棉花杂交种与亲本间DNA胞嘧啶甲基化及其基因差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用杂种优势可以提高作物产量,节约土地资源,并创造了巨大的经济和社会效益,是遗传学应用于实践最成功的范例之一。对杂种优势机理的研究已将近一个世纪,然而在许多方面仍然是一个谜。棉花是世界上最重要的纺织作物,在世界经济、政治、以及社会事务中起了很重要的作用。杂交棉在中国和印度已经得到广泛的商业化利用,并研究了许多年。然而到目前为止,关于棉花杂种优势的分子方面的研究报道却很少。本研究以不同优势棉花杂交组合为材料,系统研究了它们在营养生长、产量及品质性状以及根系性状上的杂种优势,然后进一步分析了不同发育阶段棉花杂交种和亲本间的DNA甲基化差异以及基因表达差异,最后将基因差异表达模式与产量性状的表现及杂种优势进行了相关分析,分别从表观遗传调控和功能基因转录水平对杂种优势的分子机理进行了探讨。其实验结果和主要结论如下:
     1.以同一母本与两个不同的父本杂交获得两个杂交组合,经田间比较试验,结果表明,组合石远345×CRI41是一个优势比较高的杂交组合,其优势不仅表现在营养生长和一些产量相关性状上,而且还表现在根系性状上;而组合石远345×SGK321是一个在地上部的优势相对比较低的组合,但是在某些根系性状上却存在比较高的杂种优势。
     2.为探讨DNA甲基化与杂种优势的关系,采用甲基化敏感的扩增多态性技术(MSAP),以杂交组合石远345×CRI41和石远345×SGK321为材料,分析了花期阶段这两个杂交组合中杂交种和双亲中的胞嘧啶甲基化水平。结果表明棉花基因组中至少有20%的CCGG位点发生胞嘧啶甲基化。
     3.依据特定位点的胞嘧啶甲基化从亲本向杂交种的遗传及其变异,我们比较了杂交种与亲本之间的胞嘧啶甲基化模式。研究结果表明杂交种与其双亲相比,发生了广泛的胞嘧啶甲基化变化,这种变化包括超甲基化和去甲基化同时还包括甲基化类型的潜在转变(如从外部胞嘧啶甲基化到内部胞嘧啶甲基化的转变或从内部胞嘧啶甲基化到外部胞嘧啶甲基化的转变);对于表现出杂交种相对于亲本的甲基化水平降低的类型,在高优势组合石远345/CRI41(Hybrid A)中的去甲基化位点数高于在低优势组合石远345/SGK321(Hybrid B)中的去甲基化位点数。尽管有一类表现为在杂交种中的甲基化水平升高,但是这些超甲基化位点仅仅占两个杂交组合中总多态性位点数的很少一部分。
     4.通过对三个亲本系和两个杂交种在苗期阶段和花期阶段的5′-CCGG位点的胞嘧啶甲基化进行总体分析,我们发现花期阶段比苗期阶段有更多的位点发生去甲基化。说明棉花中的胞嘧啶甲基化具有组织特异性。
     5.存在于低拷贝基因组区域的胞嘧啶甲基化变化可以被Southern杂交证实。对杂交种相对于亲本表现甲基化变化的位点进行测序表明同功能已知的基因同源,包括转录调控、信号识别、富含亮氨酸重复、钙离子通道、类PDR的ABC转移、
     同工酶、脱羧酶、磷酸酶以及ATP酶等。
     6.以高优势组合石远345×CRI41和低优势组合石远345×SGK321的叶片组织为材料,用mRNA差异显示方法分析了两个杂交组合的杂交种与其亲本在苗期阶段、蕾期阶段、花期阶段和铃期阶段的基因表达差异,结果表明两个棉花杂交种与其亲本间在四个阶段均存在显著的基因表达差异,我们既观察到量上的表达差异也观察到质上的表达差异,而主要的基因表达差异发生在质的水平,包括:(ⅰ)双亲共沉默型,即该条带在双亲都有,而F_1中没有(BPnF_1);(ⅱ)单亲表达沉默型,即该条带仅出现亲本之一,而在另一亲本和F_1中没有出现(UPnF_1);(ⅲ)杂种特异表达型,即该条带仅在F_1中出现,在双亲中均不出现(UF_1nP);(ⅳ)单亲表达一致型,即该条带在双亲之一和杂种中出现,而在另一亲本中不出现(UPF_1)。
     7.进一步分析了质的差异表达模式在不同阶段的变化,结果表明差异模式的数量在不同阶段是变化的,而花期阶段的差异模式的数量要相对高于其它阶段,暗示了花期阶段的基因差异表达在杂交种的产量形成和优势表现上起了关键的作用。同时在花期阶段,UF_1nP和UPF_1模式(分别代表杂种特异表达或超显性表达和显性表达)在高优势杂交种中的数量要比低优势杂交种高得多,这表明在花期阶段更高水平的这两种模式可能与杂种优势具有正向的相关关系。
     8.最后以一套双列杂交组合(24个F_1,10个亲本)在盛花期的叶片为材料,用差异显示法进一步分析了四种质的差异模式的数量。以差异模式的数量为变量,与棉花5个产量性状(子棉产量、皮棉产量、铃数、铃重和衣分)的杂种表现、杂种优势进行相关分析的结果表明:单亲基因表达一致模式(UPF_1)与杂种产量性状中单位面积铃数呈显著正相关,但与杂种优势的相关却未达到显著水平,说明此模式有利于产量形成,但对杂种优势贡献不大;而杂种特异表达模式(UF_1nP)在差异表达模式中所占比例处于中等,但与产量性状杂种优势(皮棉产量优势)达到显著正相关,这在某种程度上与基于超显性假说的预测相一致;另外单亲表达沉默模式(UPnF_1)与多数产量性状杂种优势呈负相关,并且与单位面积铃数相关达显著水平,暗示了亲本基因在杂交种中的抑制不利于杂交种表现杂种优势。
Exploitation of heterosis is one of the major example of genetics that could increase the yield of crops, save the land, have made the significant contribution to the world. The efforts for exploring the mechanism of heterosis have lasted for nearly one centure. However, many aspects remain unknown. As the most important textile crop and the world's second most important oilseed crop, cotton plays a vital role in the economic, political, and social affairs of the world. Hybrid cotton has been widely used commercially and studied for many years in India and China. However, until now, there has been no report on the molecular aspects of cotton heterosis because of its allopolyploidy and relatively large genome size. In this paper, we study the heterosis of growth, yield-related traits, quality traits and root traits in different cotton crosses, then we investigated both the differences in cytosine methylation patterns among two cotton hybrids and their parental lines by using the methylation-sensitive amplified polymorphism (MSAP) method and the differential gene expression between the two hybrids and their parents by using the differential display technique, finally we analyzed the correlation between differential expression patterns and heterosis at full opening flower stage. This work was carried out for dissecting the molecular basis of heterosi on epigenetic regulation level and on gene differential expression level, respectively. The main results are as follows:
     1. One female parent crossed with two male parent, resulting in a highly heterotic hybrid, 345xCRI41 (Hybrid A), which shows high heterosis in growth, yield-related traits and root traits, and a low heterotic hybrid, 345×SGK321 (Hybrid B), which only shows heterosis in some root traits.
     2. To investigate the relation between DNA methylation and heterosis, we investigated the cytosine methylation level in cotton heterotic hybrid/nonheterotic hybrids and their parental lines at flowering stage by using the methylation-sensitive amplified polymorphism (MSAP) method. The results showed that about 20% of the 5'-CCGG sites in cotton genome at the flowering stage were methylated.
     3. According to the inheritance and alteration of cytosine methylation from parent to hybrid, the cytosine methylation patterns between hybrids and their parents were compared. Our results showed that extensive cytosine methylation alterations including hyper-and demethylation as well as the potential conversion of methylation types (from external cytosine to internal cytosine or vice visa) occurred in the hybrid compared with the parents; For the group showing a decreased level of methylation in the hybrid compared with the parents, the demethylation loci that occurred in cross 345/ CRI41 (Hybrid A) were greater than those in 345/SGK321 (Hybrid B). Another group showed an increased level of methylation in the hybrid, but these hyper-methylation loci account for only a small portion of the total polymorphism loci in both hybrids.
     4. On the basis of the whole analysis of methylation status at 5'-CCGG sites in the three parental lines and the two hybrids at the seedling stage and the flowering stage, we found that more loci were demethylated at the flowering stage than at the seedling stage.
     5. The altered methylation patterns at low-copy genomic regions can be confirmed by DNA gel blot analysis. The loci that underwent methylation alterations in the hybrid compared with the parents were sequenced and found to be homologous to functionally characterized genes, including transcription regulator, signal recognition, leucine-rich repeat, calcium channel, PDR-like ABC transporter, decarboxylase, phosphatase, isomerase and ATPase.
     6. Using differential display technique, we analyzed the gene differential expression in leaves between cotton heterotic hybrid (345×CRI41)/non-heterotic hybrid(345×SGK321) and their parents at the seedling, squaring, flowering and boll-forming stages, respectively. The results indicated that there existed significant differences of gene expression between cotton hybrids and their parents during the four stages, whatever these hybrids were heterotic ones or non-heterotic ones. Both quantitative and qualitative differences were observed. The major differences of gene expression occurred in the qualitative level for each stage. The qualitative differences include: (ⅰ) bands observed in both parents but not in F_1 hybrid (BPnF_1); (ⅱ) bands occurring in either of the parents but not in F_1 hybrid (UPnF_1); (ⅲ) bands present only in F_1 hybrid but not in either of the parents(UF_1nP); (ⅳ) bands detected in either of the parents and F_1 hybrid(UPF_1).
     7. The amount of differential patterns was changeable for each stage and it was relatively higher at the flowering stage than those at other stages, which implies that the differential gene expression at this stage plays a crucial role in yield forming and heterosis performance of hybrid.. The amount of UF_1nP and UPF_1 patterns in highly heterotic hybrid was obviously higher than that in non-heterotic hybrid at the flowering stage. This indicated that higher percentage of these two patterns at this stage may be positively related to the observed heterosis at the later stage.
     8. The correlation between differential expression patterns and heterosis was estimated in a cotton diallel cross involving 24 hybrids and ten parents at full opening flower stage. The results showed that hybrid-specific expression pattern had a significant positive correlation with heterosis and silenced expression pattern was significantly negative correlation with heterosis at full opening flower stage.
引文
1.程宁辉,杨金水,高燕萍,徐明良,葛扣麟.玉米杂种一代与亲本基因差异的研究.科学通报,1996,41(5):451-454
    2.邓仲篪,孙济中,张金发,刘金兰,汪斌.杂交棉及其亲本光合特性研究.华中农业大学学报,1995,14(5) 429—434
    3.郭海军.杂交棉高产抗逆机理研究初报.中国棉花,1994,21(7):11-12
    4.胡建广,袁自强,赵相山,钱晓茵,程宁辉,杨金水.一个编码玉米转译起始因子新基因的克隆.遗传,1998,20:118
    5.华兴鼐.海岛棉与陆地棉杂种一代优势利用研究.作物学报,1963,2(1):1-26
    6.靖深蓉,邢朝柱,刘少林.抗虫杂交棉选育及利用研究.中国棉花,1997,24(7):15-17
    7.李竞雄,周洪生.作物雄性不育及杂种优势研究进展.北京:中国农业出版社,1996,1-11
    8.马瑟、金克斯 著.生统遗传学(2nd).(刘定富等译).北京:科学出版社,1988,54-90
    9.马育华 编著,植物育种的数量遗传学基础.南京:江苏科学技术出版社,1982,158-198
    10.孟凡荣,孙其信,倪中福,吴利民,窦秉德,王章奎.小麦杂交和自交种子发育前期MADS-box和Ser/Thr两类家族基因差异表达与杂种优势.农业生物技术学报,2002,10(3):220-226
    11.施尚泽.四川棉花核不育杂种利用研究进展与前景.中国棉花,1994,21(3):2-4
    12.孙济中,刘金兰,张金发.棉花杂种优势的研究和利用.棉花学报,1994,6(3):135—139
    13.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势.科学通报,2002,47(18):1412-1416
    14.王国印,李蒙恩.陆地棉主要经济性状杂种优势表现及其规律研究.河北农业科学,1993(3):3-6
    15.王武,聂以春,张献龙.转基因抗虫组合在棉花杂种优势利中增产原因剖析.华中农业大学学报,2002,21(5):419—424
    16.王泽立,王鲁昕,张永慧,马俊业.玉米不同杂种优势近等基因系及其杂交种的基因表达分析.Acta Genetica Sinica,2004,31(4):345-348
    17.王章奎,倪中福,孟凡荣,吴利民,谢小东,孙其信.小麦杂交种与亲本拔节期根系基因差异表达与杂种优势关系的初步研究.中国农业科学,2003,36(5):473-479
    18.王章奎.普通小麦杂交种与亲本间根系基因表达差异与杂种优势分子机理.[博 士学位论文].北京:中国农业大学图书馆,2004
    19.吴利民,倪中福,王章奎,林展,孙其信.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究.遗传学报,2001,28(3):256-266
    20.吴敏生,高志环,戴景瑞.利用cDNA—AFLP技术研究玉米基因的差异表达.作物学报,2001,27(3):339-342
    21.吴征彬.湖北省抗虫棉和杂交棉区试参试品系(组合)的抗性分析.湖北农业科学,2000,(5):36-38
    22.吴征彬,张金发,冯纯大,周斌.棉花抗虫新杂交材料研究.华中农业大学学报,1999,18(4):307-310
    23.谢小东,倪中福,孟凡荣,吴利民,王章奎,孙其信.小麦杂交种与亲本发育早期种子的基因表达差异及其与杂种优势关系的初步研究.遗传学报,2003,30(3):260-266
    24.谢晓东.小麦杂交当代和亲本自交种子发育早期的基因表达差异与杂种优势.[博士学位论文].北京:中国农业大学图书馆,2003
    25.邢朝柱,赵云雷,喻树迅,张献龙,郭立平,苗成朵.中棉所47及其亲本苗期根和叶基因差异表达研究.中国农业科学,2005,38(6):1275-1281
    26.徐立华.陆地棉品种间杂种苏杂16棉铃发育动态研究.棉花学报,1996,8(2):83-87
    27.仪治本,孙毅,牛天堂,梁小红,刘龙龙,赵威军,李炳林.高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究.作物学报,2005,31(9):1138-1143
    28.姚颖垠,倪中福,陈荣敏,吴利民,孙其信.小麦(Triticum asetivum L.)杂交种下调表达的GTP结合蛋白基因TaRab的克隆与鉴定.自然科学进展,2005,15(5):553-558
    29.游俊,刘金兰,孙济中.陆地棉品种与陆地棉族系种质系间生理生化性状的杂种优势.棉花学报,1998,10(1):14—19
    30.袁钧,潘转霞,李成奇,石跃进,刘巷禄.晋A棉花质核不育系的特色与优势.中国棉花,1999,26(9):6-8
    31.袁有禄,靖深蓉,邢朝柱,郭立平.世界棉花杂种优势利用研究进展、问题与前景.中国棉花,2000,27(8):2-5
    32.张金发,冯纯大.陆地棉与海岛棉种间杂种产量品质优势的研究.棉花学报,1994,6(3):140-145
    33.赵相山.玉米、水稻杂交组合中差异表达基因研究.[博士学位论文].上海:复旦大学图书馆,1997
    34.庄杰云,樊叶杨,吴建利,夏英武,郑康乐.超显性效应对水稻杂种优势的重要作用.中国科学(C辑),2001,31(2):106-113
    35.朱乾浩,俞碧霞.陆地棉品种间杂种优势利用研究进展.棉花学报,1995,7(1); 811
    
    36. Adams S, Vinkenoog R, Spielman M, Dickinson H G , Scott R J. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development, 2000,127(11): 2493-2502
    
    37. Arnaud P, Goubely C, Pelissier T, Deragon J M. SINE retroposons can be used in vivo as nucleation centers for de novo methylation. Mol Cell Biol, 2000, 20: 3434 - 3441
    
    38. Ashikawa I. Surveying CpG methylation at 5'- CCGG in the genomes of rice cultivars. Plant Mol Biol, 2001,45: 31-39
    
    39. Assaad F F, Tucker K L, Signer E R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol, 1993, 22(6): 1067-85
    
    40. Auger Donald L, Gray Anjali Dogra, Ream Thomas S, Kato Akio, Coe Edward H, Jr Birchler James A. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics, 2005,169 (1): 389-397
    
    41. Banks JA, Fedoroff N. Patterns of developmental and heritable change in methylation of the suppressor-mutator transposable element. Dev Genet, 1989,10,425-437
    
    42. Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M, Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic acids research, 1993, 21: 4272-4280
    
    43. Bao JY, Lee S G, Chen C, Zhang X Q, Zhang Y, Liu S Q, Clark T, Wang J, Cao M L, Yang H M, Wang S M, Yu J. Serial Analysis of Gene Expression Study of a Hybrid Rice Strain (LYP9) and Its Parental Cultivars. Plant Physiology, 2005, 138 (7):1216-1231
    
    44. Bender J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci, 1998, 23: 252-256
    
    45. Bestor T H, Tycko B. Creation of genomic methylation patterns. Nat Genet, 1996, 12(4): 363-7
    
    46. Bhardawj H L, Wealer J R. Combining ability analysis in cotton for agronomic characters, fruiting efficiency, photosynthesis and ballworm resistance. J Agric Sci, 1986,103: 511-518
    
    47. Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis. The Plant Cell, 2003,15: 2236-2239
    
    48. Burn J E, Bagnall D J, Metzger J D, Dennis E S, Peacock W J. DNA Methylation, vernalization, and the initiation of Flowering. PNAS, 1993, 90: 287-291
    
    49. Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics, 2002, 268: 543-552.
    50. Chandler V L, Eggleston W B, Dorweiler J E. Paramutation in maize. Plant Mol Biol, 2000,43:121-145
    51. Chaudhuri S, Messing J. Allele-specific parental imprinting of dzr 1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci USA, 1994, 91 (11):4867~4871
    52. Chaudhry M R. Commercial cotton hybrids. The Int Cotton Advisory Committee Recorder, 1997, XV(2): 3-14
    53. Chen W Y, Turner T M. Molecular mechanism for silencing virally transduced gene involved histone deacetylation and chromatin condensation. Proc Natl Acad Sci USA, 2000, 97: 377-382
    54. Cheverud J M, Routman E J. Epistasis and its contribution to genetic variance components. Genetics, 1995,139:1455-1461
    55. Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836-846
    56. Cone KC, Cocciolone S M, Burr F A, Burr B. Maize anthocyanin regulatory gene pl is a duplicate of cl that functions in the plant. Plant Cell, 1993, 5:1795~1805
    57. Curradi M, Izzo A, Badaracco G, Landsberger N. Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation. Mol Cell Biol, 2002, 22: 3157-3173
    58. Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol, 2000, 43:387-399
    59. Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids? Philos Trans Royal Soc, 2003, 358:1149-1155
    60. Constancia M, Pickard B, Kelsey G, Reik W. Imprinting Mechanisms. Genome Res, 1998, 8: 881-900
    61. Das O P, Messing J. Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics, 1994,136:1121 -1141
    62. Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form. Plant Cell, 1998,10:1075-1082
    63. Dong Z Y, Wang Y M, Zhang Z J, Shen Y, Lin X Y, Ou X F, Han F P, Liu B. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet, 2006, 113, 196-205
    64. Duvick D N. Heterosis: feeding people and protecting natural resources, in: Coors JG, Pandey S (eds.), Genetics and Exploitation of Heterosis in Crops, American Society of Agronomy, Inc., Madison, WI, USA, 1997. 19-29
    65. Eaton F M. Selective game tocide opens way to hybrid cotton. Science, 1957,126: 1174-1175
    66. Eisen M B, Spellman P T, Brown P 0, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 95 (1998): 14863-14868
    67. Ewing R M, Kahla A B, Poirot O, Lopez F, Audic S, Claverie J M. Large-scale statistical analysis of rice ESTs reveal correlated patterns of gene expression. Genome Res, 1999, 9: 950-959
    68. Fedoroff N, Schlappi M, Raina R. Epigenetic regulation of the maize Spm Transposon. Bioessay, 1995, 7(4): 291-7
    69. Fedoroff N. Transposons and genome evolution in plants. PNAS, 2000, 97: 7002-7007
    70. Finnegan E J, Brettell R I, Dennis E S. The role of DNA methylation in the regulation of plant gene expression. In Jost J P, Saluz H P, eds, DNA Methylation: Molecular Biology and Biological Significance, Basel, Switzerland: Birkhauser Verlag., 1993, 64: 218-61
    71. Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci, 1996, 93, 8449-8454
    72. Finnegan E J, Genger R K, Kovac K, Peacock W J, Dennis E S. DNA methylation and the promotion of flowering by vernalization, Proc Natl Acad Sci, 1998, 95(10): 5824-5829
    73. Flavell A J, Pearce S R, Kumar A. Plant transposable elements and the genome. Curr Opin Genet Dev, 1994,4(6): 838-44
    74. Follmann H, Balzer H J, Schleicher R. Biosynthesis and distribution of methylcytosine in wheat DNA. How different are plant DNA ethytransferases? In: Nucleic acid. Methylation. NewYork: AR Liss Inc, 1990.199-209
    75. Fu H, Dooner H K. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA, 2002, 99: 9573-9578
    76. Goubely C, Arnaud P, Tatout C, Heslop-Harrison J S, Deragon J M. S1 SINE retroposons are methylated at symmetrical and non-symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation. Plant Mol Biol, 1999, 39(2): 243-55
    77. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature, 1981, 292:860-862
    78. Hart C M, Fischer B, Neuhaus J M, Meins F Jr. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet, 1992, 235(2-3): 179-88
    79. Haig D, Westoby M. Genomic impringting in endosperm: effects on seed development in crosses between species, and between different ploidies of the same species and its implications for the evolution of apomixes Philos. Philos Trans R Soc Lond, 1991,333:1-13
    80. Heyer L J, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of coexpressed genes. Genome Res, 1999, 9:1106-1115
    81. Hirochika H, Okamoto H, Kakutani T. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. PLANT CELL, 2000,12: 357-369
    82. Hollick J B, Chandler V L. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics, 1998,150: 891-897
    83. Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS, 2003,100: 2574-2579
    84. Jablonka E, Goiten R, Marcus M, Cedar H. DNA hypomethylation causes an increase in DNase I sensitivity and advance in the timing of replication of the entire X chromosome. Chromosoma, 1985, 93:152-156
    85. Jacobsen S E, Meyerowitz E M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science, 1997, 277:1100-1102
    86. Jeddeloh J A, Bender J, Richards E J. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes, 1998,12:1714-1725
    87. Jing Dong, Feibo Wu, Zhuqun Jin, Yiqing Huang. Heterosis for yield and some physiological traits in hybrid cotton Cikangza 1. Euphytica, 2006,151: 71-77
    88. Jorgensen R A. Co-suppression, flower color patterns, and metastable gene expression states. Science, 1995, 268: 686-691
    89. Kakutani T, Jeddeloh J A, Flowers S K, Munakata K, Richards E J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A, 1996, 93: 12406-12411
    90. Kakutani T, Munakata K, Richards E J, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddml mutation of Arabidopsis thaliana. Genetics, 1999,151: 831-838
    91. Kermicle J L, Alleman M. Gametic imprinting in maize in relation to the angiosperm life cycle. Development (Suppl), 1990, 9-14
    92. Keyte A L, Percifield R, Liu B, Wendel J F. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J Hered, 2006, 97: 444-450
    93. Khan U Q. Study of heterosis in fiber quality traits of upland cotton. Asian Journal of Plant Sciences, 2002, Volume 1 Number 5: 593-595
    94. Kilby N J, Leyser H M, Furner I J. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol Biol, 1992,20(1): 103-12
    95. Kochanek S, Renz D, Doerfler W. DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBOJ, 1993,12:1141-1151
    96. Kovarik A, Matyasek R, Leitch A, et al. Variability in CpNpG methylation in higher plant genomes. Gene, 1997, 204(1-2): 25-33
    97. Kricker M C, Drake J W, Radman M. Duplication-Targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. PNAS, 1992, 89: 1075
    98. Levy A A, Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc, 2004, 82: 607-613
    99. Li J F. Research on Chinese Cotton hybrid vigor utilization. Jiangxi Cotton, 2005, 27(1): 3-7
    100. Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Peterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I .Biomass and grain yield.Genetics, 2001,158:1737-1753
    101. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971
    102. Liang P, Zhu W M, Zhang X Y, Guo Z, Connell R P, Averboukh L, Wang F L, Pardee A B. Differential display using one-base anchored oligo-dT primers. Nucleic acid research, 1994, 22: 5763-5764
    103. Lindroth A M, Cao X F, Jackson J P, Zilberman D, McCallum C M, Henikoff S, Jacobsen S E. Requirement of CHROMOMETHYLASE 3 for maintenance of CpXpG methylation. Science, 2001, 292: 2077-2080
    104. Loeb L A. Amutator phenotype in cancer. Cancer Res, 2001, 61: 3230-3239
    105. Lund G, Ciceri P, Viotti A. Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J, 1995, 8(4): 571-81
    106. Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Peterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics, 2001,158:1755-1771
    107. Madlung A, Masuelli R W, Watson B, Reynolds S H, Davison J, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol, 2002,129: 733-746
    108. Martienssen R A, Baron A. Coordinate suppression of mutations caused by Robertson's Mutator transposons in maize. Genetics, 1994,136:1157-1170
    109. Matzke M A, Matzke A J.Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Plant Mol Biol, 1993,44: 53-76
    110. Matzke M A, Matzke A J M. How and why do plants inactivate homologous (trans)genes? Plant Physiol, 1995,107: 679-685
    111. Matzke M, Matzke A, Eggleston W B. Paramutation and transgene silencing: A common response to invasive DNA? Trends Plant Sci, 1996,1: 382-388
    112. Matzke M A, Mette M F, Aufsatz W, Jakowitsch J, Matzke A J M. Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms. Genetica, 1999,107: 271-287
    113. Matzke M A, Aufsatz W, Kanno T, Mette M F, Matzke A J. Homology-dependent gene silencing and host defense in plants. Adv Genet, 2002,46: 235-275
    114. McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res, 1994, 22: 3640-3659
    115. McClintock B. Genetic and cytological studies of maize. Carnegie Inst, Washington Year Book, 1957, 56: 393-401
    116. Meng F R, Ni Z F, Wu L M, Sun Q X. Differential gene expression between cross-fertilized and self-fertilized kernels during the early stages of seed development in maize. Plant Science, 2005,168: 23-28
    117. Meredith W R. Quantitative genetics in cotton. Edited by Kohel R J, Agron Mongr, 1984, 24:131-150
    118. Messeguer R, Ganal M W, Stevens J C, Tanksley S D. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol, 1991,16: 753-770
    119. Meyer P, Saedler H. Homology-dependent gene silencing in plants. Annu Rev Plant Physiol. Plant Mol Bio, 1996,47: 23-48
    120. Meyer V G. Male sterility from Gossypium harknessii. The Journal of Heredity, 1975, 66: 23-27
    121. Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature, 2001,411(6834): 212-4
    122. Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Molecular Genetics and Genomics, 2003, 270 (5): 371-377
    123. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2: 279-289
    124. Oakeley E J, Podesta A, Jost J P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci, 1997, 94: 11721-11725
    125. Owen A, Hoekenga, Michael G, Muszynski, Karen C Cone. Developmental patterns of chromatin structure and DNA methylation responsible for epigenetic expression of a maize regulatory gene. Genetics, 2000,155:1889-1902
    126. Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol Rep, 1993,11:112-127
    127. Pikaard C S. Nucleolar dominance and silencing of transcription. Trends Plant Sci, 1999,4 (12): 478-483
    128. Pikaard C S. Genomic change and gene silencing in polyploids. Trends Genet, 2001, 17: 675-677
    129. Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 2003,166:169-178
    130. Rand E, Cedar H. Regulation of imprinting: A multiltiered process. J Cell Biochem, 2003, 88(2): 400-407
    131. Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev, 1991, 55: 451-458
    132. Razin A. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBOJ, 1998,17(17): 4905-8
    133. Reik W, Dean W. DNA methylation and mammalian epigenetics. Electrophoresis, 2001, 22(14): 2838-2843
    134. Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet, 1990, 80: 767-775.
    135. Ronemus M J, Galbiati M, Ticknor C, Chen J, Dellaporta S L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science, 1996, 273: 654-657
    136. Rossi V, Motto M, Pellegrini L. Analysis of the methylation pattern of the maize opaque-2 (02) promoter and in vitro binding studies indicate that the 02 B-Zip protein and other endosperm factors can bind to methylated target sequences. J Biol Chem, 1997,272:13758-13765
    137. Ruiz-Garcia L, Cervera M T, Martinez-Zapater J M. DNA methylation increases throughout Arabidopsis development. Planta, 2005, 222: 301-306
    138. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. NewYork: Cold Spring Harbor Laboratory, 1989. p. 11.39.
    139. Selker E U, Tountas N A, CROSS S H, Margolin B S, Murphy J G, Bird A P, Freitag M. The methylated component of the neurospora crassa genome. Nature, 2003, 422: 893-897
    140. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001,13:1749-1759
    141. Sherman J D, Talbert L E. Vernalization-induced changes of the DNA methylation pattern in winter wheat. Genome, 2002,45(2): 253-8
    142. Shull G H. The composition of a field of maize. Am Breeders Assoc Rep, 1908,4: 296-301
    143. Shull G H. A pure line method of corn breeding. Am Breeders Assoc Rep, 1909,5: 51-59
    144. Sidorenko L V, Peterson T. Transgene-Induced silencing identifies sequences involved in the establishment of paramutation of the maize p1 gene. PLANT CELL, 2001,13: 319
    145. Siegfried Z S, Eden M, Mendelsohn X, Feng B. DNA methylation represses transcription in vivo. Nat Genet, 1999,22: 203-206
    146. Sleutels F, Barlow D P. The origins of genomic imprinting in mammals. Adv Genet, 2002,46:119-63
    147. Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. PNAS, 2003,100: 9055-9060
    148. Soppe W J, Jacobsen S E, Alonso-Blanco C, Jackson J P, Kakutani T, Koornneef M, Peeters A J. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell, 2000, 6(4): 791-802
    149. Stam M, Bruin R, Renter S, Hoorn R A L, Blokland R, Mol J N M, Kooter J M. Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant J, 1997,12: 63-82
    150. Steinmetz Lars M, Sinha Himanshu, Richards Dan R, Spiegelman Jamie I, Oefner Peter J, McCusker John H, Davis Ronald W. Dissecting the architecture of a quantitative trait locus in yeast. Nature, 2002, 416 (6878): 326-330
    151. Steimer A, Amedeo P, Afsar K, Fransz P, Scheid O M, Paszkowski J. Endogenous targets of transcriptional gene silencing in Arabidopsis. PLANT CELL, 2000, 12: 1165-1178
    152. Stem M, Mol N M J, Kooter J. The silencing of genes in transgenic plants. Annu of Botany, 1997, 79: 3-1
    153. Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992,132: 823-839
    154. Sun Q, Wu L, Ni Z, Meng F, Wang Z, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Science, 2004,166: 651-657
    155. Tanksley S. Mapping polygenes. Annu Rev Genet, 1993, 27: 205-233
    156. Tsaftaris S A. Molecular aspects of heterosis in plants. Physiologia Plantarum, 1995, 94:362-370
    157. Tsaftaris A S, Kafka M, Polidoros A, Tani E. Epigenetic changes in maize DNA and heterosis. Abst Int Symp, "The Genetics and Exploitation of Heterosis in Crops," 1997, Mexico City, pp. 112-113
    158. Tsaftaris S A, Kafka M. Mechanisms of heterosis in crop plants. J Crop Prod, 1998, 1: 95-111
    159. Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Mourrain P, Palauqui J C, Vernhettes S. Transgene-induced gene silencing in plants. Plant J, 1998,16(6): 651-9
    160. Vos P, Hogers R, Bleeker M, Reijans M, Lee T V, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414
    161. Walke E L. Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics, 1998,148:1973-1981
    162. Wang L, Heinlein M, Kunze R. Methylation pattern of Activator transposase binding sites in maize endosperm. Plant Cell, 1996, 8: 747-58
    163. Wang R H, Li X L. Progresses on hybrid cotton and its future studies. Scientia Agric Sinica, 2000,33:111-112
    164. Wassenegger M. RNA-directed DNA methylation. Plant Mol Biol, 2000, 43(2-3): 203-20
    165. Wells R, Meredith W R J r. Heterosis in upland cotton. I .Growth and leaf area partition. Crop science, 1986, 26: 1119-1123
    166. Wells R, Meredith W R J r. Heterosis in upland cotton. II .Relationship of leaf area to plant photosynthesis. Crop Science, 1988, 28: 522-525
    167. Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000,42: 225-249
    168. Wu L M, Ni Z F, Meng F R, Lin Z, Sun Q. X. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. Mol Gen Genomics, 2003, 270: 281-286
    169. Xiao J, U J, Yuan L, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995,140: 745-754
    170. Xiong L Z, Xu C G, Saghai Maroof M A, Zhang Q F. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplication polymorphism technique. Mol Gen Genet, 1999, 261: 439-446
    171. Xiong L Z, Yang G P, Xu C G. Relationship of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed, 1998,4: 129-136
    172. Xu M L, Li X Q, Korban S S. AFLP-based detection of DNA methylation. Plant Mol Biol Rep, 2000,18:361-368
    173. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol, 1997, 35:145-153
    174. Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Mol Biol, 2005, 58: 367-384
    175. Yoder J A, Walsh C P, Bestor T H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 1997,13: 335-340
    176. Yu S, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Qifa, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. PNAS, 1997, 94: 9226-9231
    177. Zhang T Z, Pan J J. Hybrid seed production in cotton. In: Basra A S (ed.), Heterosis and Hybrid Seed Production in Agronomic Crops. New York: Food Production Press, 1999.149-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700