报,2004, 20(20):231-234.
    
    191 M. Muruganandham, M. Swaminathan. Decolourisation of reative orange 4 by Fenton and photo-Fenton oxidation technology[J]. Dyes Pigments, 2004; 63(3): 315-321.
    
    192李伟.羟基自由基对碳纳米管的表面改性[D].硕士学位论文,华东师范大学.2005:43.
    
    193 Q. Yin, K.N. Sun, A.J. Li, et al. Study of carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate[J]. J. Power sources, 2008,175(2): 861-865.
    
    194 H.L. Cox. The elasticity and strength of paper and other fibrous materials[J], Brit. J. Appl. Phys, 1952, 3: 72-79.
    
    195吴人洁.复合材料[M].天津:天津出版社,2000:385-389.
    
    196郝元凯,肖加余.高性能复合材料学[M].北京:化学工业出版社,2003:84-89.
    
    197李恒德,肖纪美.材料表面与界面[M].北京:清华大学出版社,1990:273-280.
    
    198胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学出版社,200l:206-208.
    
    199吴国松.碳纤维增强水泥基材料性能的实验与理论研究[D].硕士学位论文,河海大学. 2003:64-70.
    
    200小松,杨果林.钢纤维高强与超高强混凝土[M].北京:中国建筑工业出版社,1999: 125-128.
    
    201杜善义,王彪.复合材料微观力学[M].北京:科学出版社[M].1993:76-85.
    
    202 M.F. Yu, O. Lourie, M.J. Dyer, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000,287: 637-640.
    
    203许志远.石墨制化工设备[M].北京:化学工业出版社,2003:251-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700