硅纳米材料的制备、模拟与发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体硅是当前微电子技术领域中最为重要的材料之一,然而硅的间接带隙能带性质限制了其在光电子领域的进一步推广。如果可以实现硅的能带结构转变,不仅可以为全硅基光通讯技术的实现提供材料基础,还可以促进太阳能电池和固态发光器的应用发展,同时也是能带工程的一个重要突破。
     硅纳米材料是硅能带工程中一个重要的研究方向。本文采用第一性原理研究了氧钝化网络硅的电子能带结构,结果表明,100X和100D的氧钝化网络硅模型,随着孔隙率的增加,能带结构发生从间接带隙往直接带隙的转变,并且Si-O-Si键对能带结构表现出良好的调节作用。利用-H、-O、-N三种不同官能团研究表面钝化对能带结构的改性作用,发现利用电负性强的氧钝化不仅可以促使网络硅的能带结构往直接带隙转变,而且有利于维持直接带隙的带边单一性,提高电子辐射跃迁效率从而改善发光性能,表面钝化对能带改性的作用机制源自态分布效应。同时,本文构建了一种新的硅二维纳米结构——超薄硅薄膜,对于薄膜表面为(100)和(110)的硅薄膜,当其厚度分别达到1.05nm和1.14nm以下时,其能带结构实现从间接带隙到直接带隙的转变。利用部分态密度对其电子态分布进行分析可知,其能带转变是量子效应与表面官能团相互竞争的结果。
     为了验证网络硅的理论模型,本文利用金属催化化学腐蚀的方法在高掺单晶硅片上制备多孔硅纳米线阵列,多孔纳米线同时包含一个在氧化层的界面态中辐射复合产生的红光发光峰和一个氢钝化多孔结构中量子效应引起的近红外发光峰,并可通过改变表面钝化条件对发光性能进行调控。后续的硒化处理可将多孔纳米线的发光强度提高约30倍,并且极大提高了其发光稳定性,利用瞬态荧光光谱测得硒化多孔硅纳米线在570nm处包含寿命分别为0.49ns和2.68ns的发光峰,分别由Si-Se和Si-Se-O钝化的纳米多孔结构所贡献,该纳秒量级的荧光寿命表明硒化多孔硅纳米线中的发光现象是由表面Se钝化诱导的直接辐射复合跃迁。
     硅纳米线的尺寸调控决定了其能否在光电子领域获得应用。为了制备出小尺寸的硅纳米线阵列,本文采用模板辅助的金属催化腐蚀和干法氧化的方法,实现对硅纳米线直径的精确控制,并利用氧化自饱和效应,成功制备内核直径在10nm以下的core-shell结构纳米线阵列,其结构参数有望得到进一步优化。
Silicon is one of the most important materials in the area of microelectronic.However, the indirect band-gap structure restricts its further application inoptoelectronics. The transition from indirect to direct band-gap could open a way for theachievement of all-silicon optical communication, greatly facilitate the development ofsolar cell and solid-state luminescence devices, and also be available in the band-gapengineering in solid state physics.
     Silicon nanostructure is one of the possible candidates to realize the band-gaptransition. Systematical investigation on the band-gap structure of oxygen-passivatedsilicon nanonets (SiNNs) with different parameters were carried out. It was foundthat high porosity was favorable for the direct band-gap and the Si-O-Si bondcould effectively modify the band edge characteristic. Different funcionalgroups, such as-H,-O and-NH, were employed to terminate the danglingbonds of the SiNNs and silicon nanowires (SiNWs). It was found thatpassivation with-O functional groups could not only lead to the indirect todirect band-gap transition, but also enhance the transition efficiency andimprove the luminescene properites by increasing the electron states on the bandedge. State distribution effect were proposed to explain this phenomenon. Thestudy on the two dimensional silicon quantum films indicated that when the thicknessreached1.05nm and1.14nm for (100) and (110) quantum films, respectively, thedirect band-gap was also securable, which was attributed to the competition of quantumconfinement and surface electron states.
     In order to validate the models of SiNNs, metal-assisted chemical etching wasemployed to obtain the nanoscale and controllable porous structure on the nanowiressynthesized on the highly doped silicon wafer. A red luminescence band and anear-infrared one were detected in the photoluminescene (PL) measurement, whichwere attributed to interface recombination in the oxide layer and localized excitation inthe H-terminated porous structure, respectively. Selenization treatment was carried outon the porous SiNWs. An enhancement of30times of the luminescence intensity andwonderful stability were obtained. Time-resolved luminescence spetra proved that therecombination rate was three magnitudes faster after Seleniazation treatment. The lifetime of0.49ns and2.68ns were attributed to the recombination in the Si porousstructure passivated with Si-Se and Si-Se-O bonds, respectively. The fastrecombination rates indicated that surface modification induced by selenizationtreatment could lead to the direct radiative recombination in this Se-treated Siporous structure.
     The diameter of the SiNWs is crucial for its future application in optoelectronics.Ag-assisted chemical etching with polystyrene (PS) sphere as template was employed toprepare the SiNW arrays and the diameter could be controlled via high-temperatureoxidiation and etching. The core-shell nanowire arrays with silicon core diameter lessthan10nm was successfully synthesized due to the self-terminating effect. It isexpected that the structure parameter could be optimized in the future.
引文
[1]李志坚,周润德. ULSI器件电路与系统.北京:科学出版社,2000:1-16.
    [2] International Technology Roadmap for Semiconductors2007Edition [G/OL].2007.[2013-3-28]. http://www.itrs.net/reports.html.
    [3] Meindl J D, Davis J A, Zarkesh-Ha P, et al. GSI所带来的互连机遇//Jeffrey A D, Jame D M.吉规模集成电路互连工艺及设计.骆祖莹,叶佐昌,吕勇强,等,译.北京:机械工业出版社,2010:1-26.
    [4] Chen G, Chen H, Haurylau M, et al. Predictions of CMOS compatible on-chip opticalinterconnect. Integration, the VLSI Journal,2007,40:434-446.
    [5] Matyi R J, Duncan W M, Shichijo H, et al. Effect of post-growth annealing on patternedGaAs on silicon. Appl Phys Lett,1988,53:2611-2613.
    [6] Fotiadis L, Kaplan R. Initial-stages of growth of GaAs on silicon (211) substrates bymigration-enhanced molecular-beam epitaxy. Appl Phys Lett,1989,55:2538-2540.
    [7] Lin T L, Sadwick L, Wang K L, et al. Growth and characterization of molecular-beamepitaxial GaAs-Layers on porous silicon. Appl Phys Lett,1987,51:814-816.
    [8] Biegelsen D K, Ponce F A, Smith A J, et al. Initial-stages of epitaxial-growth of GaAs on (100)Silicon. J Appl Phys,1987,61:1856-1859.
    [9] Sugo M, Mori H, Tachikawa M, et al. Room-temperature operation of an InGaAsPdouble-heterostructure laser emitting at1.55μm on a Si substrate. Appl Phys Lett,1990,57:593-595.
    [10] Wada H, Kamijoh T. Room-temperature CW operation of InGaAsP lasers on Si fabricated bywafer bonding. IEEE Photomic Tech L,1996,8:173-175.
    [11] Yang V K, Groenert M E, Taraschi G, et al. Monolithic integration of III-V opticalinterconnects on Si using SiGe virtual substrates. J Mater Sci: Mater Electron,2002,13:377-380.
    [12] Canham L. Gaining light from silicon. Nature,2000,408:411-412.
    [13] Ball P. Let there be light. Nature,2001,409:974-976.
    [14] Sa'ar A. Photoluminescence from silicon nanostructures: The mutual role of quantumconfinement and surface chemistry. J Nanophotonics,2009,3:032501.
    [15] Brus L. Luminescence of silicon materials-chains, sheets, nanocrystals, nanowires,microcrystals, and porous silicon. J Phys Chem,1994,98:3575-3581.
    [16] Uhlir A. Electrolytic shaping of germanium and silicon. Bell System Technical Journal,1956,35:333-347.
    [17] Pickering C, Beale M I J, Robbins D J, et al. Optical studies of the structure of porous siliconfilms formed in p-type degenerate and non-degenerate silicon. J Phys C: Solid State Phys,1984,17:6535-6552.
    [18] Canham L T. Silicon quantum wire array fabrication by electrochemical and chemicaldissolution of wafers. Appl Phys Lett,1990,57:1046-1048.
    [19] Canham L T, Leong W Y, Beale M I J, et al. Efficient visible electroluminescence from highlyporous silicon under cathodic bias. Appl Phys Lett,1992,61:2563-2565.
    [20] Cullis A G, Canham L T, Calcott P D J. The structural and luminescence properties of poroussilicon. J Appl Phys,1997,82:909-965.
    [21] Bisi O, Ossicini S, Pavesi L. Porous silicon: a quantum sponge structure for silicon basedoptoelectronics. Surf Sci Rep,2000,38:1-126.
    [22] Schuppler S, Friedman S L, Marcus M A, et al. Dimensions of luminescent oxidized andporous silicon structures. Phys Rev Lett,1994,72:2648-2651.
    [23] Cullis A G, Canham L T. Visible-light emission due to quantum size effects in highly porouscrystalline silicon. Nature,1991,353:335-338.
    [24] Harris C I, Syvajarvi M, Bergman J P, et al. Time-resolved decay of the blue emission inporous silicon. Appl Phys Lett,1994,65:2451-2453.
    [25] Kovalev D I, Yaroshetzkii I D, Muschik T, et al. Fast and slow visible luminescence bands ofoxidized porous Si. Appl Phys Lett,1994,64:214-216.
    [26] Gelloz B, Kojima A, Koshida N. Highly efficient and stable luminescence of nanocrystallineporous silicon treated by high-pressure water vapor annealing. Appl Phys Lett,2005,87:031107.
    [27] Gelloz B, Koshida N. Mechanism of a remarkable enhancement in the light emission fromnanocrystalline porous silicon annealed in high-pressure water vapor. J Appl Phys,2005,98:123509.
    [28] Gelloz B, Nakagawa T, Koshida N. Enhancement of the quantum efficiency and stability ofelectroluminescence from porous silicon by anodic passivation. Appl Phys Lett,1998,73:2021-2023.
    [29] Boukherroub R, Wayner D D M, Lockwood D J. Photoluminescence stabilization ofanodically-oxidized porous silicon layers by chemical functionalization. Appl Phys Lett,2002,81:601-603.
    [30] Richter A, Steiner P, Kozlowski F, et al. Current-induced light-emission from a porous silicondevice. IEEE Electron Device Lett,1991,12:691-692.
    [31] Lazarouk S, Jaguiro P, Katsouba S, et al. Stable electroluminescence from reverse biasedn-type porous silicon-aluminum Schottky junction device. Appl Phys Lett,1996,68:2108-2110.
    [32] Loni A, Simons A J, Cox T I, et al. Electroluminescent porous silicon device with an externalquantum efficiency greater than0.1percent under cw operation. Electron Lett,1995,31:1288-1289.
    [33] Gelloz B, Koshida N. Electroluminescence with high and stable quantum efficiency and lowthreshold voltage from anodically oxidized thin porous silicon diode. J Appl Phys,2000,88:4319-4324.
    [34] Pavesi L, Guardini R, Mazzoleni C. Porous silicon resonant cavity light emitting diodes. SolidState Commun,1996,97:1051-1053.
    [35] Schubert E F, Wang Y H, Cho A Y, et al. Resonant cavity light-emitting diode. Appl Phys Lett,1992,60:921-923.
    [36] Unlu M S, Strite S. Resonant cavity enhanced photonic devices. J Appl Phys,1995,78:607-639.
    [37] Schubert E F, Hunt N E J, Micovic M, et al. Highly efficient light-emitting-diodes withmicrocavities. Science,1994,265:943-945.
    [38] Tsybeskov L. Nanocrystalline silicon for optoelectronic applications. Mrs Bulletin,1998,23:33-38.
    [39] Koch F. Insulating films on a quantum semiconductor light emitting porous silicon.Microelectron Eng,1995,28:237-245.
    [40] Koch F, Petrova-Koch V, Muschik T, et al. Some perspectives on the luminescencemechanism via surface-confined states of porous Si. Boston, USA: MicrocrystallineSemiconductors: Materials Science and Devices Symposium,1993:197-202.
    [41] Qin G G, Jia Y Q. Mechanism of the visible luminescence in porous silicon. Solid StateCommun,1993,86:559-563.
    [42] Qin G, Qin G G. Theory on the quantum confinement luminescence center model fornanocrystalline and porous Si. J Appl Phys,1997,82:2572-2579.
    [43] Qin G G. Extended quantum confinement luminescence center model for photoluminescencefrom oxidized porous silicon and nanometer-Si-particle-or nanometer-Ge-particle-embeddedsilicon oxide films. Mater Res Bull,1998,33:1857-1866.
    [44] Qin G G, Li Y J. Photoluminescence mechanism model for oxidized porous silicon andnanoscale-silicon-particle-embedded silicon oxide. Phys Rev B,2003,68:085309.
    [45] Kahler U, Hofmeister H. Visible light emission from Si nanocrystalline composites viareactive evaporation of SiO. Opt Mater,2001,17:83-86.
    [46] Daldosso N, Das G, Larcheri S, et al. Silicon nanocrystal formation in annealed silicon-richsilicon oxide films prepared by plasma enhanced chemical vapor deposition. J Appl Phys,2007,101:113510.
    [47] Walters R J, Kalkman J, Polman A, et al. Photoluminescence quantum efficiency of densesilicon nanocrystal ensembles in SiO2. Phys Rev B,2006,73:132302.
    [48] Panchal A K, Rai D K, Mathew M, et al. Silicon quantum dots growth in SiNxdielectric: areview. Nano,2009,4:265-279.
    [49] Lin X M, Jaeger H M, Sorensen C M, et al. Formation of long-range-ordered nanocrystalsuperlattices on silicon nitride substrates. J Phys Chem B,2001,105:3353-3357.
    [50] Wang Y Q, Wang Y G, Cao L, et al. High-efficiency visible photoluminescence fromamorphous silicon nanoparticles embedded in silicon nitride. Appl Phys Lett,2003,83:3474-3476.
    [51] Koshizaki N, Umehara H, Sasaki T, et al. Nanostructure and photoluminescence property ofSi/MgO and Si/ZnO co-sputtered films. Nanostruct Mater,1999,12:975-978.
    [52] Pal U, Serrano J G, Koshizaki N, et al. Photoluminescence in Si/ZnO nanocomposites. MaterSci Eng B,2004,113:24-29.
    [53] Feng J Y, Bi L. Nanocrystal and interface defects related photoluminescence in silicon-richAl2O3films. J Lumin,2006,121:95-101.
    [54] Park C J, Kwon Y H, Lee Y H, et al. Origin of luminescence from Si--implanted (1102)Al2O3. Appl Phys Lett,2004,84:2667-2669.
    [55] Kachurin G A, Yanovskaya S G, Volodin V A, et al. Silicon nanocrystal formation uponannealing of SiO2layers implanted with Si ions. Semiconductors,2002,36:647-651.
    [56] Charvet S, Madelon R, Rizk R, et al. Substrate temperature dependence of thephotoluminescence efficiency of co-sputtered Si/SiO2layers. J Lumin,1998,80:241-245.
    [57] He Y, Bi L, Feng J Y, et al. Properties of Si-rich SiO2films by RF magnetron sputtering. JCryst Growth,2005,280:352-356.
    [58] Song H Z, Bao X M, Li N S, et al. Strong ultraviolet photoluminescence from silicon oxidefilms prepared by magnetron sputtering. Appl Phys Lett,1998,72:356-358.
    [59] Mishra P, Jain K P. Raman, photoluminescence and optical absorption studies onnanocrystalline silicon. Mater Sci Eng B,2002,95:202-213.
    [60] Canham L T. Nanostructured silicon as an active optoelectronic material//Pavesi L,Buzaneva E. Frontiers of Nano-Optoelectronic Systems. Netherlands: Springer,2000:85-97.
    [61] Heitmann J, Muller F, Zacharias M, et al. Silicon nanocrystals: Size matters. Adv Mater,2005,17:795-803.
    [62] Brongersma M L, Kik P G, Polman A, et al. Size-dependent electron-hole exchangeinteraction in Si nanocrystals. Appl Phys Lett,2000,76:351-353.
    [63] Kanemitsu Y, Okamoto S. Photoluminescence from Si/SiO2single quantum wells by selectiveexcitation. Phys Rev B,1997,56: R15561-R15564.
    [64] Kanemitsu Y, Okamoto S, Otobe M, et al. Photoluminescence mechanism in surface-oxidizedsilicon nanocrystals. Phys Rev B,1997,55: R7375-R7378.
    [65] Rinnert H, Jambois O, Vergnat M. Photoluminescence properties of size-controlled siliconnanocrystals at low temperatures. J Appl Phys,2009,106:023501.
    [66] Vinciguerra V, Franzo G, Priolo F, et al. Quantum confinement and recombination dynamicsin silicon nanocrystals embedded in Si/SiO2superlattices. J Appl Phys,2000,87:8165-8173.
    [67] Zhuravlev K S, Gilinsky A M, Kobitsky A Y. Mechanism of photoluminescence of Sinanocrystals fabricated in a SiO2matrix. Appl Phys Lett,1998,73:2962-2964.
    [68] Dovrat M, Goshen Y, Jedrzejewski J, et al. Radiative versus nonradiative decay processes insilicon nanocrystals probed by time-resolved photoluminescence spectroscopy. Phys Rev B,2004,69:155311.
    [69] Augustine B H, Irene E A, He Y J, et al. Visible-light emission from thin-films containing Si,O, N, and H. J Appl Phys,1995,78:4020-4030.
    [70] Dohnalova K, Kusova K, Pelant I. Time-resolved photoluminescence spectroscopy of theinitial oxidation stage of small silicon nanocrystals. Appl Phys Lett,2009,94:211903.
    [71] Sahu G, Lenka H P, Mahapatra D P, et al. Narrow band UV emission from direct bandgap Sinanoclusters embedded in bulk Si. J Phys: Condens Matter,2010,22:072203.
    [72] Kenyon A J, Trwoga P F, Pitt C W, et al. Luminescence efficiency measurements of siliconnanoclusters. Appl Phys Lett,1998,73:523-525.
    [73] Pavesi L, Dal Negro L, Mazzoleni C, et al. Optical gain in silicon nanocrystals. Nature,2000,408:440-444.
    [74] Shi W S, Peng H Y, Zheng Y F, et al. Synthesis of large areas of highly oriented, very longsilicon nanowires. Adv Mater,2000,12:1343-1345.
    [75] Zhang Z, Fan X H, Xu L, et al. Morphology and growth mechanism study of self-assembledsilicon nanowires synthesized by thermal evaporation. Chem Phys Lett,2001,337:18-24.
    [76] Zhang Y F, Tang Y H, Wang N, et al. Silicon nanowires prepared by laser ablation at hightemperature. Appl Phys Lett,1998,72:1835-1837.
    [77] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystallinesemiconductor nanowires. Science,1998,279:208-211.
    [78] Peng K Q, Yan Y J, Gao S P, et al. Synthesis of large-area silicon nanowire arrays viaself-assembling nanoelectrochemistry. Adv Mater,2002,14:1164-1167.
    [79] Peng K Q, Yan Y J, Gao S P, et al. Dendrite-assisted growth of silicon nanowires in electrolessmetal deposition. Adv Funct Mater,2003,13:127-132.
    [80] Chartier C, Bastide S, Levy-Clement C. Metal-assisted chemical etching of silicon inHF-H2O2. Electrochim Acta,2008,53:5509-5516.
    [81] Ahmad I, Fay M, Xia Y D, et al. Fe-assisted synthesis of Si nanowires. J Phys Chem C,2009,113:1286-1292.
    [82] Chang S-W, Chuang V P, Boles S T, et al. Metal-catalyzed etching of vertically alignedpolysilicon and amorphous silicon nanowire arrays by etching direction confinement. AdvFunct Mater,2010,20:4370.
    [83] Huang Z, Geyer N, Werner P, et al. Metal-assisted chemical etching of silicon: A review. AdvMater,2011,23:285-308.
    [84] Dhalluin F, Baron T, Ferret P, et al. Silicon nanowires: Diameter dependence of growth rateand delay in growth. Appl Phys Lett,2010,96:133109.
    [85] Cui Y, Lauhon L J, Gudiksen M S, et al. Diameter-controlled synthesis of single-crystalsilicon nanowires. Appl Phys Lett,2001,78:2214-2216.
    [86] Bogart T E, Dey S, Lew K K, et al. Diameter-controlled synthesis of silicon nanowires usingnanoporous alumina membranes. Adv Mater,2005,17:114-117.
    [87] Schmidt V, Wittemann J V, Senz S, et al. Silicon nanowires: A review on aspects of theirgrowth and their electrical properties. Adv Mater,2009,21:2681-2702.
    [88] Dovrat M, Arad N, Zhang X H, et al. Cathodoluminescence and photoluminescence ofindividual silicon nanowires. Phys Status Solidi A,2007,204:1512-1517.
    [89] Peng K Q, Wang X, Lee S T. Silicon nanowire array photoelectrochemical solar cells. ApplPhys Lett,2008,92:163103.
    [90] Dovrat M, Arad N, Zhang X H, et al. Optical properties of silicon nanowires fromcathodoluminescence imaging and time-resolved photoluminescence spectroscopy. Phys RevB,2007,75:205343.
    [91] Anguita J V, Sharma P, Henley S J, et al. Room temperature photoluminescence in the visiblerange from silicon nanowires grown by a solid-state reaction. Strasbourg, France:Semiconductor Nanostructures Towards Electronic and Optoelectronic Device Applications II,2009:012011.
    [92] Demichel O, Oehler F, Calvo V, et al. Photoluminescence of silicon nanowires obtained byepitaxial chemical vapor deposition. Phys E: Low-dimensional Syst Nanostruct,2009,41:963-965.
    [93] Shao M W, Cheng L, Zhang M L, et al. Nitrogen-doped silicon nanowires: Synthesis and theirblue cathodoluminescence and photoluminescence. Appl Phys Lett,2009,95:143110.
    [94] Irrera A, Artoni P, Iacona F, et al. Quantum confinement and electroluminescence in ultrathinsilicon nanowires fabricated by a maskless etching technique. Nanotechnology,2012,23:175204.
    [95] Franzo G, Vinciguerra V, Priolo F. The excitation mechanism of rare-earth ions in siliconnanocrystals. Appl Phys A: Mater Sci Process,1999,69:3-12.
    [96] Ennen H, Pomrenke G, Axmann A, et al.1.54μm electroluminescence of erbium-dopedsilicon grown by molecular beam epitaxy. Appl Phys Lett,1985,46:381-383.
    [97] Michel J, Benton J L, Ferrante R F, et al. Impurity enhancement of the1.54μm Er3+luminescence in silicon. J Appl Phys,1991,70:2672-2678.
    [98] Lombardo S, Campisano S U, Vandenhoven G N, et al. Room-temperature luminescence fromEr-implanted seminsulating polycrystalline silicon. Appl Phys Lett,1993,63:1942-1944.
    [99] Zheng B, Michel J, Ren F Y G, et al. Room-temperature sharp line electroluminescence atλ=1.54μm from an erbium-doped silicon light-emitting diode. Appl Phys Lett,1994,64:2842-2844.
    [100] Franzo G, Pacifici D, Vinciguerra V, et al. Er3+ions-Si nanocrystals interactions and theireffects on the luminescence properties. Appl Phys Lett,2000,76:2167-2169.
    [101] Komuro S, Katsumata T, Morikawa T, et al. Time response of1.54μm emission from highlyEr-doped nanocrystalline Si thin films prepared by laser ablation. Appl Phys Lett,1999,74:377-379.
    [102] Kenyon A J, Trwoga P F, Federighi M, et al. Optical-properties of PECVD erbium-dopedsilicon-rich silica-evidence for energy-transfer between silicon microclusters and erbium ions.J Phys: Condens Matter,1994,6: L319-L324.
    [103] Fujii M, Yoshida M, Hayashi S, et al. Photoluminescence from SiO2films containing Sinanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency ofEr3+. J Appl Phys,1998,84:4525-4531.
    [104] Franzo G, Iacona F, Vinciguerra V, et al. Enhanced rare earth luminescence in siliconnanocrystals. Mater Sci Eng B,2000,69:335-339.
    [105] Fujii M, Yoshida M, Kanzawa Y, et al.1.54μm photoluminescence of Er3+doped into SiO2films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+.Appl Phys Lett,1997,71:1198-1200.
    [106] Chryssou C E, Kenyon A J, Iwayama T S, et al. Evidence of energy coupling between Sinanocrystals and Er3+in ion-implanted silica thin films. Appl Phys Lett,1999,75:2011-2013.
    [107] Priolo F, Franzo G, Pacifici D, et al. Role of the energy transfer in the optical properties ofundoped and Er-doped interacting Si nanocrystals. J Appl Phys,2001,89:264-272.
    [108] Maurizio C, D'Acapito F, Priolo F, et al. Site of Er ions in Er-implanted silica containing Sinanoclusters. Opt Mater,2005,27:900-903.
    [109] Han H-S, Seo S-Y, Shin J H. Optical gain at1.54μm in erbium-doped silicon nanoclustersensitized waveguide. Appl Phys Lett,2001,79:4568-4570.
    [110] Iacona F, Pacifici D, Irrera A, et al. Electroluminescence at1.54μm in Er-doped Sinanocluster-based devices. Appl Phys Lett,2002,81:3242-3244.
    [111] Lee H, Shin J H, Park N. Performance analysis of nanocluster-Si sensitized Er-dopedwaveguide amplifier using top-pumped470nm LED. Opt Express,2005,13:9881-9889.
    [112] Kim M H, Kim I S, Park Y H, et al. Platinum assisted vapor-liquid-solid growth of Er-Sinanowires and their optical properties. Nanoscale Res Lett,2010,5:286-290.
    [113] Yukhnevich A V. The structure of the spectrum of the radiative capture of holes by A-centresin silicon. Fizika Tverdogo Tela,1965,7:322-323.
    [114] Spry R J, Compton W D. Recombination luminescence in irradiated silicon. Phys Rev,1968,175:1010-1020.
    [115] Jones C E, Johnson E S, Compton W D, et al. Temperature, stress, and annealing effects onluminescence from electron-irradiated silicon. J Appl Phys,1973,44:5402-5410.
    [116] Canham L T, Barraclough K G, Robbins D J.1.3μm light-emitting diode from silicon electronirradiated at its damage threshold. Appl Phys Lett,1987,51:1509-1511.
    [117] Cloutier S G, Kossyrev P A, Xu J. Optical gain and stimulated emission in periodicnanopatterned crystalline silicon. Nat Mater,2005,4:887-891.
    [118] Rotem E, Shainline J M, Xu J M. Electroluminescence of nanopatterned silicon with carbonimplantation and solid phase epitaxial regrowth. Opt Express,2007,15:14099-14106.
    [119] Rotem E, Shainline J M, Xu J M. Enhanced photoluminescence from nanopatternedcarbon-rich silicon grown by solid-phase epitaxy. Appl Phys Lett,2007,91:051127.
    [120] Cloutier S G, Guico R S, Xu J M. Phonon localization in periodic uniaxially nanostructuredsilicon. Appl Phys Lett,2005,87:222104.
    [121] Cloutier S G, Hsu C H, Kossyrev P A, et al. Enhancement of radiative recombination insilicon via phonon localization and selection-rule breaking. Adv Mater,2006,18:841-844.
    [122] Schmidt D C, Svensson B G, Seibt M, et al. Photoluminescence, deep level transientspectroscopy and transmission electron microscopy measurements on MeV self-ion implantedand annealed n-type silicon. J Appl Phys,2000,88:2309-2317.
    [123] Ortiz C J, Pichler P, Fuhner T, et al. A physically based model for the spatial and temporalevolution of self-interstitial agglomerates in ion-implanted silicon. J Appl Phys,2004,96:4866-4877.
    [124] Liu J F, Cannon D D, Wada K, et al. Deformation potential constants of biaxially tensilestressed Ge epitaxial films on Si (100). Phys Rev B,2004,70:155309.
    [125] Liu J, Sun X, Becla P, et al. Towards a Ge-based laser for CMOS applications. Cardiff:20085th Ieee International Conference on Group IV Photonics,2008:16-18.
    [126] Sun X, Liu J, Kimerling L C, et al. Direct gap photoluminescence of n-type tensile-strainedGe-on-Si. Appl Phys Lett,2009,95:011911.
    [127] Sun X, Liu J, Kimerling L C, et al. Room-temperature direct bandgap electroluminesencefrom Ge-on-Si light-emitting diodes. Opt Lett,2009,34:1198-1200.
    [128] Liu J, Sun X, Kimerling L C, et al. Direct-gap optical gain of Ge on Si at room temperature.Opt Lett,2009,34:1738-1740.
    [129] Liu J, Beals M, Pomerene A, et al. Waveguide-integrated, ultralow-energy GeSielectro-absorption modulators. Nat Photonics,2008,2:433-437.
    [130] Liu J, Sun X, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. OptLett,2010,35:679-681.
    [131] Camacho-Aguilera R E, Cai Y, Patel N, et al. An electrically pumped germanium laser. OptExpress,2012,20:11316-11320.
    [132] Wang T, Moll N, Cho K J, et al. Deliberately designed materials for optoelectronicsapplications. Phys Rev Lett,1999,82:3304-3307.
    [133] Zhang P H, Crespi V H, Chang E, et al. Computational design of direct-bandgapsemiconductors that lattice-match silicon. Nature,2001,409:69-71.
    [134] Zhang P H, Crespi V H, Chang E, et al. Theory of metastable group-IV alloys formed fromCVD precursors. Phys Rev B,2001,64:235201.
    [135]黄美纯,张建立,李惠萍,等.对称性、带隙特性和材料设计.北京: CCAST“半导体纳米系统理论”研讨会,2002:67-80.
    [136]黄美纯.硅基半导体光电子材料的第一性原理设计.厦门大学学报(自然科学版),2005,44:140-149.
    [137]黄美纯,张建立,李惠萍,等. Si基光发射材料的探索.发光学报,2002,23:419-424.
    [138]张建立,黄美纯,李惠萍,等.直接带隙硅基超晶格VI/Sim/VI/Sim/VI.北京:2002年中国材料研讨会,2002:1822-1825.
    [139]张建立,黄美纯,李惠萍,等.直接带隙硅基超晶格VI(A)/Sim/VI(B)/Sim/VI(A)的设计.厦门大学学报(自然科学版),2003,42:265-269.
    [140]陈捷,黄美纯.硅基超晶格VI(A)/Si6/SiO2/Si6/VI(A)的电子结构.厦门大学学报(自然科学版),2007,46:175-178.
    [141]吕铁羽,陈捷,黄美纯.硅基超晶格Si1-xSnx/Si的能带结构.物理学报,2010,59:4843-4848.
    [142] Li D X, Feng J Y. Computational design of silicon-based direct-band gap nanostructure:Silicon nanonet. Appl Phys Lett,2008,92:243117.
    [143] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B,1964,136: B864-B871.
    [144] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. PhysRev,1965,140:1133.
    [145] Stoddart J C, March N H. Density-functional theory of magnetic instabilities in metals.Annals of Physics,1971,64:174-210.
    [146] Rajagopa.Ak, Callaway J. Inhomogeneous electron gas. Phys Rev B,1973,7:1912-1919.
    [147] Gunnarsson O, Lundqvist B I. Exchange and correlation in atoms, molecules, and solids byspin-density functional formalism. Phys Rev B,1976,13:4274-4298.
    [148] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. PhysRev B,1992,46:6671-6687.
    [149] Gonze X, Rignanese G M, Verstraete M, et al. A brief introduction to the ABINIT softwarepackage. Z Kristallogr,2005,220:558-562.
    [150] Gonze X, Amadon B, Anglade P M, et al. ABINIT: First-principles approach to material andnanosystem properties. Comput Phys Commun,2009,180:2582-2615.
    [151] Bottin F, Leroux S, Knyazev A, et al. Large-scale ab initio calculations based on three levelsof parallelization. Comp Mater Sci,2008,42:329-336.
    [152] Bruneval F, Vast N, Reining L. Effect of self-consistency on quasiparticles in solids. Phys RevB,2006,74:045102.
    [153] Schwarz K, Blaha P, Madsen G K H. Electronic structure calculations of solids using theWIEN2k package for material sciences. Comput Phys Commun,2002,147:71-76.
    [154] Hamann D R, Schluter M, Chiang C. Norm-conserving pseudopotentials. Phys Rev Lett,1979,43:1494-1497.
    [155] Blaha P, Schwarz K, Sorantin P, et al. Full-potential, linearized augmented plane-waveprograms for crystalline systems. Comput Phys Commun,1990,59:399-415.
    [156] Madsen G K H, Blaha P, Schwarz K, et al. Efficient linearization of the augmentedplane-wave method. Phys Rev B,2001,64:195134.
    [157] Sj stedt E, Nordstr m L, Singh D J. An alternative way of linearizing the augmentedplane-wave method. Solid State Commun,2000,114:15-20.
    [158] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. PhysRev Lett,1996,77:3865-3868.
    [159] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys Rev B,1991,43:1993-2006.
    [160] Kanemitsu Y, Futagi T, Matsumoto T, et al. Origin of the blue and red photoluminescencefrom oxidized porous silicon. Phys Rev B,1994,49:14732-14735.
    [161] Xiong Z H, Liao L S, Yuan S, et al. Effects of O, H and N passivation on photoluminescencefrom porous silicon. Thin Solid Films,2001,388:271-276.
    [162] Yang X B, Zhang R Q. Indirect-to-direct band gap transitions in phosphorus adsorbed <112>silicon nanowires. Appl Phys Lett,2008,93:173108.
    [163] Migas D B. Effects of morphology on the electronic and photoluminescence properties ofhydrogenated silicon nanowires. J Appl Phys,2005,98:054310.
    [164] Migas D B. Electronic properties of hydrogenated silicon nanowires with surface defects. JAppl Phys,2007,102:246804.
    [165] Migas D B, Borisenko V E. Effects of oxygen, fluorine, and hydroxyl passivation onelectronic properties of [001]-oriented silicon nanowires. J Appl Phys,2008,104:024314.
    [166] Nolan M, O'Callaghan S, Fagas G, et al. Silicon nanowire band gap modification. Nano Lett,2007,7:34-38.
    [167] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms. Science,2004,306:666-669.
    [168] Ellis J K, Lucero M J, Scuseria G E. The indirect to direct band gap transition in multilayeredMoS2as predicted by screened hybrid density functional theory. Appl Phys Lett,2011,99:261908.
    [169] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. PhysRev Lett,2010,105:136805.
    [170] Kholod A N, Ossicini S, Borisenko V E, et al. Optical properties of Ge and Si nanosheets-confinement and symmetry effects. Surf Sci,2003,527:30-40.
    [171] Aufray B, Kara A, Vizzini S, et al. Graphene-like silicon nanoribbons on Ag (110): A possibleformation of silicene. Appl Phys Lett,2010,96:183102.
    [172] De Padova P, Quaresima C, Ottaviani C, et al. Evidence of graphene-like electronic signaturein silicene nanoribbons. Appl Phys Lett,2010,96:261905.
    [173] Nakano H, Mitsuoka T, Harada M, et al. Soft synthesis of single-crystal silicon monolayersheets. Angew Chem, Int Ed,2006,45:6303-6306.
    [174] Sangyeon H, Taejnn P, Bonkee K, et al.40nm electron beam patterning and its application tosilicon nano-structure fabrication. Seoul, South Korea: ICVC99,6th International Conferenceon VLSI and CAD,1999:163-1666.
    [175] Jie R, Helin Z, Syms R R A, et al. Fabrication of2D silicon nano-mold based on sidewalltransfer. Micro Nano Lett,2011,6:29-33.
    [176] Toriyama T, Tanimoto Y, Sugiyama S. Single crystal silicon nano-wire piezoresistors formechanical sensors. J Microelectromech S,2002,11:605-611.
    [177] Hochbaum A I, Gargas D, Hwang Y J, et al. Single crystalline mesoporous silicon nanowires.Nano Lett,2009,9:3550-3554.
    [178] Qu Y Q, Liao L, Li Y J, et al. Electrically conductive and optically active porous siliconnanowires. Nano Lett,2009,9:4539-4543.
    [179] Pavesi L. Influence of dispersive exciton motion on the recombination dynamics in poroussilicon. J Appl Phys,1996,80:216-225.
    [180] Rolver R, Forst M, Winkler O, et al. Influence of excitonic singlet-triplet splitting on thephotoluminescence of Si/SiO2multiple quantum wells fabricated by remote plasma-enhancedchemical-vapor deposition. J Vac Sci Technol A,2006,24:141-145.
    [181] Luttjohann S, Meier C, Offer M, et al. Temperature-induced crossover between bright anddark exciton emission in silicon nanoparticles. Europhys Lett,2007,79:37002.
    [182] Barrow M J, Ebsworth E A V. Crystal and molecular-structures of disilyl sulfide (at120K)and of disilyl selenide (at125K) and comparison with crystalline disilyl oxide. J Chem Soc,1982,211-216.
    [183] Tao M, Udeshi D, Basit N, et al. Removal of dangling bonds and surface states on silicon (001)with a monolayer of selenium. Appl Phys Lett,2003,82:1559-1561.
    [184] Udeshi D, Ali M Y, Tao M, et al. Electrical characterization of interface stability betweenmagnesium and selenium-passivated n-type silicon (001). Int J Electron,2005,92:719-727.
    [185] Zhang X, Kleverman M, Olajos J. A photoluminescence study of selenium-diffused silicon.Semicond Sci Technol,1999,14:1076-1079.
    [186] Jarimaviciute-Zvalioniene R, Tamulevicius S, Andrulevicius M, et al. Effects of seleniumtreatment on composition and photoluminescence properties of porous silicon. J Lumin,2007,127:431-434.
    [187] Li J F, Li D X, Feng J Y. The effect of selenization and post-annealing on thephotoluminescence property of porous silicon. Semicond Sci Technol,2008,23:025021.
    [188] Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation ofsolution-grown silicon nanowires. Science,2000,287:1471-1473.
    [189] Buettner C C, Zacharias M. Retarded oxidation of Si nanowires. Appl Phys Lett,2006,89:263106.
    [190] Liu H I, Biegelsen D K, Ponce F A, et al. Self-limiting oxidation for fabricating sub-5nmsilicon nanowires. Appl Phys Lett,1994,64:1383-1385.
    [191] Liu H I, Biegelsen D K, Johnson N M, et al. Self-limiting oxidation of Si nanowires. J Vac SciTechnol, B,1993,11:2532-2537.
    [192] Kao D B, McVittie J P, Nix W D, et al. Two-dimensional thermal oxidation of silicon.1.experiments. IEEE Trans Electron Devices,1987,34:1008-1017.
    [193] Kao D B, McVittie J P, Nix W D, et al. Two-dimensional thermal oxidation of silicon.2.Modeling stress effects in wet oxides. IEEE Trans Electron Devices,1988,35:25-37.
    [194] Walavalkar S S, Hofmann C E, Homyk A P, et al. Tunable visible and near-IR emission fromsub-10nm etched single-crystal Si nanopillars. Nano Lett,2010,10:4423-4428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700