功能化氧化石墨烯运载Stat3-siRNA质粒治疗小鼠恶性黑色素瘤实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:恶性黑色素瘤是一种常见的恶性肿瘤。早期恶性黑色素瘤通过手术切除,但近年其发病率有明显上升趋势。恶性黑色素瘤具有恶性程度高,转移发生早,累及多个脏器,预后较差,易复发,死亡率高等特点。目前,大多数患者对化疗、放疗均不敏感,生存期短。随着人们对肿瘤分子生物学机制深入研究,基因治疗肿瘤的方法取得了很大进步。利用RNA干涉(RNAinterference,RNAi)技术,有望特异高效地抑制目的基因表达,诱导肿瘤细胞发生凋亡,达到治疗肿瘤的目的。然而如何将目的基因安全、高效的运载到肿瘤组织内,是实现这一目的的瓶颈,近几年,纳米医学的迅速发展不仅为基因载体的研究提供新手段,而且为恶性肿瘤的诊断和治疗带来新的契机。因此,迫切需要开发更具有优异性能的纳米基因传递系统,更好地杀伤肿瘤细胞。
     近几年,一种极具应用前景和优异性能的新型纳米材料—石墨烯,以其独特的力学、电学、热学等理化性质引起了研究者极大的兴趣。功能化氧化石墨烯(Graphene Oxide, GO)被生物医学领域的研究者广泛应用。迄今,随着纳米技术的高速发展,越来越多的实验证明,经过表面修饰的GO可以提高基因的转染效率,在生理环境下稳定性好。聚乙烯亚胺(polythyleneimine, PEI)是目前应用较多的阳离子基因传递载体,在生理环境下表面带正电荷,与基因的结合能力强,保护基因免受核酸酶的降解,具有从内涵体逃逸的能力。聚乙二醇(PolyethyleneGlycol,PEG)修饰的氧化石墨烯可以提高GO-PEI稳定性和溶解性,延长复合物在体内的循环时间。所以本实验将采用GO-PEI-PEG反应形成的共聚物作为Stat3siRNA质粒的运载体。
     在信号转导通路中,信号转导子和转录激活子3(Signal transducer andactivator of transcription,Stat3)与肿瘤的发生发展密切相关。研究表明,在前列腺癌、肝癌及恶性黑色素瘤等多种肿瘤,Stat3呈现过度表达。Stat3的异常表达通过促进肿瘤新生血管的形成、抑制肿瘤细胞凋亡、促进肿瘤细胞增殖,参与肿瘤的发生过程。因此阻断肿瘤细胞中Stat3通路,可以达到治疗肿瘤的目的。在实验室前期工作中,以RNA干涉技术原理为基础,成功构建Stat3-特异siRNA表达质粒,抑制了前列腺癌、肝癌Stat3基因的过度表达[1,2],促进肿瘤细胞凋亡。但是,RNAi并不能完全阻断目的基因的表达[3]。光热疗在物理学和生物学具有独特的的优势,与放疗、化疗相比,无毒副作用,具有杀伤肿瘤细胞的作用,可以作为治疗肿瘤的一种辅助手段。因此,光热疗和基因治疗联合策略治疗肿瘤迫在眉睫。
     本课题将氧化石墨烯、聚乙烯亚胺、聚乙二醇反应形成共聚物作为肿瘤基因Stat3-特异siRNA质粒的运载体,更好的抑制或杀死肿瘤细胞。同时利用氧化石墨烯吸收红外线的物理学性质,在红外线光照下引起肿瘤组织局部温度升高,从而杀伤肿瘤细胞,进一步探讨功能化氧化石墨烯携带Stat3-特异siRNA质粒对小鼠恶性黑色素瘤的治疗效果及作用机制。
     目的:功能化氧化石墨烯携带Stat3-特异siRNA表达质粒体内、体外抑制小鼠恶性黑色素瘤生长及作用机制的探讨。
     方法:采用化学法合成氧化石墨烯—聚乙烯亚胺—聚乙二醇(GO-PEI-PEG)基因载体。通过原子力学显微镜、动态光散射等方法,对GO-PEI-PEG粒径、形貌、表面电势等进行表征;研究GO-PEI-PEG在PBS溶液、血清和培养液中的分散性和稳定性。利用琼脂糖凝胶电泳方法,检测在不同质量比条件下,GO-PEI-PEG与si-Stat3结合能力。CCK8法检测GO-PEI-PEG对B16细胞毒性。流式细胞术评价GO-PEI-PEG运载si-Stat3质粒的转染效率。PI染色法检测肿瘤的细胞周期。RT-PCR和Western blot检测Stat3基因及蛋白表达水平;同时检测Stat3相关下游基因的表达情况。建立C57BL/6小鼠恶性黑色素瘤皮下移植瘤模型。透射电子显微镜观察凋亡细胞以及石墨烯的形貌;免疫组织化学方法检测CD34和PCNA的表达;TUNEL试剂盒检测肿瘤细胞凋亡情况;全自动生化分析仪检测各组小鼠血液中BUN、ALT和AST的水平;HE染色观察各组脏器的形态。
     结果:成功合成GO-PEI-PEG纳米材料,其表面电势为+21.02mV,平均粒径为298.9nm,GO-PEI-PEG与si-Stat3质粒结合后形成的复合物,表面电势下降到+7.52mV,平均粒径增大至339.2nm,在PBS溶液、血清和培养液中具有良好的分散性和稳定性。
     体外实验证明,GO-PEI-PEG是一种安全、有效的基因运载体,GO-PEI-PEG携带si-Stat3质粒转染B16细胞,能够观察到绿色荧光蛋白(GFP)的表达。Westernblot和RT-PCR结果显示,GO-PEI-PEG转染si-Stat3组细胞中Stat3基因被干涉,Stat3下游基因表达受到抑制。细胞周期结果显示,GO-PEI-PEG转染si-Stat3组肿瘤细胞周期阻滞在S期,阻止细胞周期的进程。
     体内实验证明,GO-PEI-PEG携带Stat3-siRNA质粒联合光照(简称GO-si-Stat3组)显著抑制小鼠恶性黑色素瘤的生长。GO-si-Stat3组的肿瘤瘤重和体积低于其他各组,具有统计学差异。在基因水平和蛋白水平,检测到GO-si-Stat3组Stat3表达受到抑制,Stat3下游调控基因和相关蛋白表达减弱。透射电镜和HE染色观察到凋亡细胞。免疫组织化学结果表明,GO-si-Stat3组增殖的肿瘤细胞减少,微血管生成减少。各组小鼠血液中的BUN、ALT、AST浓度均在正常范围内。HE染色未发现异常的心、肝、脾、肺、肾形态。
     结论:功能化氧化石墨烯是一种安全、有效的基因运载体,能够携带Stat3-特异siRNA表达质粒,显著抑制小鼠恶性黑色素瘤的生长。氧化石墨烯具有吸收红外线的物理学性质,联合红外线光照,与Stat3-特异siRNA表达质粒共同发挥抑制小鼠恶性黑色素瘤生长的作用。
Background: Malignant Melanoma is a common cancer, which has high aggressivemalignancy. Patients are effectively treated by surgery at early stages. However, theincidence rates of malignant melanoma in many countries are increasing evidently inrecent years. There are some important biological characteristics in malignantmelanoma, such as high aggressive malignancy, early metastasis, poor prognosis,easily recrudescence and large mortality. Most patients are resistant to chemotherapyand radiotherapy at present. With increasing improvement of researching tumormethods, the molecular mechanisms of cancer are investigated clearly. It is hoped thatutilization of the RNAi method will help to inhibit target gene expression and inducetumor apoptosis. However, it is a serious challenge to researchers how to deliver geneinto tumor tissues safely and effectively. In recent years, nanotechnology has provideda novel approach to researching gene transmission and also new hope in treatingcancer. Thus, it is important to develop better gene delivery system for treatmentcancer.
     Graphene, a novel and promising nanomaterial, has attracted tremendousattention due to its remarkable electronic, mechanical, and thermal properties.Functional graphene oxide (GO)was often applied in biomedical field. More andmore researchers had demonstrated that modified graphene oxide could improve genetransfection efficiency and biocompatibility in physiological environments.Polythyleneimine(PEI)was widely used for gene delivery, due to binding DNAability, protection of DNA against enzymatic degradation and high endosomal escape.GO-PEI functionalized with polyethylene glycol (PEG) had exhibited high solubilityand stability in physiological solutions. In this work, we applied GO-PEI-PEG asStat3siRNA gene delivery.
     Signal transducer and activator of transcription3(Stat3)has a crucial role insignal transduction. Stat3is closely related to cell proliferation, differentiation andapoptosis. Constitutive activation of Stat3is the most intimately linked to tumourgenesis. Stat3has been found in an activated state in a wide variety of solidtumors, including malignant melanoma, liver cancer, and prostate cancer. Aberrantlyactive Stat3promotes proliferation, inhibits apoptosis, and influences cell cycleprogression. In previous work, we used a DNA vector-based Stat3-specific RNAiapproach to block Stat3signaling, and successfully inhibited of Stat3overexpressionin liver cancer and prostate cancer. But RNAi approach can not completely blocktarget gene expression in mammalian cells. Photothermal therapy has advantage overchemotherapy and radiotherapy, which has no toxicity or inhibits tumor growthinduction of cell apoptosis. Thus, we show much better therapeutic effficacy usingtargeted delivery in cancer treatment. Photothermal therapy and gene therapy havecombined effect on induction of tumor cell apoptosis.
     We apply GO-PEI-PEG as a nanovehicle for Stat3-specific RNAi gene delivery tobetter kill tumor cells. We then utilize the strong optical absorbance of GO in theinfrared region for in vivo photothermal therapy, achieving ultraefficient tumorablation after intratumor administration of GO. Furthermore, in this work, we explorethe antitumor effect and therapeutic mechanism of functional GO carriedStat3-specific RNAi in malignant melanoma mouse model.
     Objective: To evaluate the antitumor effect on Stat3-specific RNAi delivered byGO-PEI-PEG in mouse malignant melanoma and explore the antitumor underlyingmechanism in vitro and in vivo.
     Method: We chemically synthetize GO-PEI-PEG nanovehicle. Nansheet sizes andzeta potential were determined by employing dynamic light scattering methodology.The morphology and size of nanosheets were imaged tapping-mode atomic forcemicroscopy (AFM). To determine stability of GO and GO-PEI-PEG nanosheets, thetwo samples were separately put into PBS, DMEM medium and serum at roomtemperature. To study Stat3-specific siRNA plasmid loading onto GO-PEI–PEGcomplexes, a gel electrophoresis assay was performed after incubation ofGO-PEI-PEG with si-Stat3plasmid at different mass ratios. The cytotoxicity ofGO-PEI-PEG to B16cells was evaluated by a CCK8assay. B16cells were transfectedwith si-Stat3plasmid delivered by GO-PEI-PEG. Tumor cell cycle was detected by PIassay. RT-PCR and Western blot analysis to detect the expression of Stat3relatedgenes and proteins changes were performed. To study the effects of si-Stat3on malignant melanoma growth in vivo, we developed a C57BL/6mouse tumorxenograft model. The morphology of apoptosis cells and GO-PEI-PEG was observedby transmission electron microscopy. Immunohistochemical analyses for CD34andPCNA protein expressions were carried out. TUNEL analyses were carried out toobserve cell apoptosis of tumor. BUN, ALT and AST in the serum were measured byauto-chemistry analyzer. The morphology of organs was examined in every group byhematoxylin and eosin (H&E) method.
     Result: The nanosheets of GO-PEI-PEG were successfully synthesized. The zetapotential and effective diameter of the GO-PEI-PEG were determined to be+21.02mV and298.9nm, respectively. After binding si-Stat3plasmid, the zeta potential andeffective diameter of complexes were determined to be+7.52mV and339.2nm.Significant stability of GO-PEI-PEG was observed in physiological solutions afterextensive incubation.
     GO-PEI-PEG complexes are a safe and effective nanocarrier for delivery ofplasmid Stat3siRNA in vitro. Transfection with GO-PEI-PEG/si-Stat3-GFP to B16cells were visualized green fluorescent protein (GFP). The Stat3mRNA, proteinexpression and Stat3related protein decreased significantly in the transfected withGO-si-Stat3by RT-PCR and Western blot. Cell cycle was blocked S cycle of tumor.
     The results in vivo indicated significant regression in tumor growth and tumorweight after plasmid-based Stat3siRNA delivered by GO-PEI-PEG with simultaneousinfrared irradiation on the tumor. The Stat3mRNA and protein expression decreasedsignificantly in the mice transfected with GO-si-Stat3. Moreover, Stat3related proteinexpressions had significant alteration. Apoptosis of tumor cells in the GO-si-Stat3group were observed though H&E staining and transmission electron microscopy.Proliferating cells and tumor microvessels decreased in the GO-si-Stat3group viaimmunohistochemistry assay. The BUN, AST and ALT levels in the blood were alsonormal. No noticeable toxic effect on organs was found and no GO-PEI-PEG wasdistributed in heart, liver, spleen, lung and kidney in each group.
     Conclusion: GO-PEI-PEG is an excellent nanocarrier for effective delivery ofplasmid Stat3siRNA. We then utilize the strong optical absorbance of GO in theinfrared region for in vivo photothermal therapy, achieving ultraefficient tumorablation after intratumor administration of GO. Plasmid Stat3siRNA delivered by GO-PEI-PEG with simultaneous infrared irradiation on mouse malignant melanomasuppressed tumor growth.
引文
[1] Gao L, Zhang L, Hu J, et al. Down-regulation of signal transducer and activatorof transcription3expression using vector-based small interfering RNAssuppresses growth of human prostate tumor in vivo. Clin Cancer Res,2005,11(17):6333~6341
    [2] Zhang L, Gao L, Li Y, et al. Effects of plasmid-based Stat3-specific shorthairpin RNA and GRIM-19on PC-3M tumor cell growth. Clin Cancer Res,2008,14(2):559~568
    [3] Pai S I, Lin Y Y, Macaes B, et al. Prospects of RNA interference therapy forcancer. Gene Ther,2006,13(6):464~477
    [4] Buettner R, Mora L B, Jove R. Activated STAT signaling in human tumorsprovides novel molecular targets for therapeutic intervention. Clin Cancer Res,2002,8(4):945~954
    [5] Jr Darnell J E, Kerr I M, Stark G R. Jak-STAT pathways and transcriptionalactivation in response to IFNs and other extracellular signaling proteins.Science,1994,264(5164):1415~1421
    [6] Kishimoto T. IL-6: from laboratory to bedside. Clin Rev Allergy Immunol,2005,28(3):177~186
    [7] Chakraborty A, Tweardy D J. Stat3and G-CSF-induced myeloid differentiation.Leuk Lymphoma,1998,30(5-6):433~442
    [8] Nicholson S E, Hilton D J. The SOCS proteins: a new family of negativeregulators of signal transduction. J Leukoc Biol,1998,63(6):665~668
    [9] Chung C D, Liao J, Liu B, et al. Specific inhibition of Stat3signal transductionby PIAS3. Science,1997,278(5344):1803~1805
    [10] Zhang Y, Turkson J, Carter-Su C, et al. Activation of Stat3in v-Src-transformedfibroblasts requires cooperation of Jak1kinase activity. J Biol Chem,2000,275(32):24935~24944
    [11] Schindler C, Darnell J J. Transcriptional responses to polypeptide ligands: theJAK-STAT pathway. Annu Rev Biochem,1995,64:621~651
    [12] Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3gene leads to early embryonic lethality. Proc Natl Acad Sci U S A,1997,94(8):3801~3804
    [13] Sano S, Chan K S, Kira M, et al. Signal transducer and activator of transcription3is a key regulator of keratinocyte survival and proliferation following UVirradiation. Cancer Res,2005,65(13):5720~5729
    [14] Chapman R S, Lourenco P C, Tonner E, et al. Suppression of epithelialapoptosis and delayed mammary gland involution in mice with a conditionalknockout of Stat3. Genes Dev,1999,13(19):2604~2616
    [15] Torres J, Watt F M. Nanog maintains pluripotency of mouse embryonic stemcells by inhibiting NFkappaB and cooperating with Stat3. Nat Cell Biol,2008,10(2):194~201
    [16] Bromberg J F, Wrzeszczynska M H, Devgan G, et al. Stat3as an oncogene. Cell,1999,98(3):295~303
    [17] Yu C L, Meyer D J, Campbell G S, et al. Enhanced DNA-binding activity of aStat3-related protein in cells transformed by the Src oncoprotein. Science,1995,269(5220):81~83
    [18] Garcia R, Yu C L, Hudnall A, et al. Constitutive activation of Stat3infibroblasts transformed by diverse oncoproteins and in breast carcinoma cells.Cell Growth Differ,1997,8(12):1267~1276
    [19] Turkson J, Bowman T, Garcia R, et al. Stat3activation by Src induces specificgene regulation and is required for cell transformation. Mol Cell Biol,1998,18(5):2545~2552
    [20] Grandis J R, Drenning S D, Chakraborty A, et al. Requirement of Stat3but notStat1activation for epidermal growth factor receptor-mediated cell growth Invitro. J Clin Invest,1998,102(7):1385~1392
    [21] Catlett-Falcone R, Landowski T H, Oshiro M M, et al. Constitutive activation ofStat3signaling confers resistance to apoptosis in human U266myeloma cells.Immunity,1999,10(1):105~115
    [22] Turkson J. STAT proteins as novel targets for cancer drug discovery. ExpertOpin Ther Targets,2004,8(5):409~422
    [23] Yu H, Jove R. The STATs of cancer--new molecular targets come of age. NatRev Cancer,2004,4(2):97~105
    [24] Garcia R, Bowman T L, Niu G, et al. Constitutive activation of Stat3by the Srcand JAK tyrosine kinases participates in growth regulation of human breastcarcinoma cells. Oncogene,2001,20(20):2499~2513
    [25] Nam S, Buettner R, Turkson J, et al. Indirubin derivatives inhibit Stat3signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci U SA,2005,102(17):5998~6003
    [26] Berishaj M, Gao S P, Ahmed S, et al. Stat3is tyrosine-phosphorylated throughthe interleukin-6/glycoprotein130/Janus kinase pathway in breast cancer.Breast Cancer Res,2007,9(3): R32
    [27] Yarden Y, Sliwkowski M X. Untangling the ErbB signalling network. Nat RevMol Cell Biol,2001,2(2):127~137
    [28] Garcia R, Yu C L, Hudnall A, et al. Constitutive activation of Stat3infibroblasts transformed by diverse oncoproteins and in breast carcinoma cells.Cell Growth Differ,1997,8(12):1267~1276
    [29] Azambuja E, Durbecq V, Rosa D D, et al. HER-2overexpression/amplificationand its interaction with taxane-based therapy in breast cancer. Ann Oncol,2008,19(2):223~232
    [30] Real P J, Sierra A, De Juan A, et al. Resistance to chemotherapy viaStat3-dependent overexpression of Bcl-2in metastatic breast cancer cells.Oncogene,2002,21(50):7611~7618
    [31] Siddiquee K, Zhang S, Guida W C, et al. Selective chemical probe inhibitor ofStat3, identified through structure-based virtual screening, induces antitumoractivity. Proc Natl Acad Sci U S A,2007,104(18):7391~7396
    [32] Siddiquee K A, Gunning P T, Glenn M, et al. An oxazole-based small-moleculeStat3inhibitor modulates Stat3stability and processing and induces antitumorcell effects. ACS Chem Biol,2007,2(12):787~798
    [33] Diaz N, Minton S, Cox C, et al. Activation of stat3in primary tumors fromhigh-risk breast cancer patients is associated with elevated levels of activatedSRC and survivin expression. Clin Cancer Res,2006,12(1):20~28
    [34] Grandis J R, Chakraborty A, Zeng Q, et al. Downmodulation of TGF-alphaprotein expression with antisense oligonucleotides inhibits proliferation of headand neck squamous carcinoma but not normal mucosal epithelial cells. J CellBiochem,1998,69(1):55~62
    [35] Song J I, Grandis J R. STAT signaling in head and neck cancer. Oncogene,2000,19(21):2489~2495
    [36] Xi S, Gooding W E, Grandis J R. In vivo antitumor efficacy of STAT3blockade using a transcription factor decoy approach: implications for cancertherapy. Oncogene,2005,24(6):970~979
    [37] Xi S, Zhang Q, Dyer K F, et al. Src kinases mediate STAT growth pathways insquamous cell carcinoma of the head and neck. J Biol Chem,2003,278(34):31574~31583
    [38] Kijima T, Niwa H, Steinman R A, et al. STAT3activation abrogates growthfactor dependence and contributes to head and neck squamous cell carcinomatumor growth in vivo. Cell Growth Differ,2002,13(8):355~362
    [39] Niu G, Bowman T, Huang M, et al. Roles of activated Src and Stat3signaling inmelanoma tumor cell growth. Oncogene,2002,21(46):7001~7010
    [40] Xu Q, Briggs J, Park S, et al. Targeting Stat3blocks both HIF-1and VEGFexpression induced by multiple oncogenic growth signaling pathways.Oncogene,2005,24(36):5552~5560
    [41] Niu G, Shain K H, Huang M, et al. Overexpression of a dominant-negativesignal transducer and activator of transcription3variant in tumor cells leads toproduction of soluble factors that induce apoptosis and cell cycle arrest. CancerRes,2001,61(8):3276~3280
    [42] Zhuang L, Lee C S, Scolyer R A, et al. Mcl-1, Bcl-XL and Stat3expression areassociated with progression of melanoma whereas Bcl-2, AP-2and MITF levelsdecrease during progression of melanoma. Mod Pathol,2007,20(4):416~426
    [43] Niu G, Wright K L, Huang M, et al. Constitutive Stat3activity up-regulatesVEGF expression and tumor angiogenesis. Oncogene,2002,21(13):2000~2008
    [44] Xie T X, Huang F J, Aldape K D, et al. Activation of stat3in human melanomapromotes brain metastasis. Cancer Res,2006,66(6):3188~3196
    [45] Mora L B, Buettner R, Seigne J, et al. Constitutive activation of Stat3in humanprostate tumors and cell lines: direct inhibition of Stat3signaling inducesapoptosis of prostate cancer cells. Cancer Res,2002,62(22):6659~6666
    [46] Lou W, Ni Z, Dyer K, et al. Interleukin-6induces prostate cancer cell growthaccompanied by activation of stat3signaling pathway. Prostate,2000,42(3):239~242
    [47] Tam L, Mcglynn L M, Traynor P, et al. Expression levels of the JAK/STATpathway in the transition from hormone-sensitive to hormone-refractoryprostate cancer. Br J Cancer,2007,97(3):378~383
    [48] Lee S O, Lou W, Qureshi K M, et al. RNA interference targeting Stat3inhibitsgrowth and induces apoptosis of human prostate cancer cells. Prostate,2004,60(4):303~309
    [49] Kotha A, Sekharam M, Cilenti L, et al. Resveratrol inhibits Src and Stat3signaling and induces the apoptosis of malignant cells containing activatedStat3protein. Mol Cancer Ther,2006,5(3):621~629
    [50] Schaefer L K, Ren Z, Fuller G N, et al. Constitutive activation of Stat3alpha inbrain tumors: localization to tumor endothelial cells and activation by theendothelial tyrosine kinase receptor (VEGFR-2). Oncogene,2002,21(13):2058~2065
    [51] Rahaman S O, Harbor P C, Chernova O, et al. Inhibition of constitutively activeStat3suppresses proliferation and induces apoptosis in glioblastoma multiformecells. Oncogene,2002,21(55):8404~8413
    [52] Konnikova L, Kotecki M, Kruger M M, et al. Knockdown of STAT3expressionby RNAi induces apoptosis in astrocytoma cells. BMC Cancer,2003,3:23
    [53] Paillaud E, Costa S, Fages C, et al. Retinoic acid increases proliferation rate ofGL-15glioma cells, involving activation of STAT-3transcription factor. JNeurosci Res,2002,67(5):670~679
    [54] Ren W, Duan Y, Yang Y, et al. Down-regulation of Stat3induces apoptosis ofhuman glioma cell: a potential method to treat brain cancer. Neurol Res,2008,30(3):297~301
    [55] Duan Z, Foster R, Bell D A, et al. Signal transducers and activators oftranscription3pathway activation in drug-resistant ovarian cancer. Clin CancerRes,2006,12(17):5055~5063
    [56] Kusaba T, Nakayama T, Yamazumi K, et al. Activation of STAT3is a markerof poor prognosis in human colorectal cancer. Oncol Rep,2006,15(6):1445~1451
    [57] Yakata Y, Nakayama T, Yoshizaki A, et al. Expression of p-STAT3in humangastric carcinoma: significant correlation in tumour invasion and prognosis. IntJ Oncol,2007,30(2):437~442
    [58] Trevino J G, Summy J M, Lesslie D P, et al. Inhibition of SRC expression andactivity inhibits tumor progression and metastasis of human pancreaticadenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol,2006,168(3):962~972
    [59] Toyonaga T, Nakano K, Nagano M, et al. Blockade of constitutively activatedJanus kinase/signal transducer and activator of transcription-3pathway inhibitsgrowth of human pancreatic cancer. Cancer Lett,2003,201(1):107~116
    [60] Lin Q, Lai R, Chirieac L R, et al. Constitutive activation of JAK3/STAT3incolon carcinoma tumors and cell lines: inhibition of JAK3/STAT3signalinginduces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol,2005,167(4):969~980
    [61] Leu C M, Wong F H, Chang C, et al. Interleukin-6acts as an antiapoptoticfactor in human esophageal carcinoma cells through the activation of bothSTAT3and mitogen-activated protein kinase pathways. Oncogene,2003,22(49):7809~7818
    [62] Chen C L, Hsieh F C, Lieblein J C, et al. Stat3activation in human endometrialand cervical cancers. Br J Cancer,2007,96(4):591~599
    [63] Burke W M, Jin X, Lin H J, et al. Inhibition of constitutively active Stat3suppresses growth of human ovarian and breast cancer cells. Oncogene,2001,20(55):7925~7934
    [64] Wei D, Le X, Zheng L, et al. Stat3activation regulates the expression ofvascular endothelial growth factor and human pancreatic cancer angiogenesisand metastasis. Oncogene,2003,22(3):319~329
    [65] Jung J E, Lee H G, Cho I H, et al. STAT3is a potential modulator ofHIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J,2005,19(10):1296~1298
    [66] Epling-Burnette P K, Liu J H, Catlett-Falcone R, et al. Inhibition of STAT3signaling leads to apoptosis of leukemic large granular lymphocytes anddecreased Mcl-1expression. J Clin Invest,2001,107(3):351~362
    [67] Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activatesStat3and protects hematopoietic cells from cell death. Oncogene,2002,21(7):1038~1047
    [68] Nasr M R, Laver J H, Chang M, et al. Expression of anaplastic lymphomakinase, tyrosine-phosphorylated STAT3, and associated factors in pediatricanaplastic large cell lymphoma: A report from the children's oncology group.Am J Clin Pathol,2007,127(5):770~778
    [69] Kirito K, Nagashima T, Ozawa K, et al. Constitutive activation of Stat1andStat3in primary erythroleukemia cells. Int J Hematol,2002,75(1):51~54
    [70] Hodge D R, Xiao W, Wang L H, et al. Activating mutations in STAT3andSTAT5differentially affect cellular proliferation and apoptotic resistance inmultiple myeloma cells. Cancer Biol Ther,2004,3(2):188~194
    [71] Burger R, Bakker F, Guenther A, et al. Functional significance of novelneurotrophin-1/B cell-stimulating factor-3(cardiotrophin-like cytokine) forhuman myeloma cell growth and survival. Br J Haematol,2003,123(5):869~878
    [72] Weber-Nordt R M, Egen C, Wehinger J, et al. Constitutive activation of STATproteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barrvirus (EBV)-related lymphoma cell lines. Blood,1996,88(3):809~816
    [73] Alas S, Bonavida B. Rituximab inactivates signal transducer and activation oftranscription3(STAT3) activity in B-non-Hodgkin's lymphoma throughinhibition of the interleukin10autocrine/paracrine loop and results indown-regulation of Bcl-2and sensitization to cytotoxic drugs. Cancer Res,2001,61(13):5137~5144
    [74] Chen C Y, Tsay W, Tang J L, et al. SOCS1methylation in patients with newlydiagnosed acute myeloid leukemia. Genes Chromosomes Cancer,2003,37(3):300~305
    [75] Galm O, Yoshikawa H, Esteller M, et al. SOCS-1, a negative regulator ofcytokine signaling, is frequently silenced by methylation in multiple myeloma.Blood,2003,101(7):2784~2788
    [76] Heinrich P C, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokinesignalling through the gp130/Jak/STAT pathway. Biochem J,1998,334(Pt2):297~314
    [77] Krebs D L, Hilton D J. SOCS: physiological suppressors of cytokine signaling.J Cell Sci,2000,113(Pt16):2813~2819
    [78] Coppo P, Flamant S, De Mas V, et al. BCR-ABL activates STAT3via JAK andMEK pathways in human cells. Br J Haematol,2006,134(2):171~179
    [79] Catlett-Falcone R, Landowski T H, Oshiro M M, et al. Constitutive activation ofStat3signaling confers resistance to apoptosis in human U266myeloma cells.Immunity,1999,10(1):105~115
    [80] Frost M J, Ferrao P T, Hughes T P, et al. Juxtamembrane mutant V560GKit ismore sensitive to Imatinib (STI571) compared with wild-type c-kit whereas thekinase domain mutant D816VKit is resistant. Mol Cancer Ther,2002,1(12):1115~1124
    [81] Eriksen K W, Kaltoft K, Mikkelsen G, et al. Constitutive STAT3-activation inSezary syndrome: tyrphostin AG490inhibits STAT3-activation, interleukin-2receptor expression and growth of leukemic Sezary cells. Leukemia,2001,15(5):787~793
    [82] Alas S, Bonavida B. Inhibition of constitutive STAT3activity sensitizesresistant non-Hodgkin's lymphoma and multiple myeloma to chemotherapeuticdrug-mediated apoptosis. Clin Cancer Res,2003,9(1):316~326
    [83] Hung W, Elliott B. Co-operative effect of c-Src tyrosine kinase and Stat3inactivation of hepatocyte growth factor expression in mammary carcinoma cells.J Biol Chem,2001,276(15):12395~12403
    [84] Bromberg J. Stat proteins and oncogenesis. J Clin Invest,2002,109(9):1139~1142
    [85] Catlett-Falcone R, Landowski T H, Oshiro M M, et al. Constitutive activation ofStat3signaling confers resistance to apoptosis in human U266myeloma cells.Immunity,1999,10(1):105~115
    [86] Epling-Burnette P K, Liu J H, Catlett-Falcone R, et al. Inhibition of STAT3signaling leads to apoptosis of leukemic large granular lymphocytes anddecreased Mcl-1expression. J Clin Invest,2001,107(3):351~362
    [87] Vogelstein B, Lane D, Levine A J. Surfing the p53network. Nature,2000,408(6810):307~310
    [88] Hanahan D, Weinberg R A. The hallmarks of cancer. Cell,2000,100(1):57~70
    [89] Rak J, Yu J L, Klement G, et al. Oncogenes and angiogenesis: signalingthree-dimensional tumor growth. J Investig Dermatol Symp Proc,2000,5(1):24~33
    [90] Plate K H, Breier G, Weich H A, et al. Vascular endothelial growth factor is apotential tumour angiogenesis factor in human gliomas in vivo. Nature,1992,359(6398):845~848
    [91] Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol,1999,9(3):211~220
    [92] Niu G, Wright K L, Huang M, et al. Constitutive Stat3activity up-regulatesVEGF expression and tumor angiogenesis. Oncogene,2002,21(13):2000~2008
    [93] Wei D, Le X, Zheng L, et al. Stat3activation regulates the expression ofvascular endothelial growth factor and human pancreatic cancer angiogenesisand metastasis. Oncogene,2003,22(3):319~329
    [94] Wei L H, Kuo M L, Chen C A, et al. Interleukin-6promotes cervical tumorgrowth by VEGF-dependent angiogenesis via a STAT3pathway. Oncogene,2003,22(10):1517~1527
    [95] Semenza G L. Involvement of hypoxia-inducible factor1in human cancer.Intern Med,2002,41(2):79~83
    [96] Semenza G L. Targeting HIF-1for cancer therapy. Nat Rev Cancer,2003,3(10):721~732
    [97] Ravi R, Mookerjee B, Bhujwalla Z M, et al. Regulation of tumor angiogenesisby p53-induced degradation of hypoxia-inducible factor1alpha. Genes Dev,2000,14(1):34~44
    [98] Deo D D, Axelrad T W, Robert E G, et al. Phosphorylation of STAT-3inresponse to basic fibroblast growth factor occurs through a mechanisminvolving platelet-activating factor, JAK-2, and Src in human umbilical veinendothelial cells. Evidence for a dual kinase mechanism. J Biol Chem,2002,277(24):21237~21245
    [99] Bartoli M, Platt D, Lemtalsi T, et al. VEGF differentially activates STAT3inmicrovascular endothelial cells. FASEB J,2003,17(11):1562~1564
    [100] Gao S P, Bromberg J F. Touched and moved by STAT3. Sci STKE,2006,2006(343): e30
    [101] Xie T X, Huang F J, Aldape K D, et al. Activation of stat3in human melanomapromotes brain metastasis. Cancer Res,2006,66(6):3188~3196
    [102] Xie T X, Wei D, Liu M, et al. Stat3activation regulates the expression of matrixmetalloproteinase-2and tumor invasion and metastasis. Oncogene,2004,23(20):3550~3560
    [103] Ram P T, Horvath C M, Iyengar R. Stat3-mediated transformation of NIH-3T3cells by the constitutively active Q205L Galphao protein. Science,2000,287(5450):142~144
    [104] Itoh M, Murata T, Suzuki T, et al. Requirement of STAT3activation formaximal collagenase-1(MMP-1) induction by epidermal growth factor andmalignant characteristics in T24bladder cancer cells. Oncogene,2006,25(8):1195~1204
    [105] Dechow T N, Pedranzini L, Leitch A, et al. Requirement of matrixmetalloproteinase-9for the transformation of human mammary epithelial cellsby Stat3-C. Proc Natl Acad Sci U S A,2004,101(29):10602~10607
    [106] Silver D L, Naora H, Liu J, et al. Activated signal transducer and activator oftranscription (STAT)3: localization in focal adhesions and function in ovariancancer cell motility. Cancer Res,2004,64(10):3550~3558
    [107] Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptiveimmune responses by Stat-3signaling in tumor cells. Nat Med,2004,10(1):48~54
    [108] Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3signaling in thehematopoietic system elicits multicomponent antitumor immunity. Nat Med,2005,11(12):1314~1321
    [109] Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptiveimmune responses by Stat-3signaling in tumor cells. Nat Med,2004,10(1):48~54
    [110] Frank D A. StAT signaling in cancer: insights into pathogenesis and treatmentstrategies. Cancer Treat Res,2003,115:267~291
    [111] Frank D A. StAT signaling in cancer: insights into pathogenesis and treatmentstrategies. Cancer Treat Res,2003,115:267~291
    [112] Konnikova L, Kotecki M, Kruger M M, et al. Knockdown of STAT3expressionby RNAi induces apoptosis in astrocytoma cells. BMC Cancer,2003,3:23
    [113] Lewis H D, Winter A, Murphy T F, et al. STAT3inhibition in prostate andpancreatic cancer lines by STAT3binding sequence oligonucleotides:differential activity between5' and3' ends. Mol Cancer Ther,2008,7(6):1543~1550
    [114] Sen M, Tosca P J, Zwayer C, et al. Lack of toxicity of a STAT3decoyoligonucleotide. Cancer Chemother Pharmacol,2009,63(6):983~995
    [115] Yarden Y, Sliwkowski M X. Untangling the ErbB signalling network. Nat RevMol Cell Biol,2001,2(2):127~137
    [116] Azambuja E, Durbecq V, Rosa D D, et al. HER-2overexpression/amplificationand its interaction with taxane-based therapy in breast cancer. Ann Oncol,2008,19(2):223~232
    [117] Xi S, Zhang Q, Dyer K F, et al. Src kinases mediate STAT growth pathways insquamous cell carcinoma of the head and neck. J Biol Chem,2003,278(34):31574~31583
    [118] Niu G, Heller R, Catlett-Falcone R, et al. Gene therapy with dominant-negativeStat3suppresses growth of the murine melanoma B16tumor in vivo. CancerRes,1999,59(20):5059~5063
    [119] Grandis J R, Drenning S D, Chakraborty A, et al. Requirement of Stat3but notStat1activation for epidermal growth factor receptor-mediated cell growth Invitro. J Clin Invest,1998,102(7):1385~1392
    [120] Kamath S, Buolamwini J K. Targeting EGFR and HER-2receptor tyrosinekinases for cancer drug discovery and development. Med Res Rev,2006,26(5):569~594
    [121] Xu H, Yu Y, Marciniak D, et al. Epidermal growth factor receptor(EGFR)-related protein inhibits multiple members of the EGFR family in colonand breast cancer cells. Mol Cancer Ther,2005,4(3):435~442
    [122] Dhesy-Thind B, Pritchard K I, Messersmith H, et al. HER2/neu in systemictherapy for women with breast cancer: a systematic review. Breast Cancer ResTreat,2008,109(2):209~229
    [123] Song J I, Grandis J R. STAT signaling in head and neck cancer. Oncogene,2000,19(21):2489~2495
    [124] Garcia R, Bowman T L, Niu G, et al. Constitutive activation of Stat3by the Srcand JAK tyrosine kinases participates in growth regulation of human breastcarcinoma cells. Oncogene,2001,20(20):2499~2513
    [125] Nam S, Kim D, Cheng J Q, et al. Action of the Src family kinase inhibitor,dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res,2005,65(20):9185~9189
    [126] Kortylewski M, Yu H. Role of Stat3in suppressing anti-tumor immunity. CurrOpin Immunol,2008,20(2):228~233
    [127] Zhang L, Xia J, Zhao Q, et al. Functional graphene oxide as a nanocarrier forcontrolled loading and targeted delivery of mixed anticancer drugs. Small,2010,6(4):537~544
    [128] Song L, Morris M, Bagui T, et al. Dasatinib (BMS-354825) selectively inducesapoptosis in lung cancer cells dependent on epidermal growth factor receptorsignaling for survival. Cancer Res,2006,66(11):5542~5548
    [129] Vincent P W, Bridges A J, Dykes D J, et al. Anticancer efficacy of theirreversible EGFr tyrosine kinase inhibitor PD0169414against human tumorxenografts. Cancer Chemother Pharmacol,2000,45(3):231~238
    [130] Sriuranpong V, Park J I, Amornphimoltham P, et al. Epidermal growth factorreceptor-independent constitutive activation of STAT3in head and necksquamous cell carcinoma is mediated by the autocrine/paracrine stimulation ofthe interleukin6/gp130cytokine system. Cancer Res,2003,63(11):2948~2956
    [131] Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblasticleukaemia by a Jak-2inhibitor. Nature,1996,379(6566):645~648
    [132] Pikman Y, Lee B H, Mercher T, et al. MPLW515L is a novel somatic activatingmutation in myelofibrosis with myeloid metaplasia. PLoS Med,2006,3(7):e270
    [133] Pardanani A, Hood J, Lasho T, et al. TG101209, a small moleculeJAK2-selective kinase inhibitor potently inhibits myeloproliferativedisorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia,2007,21(8):1658~1668
    [134] Wen Z, Zhong Z, Jr Darnell J E. Maximal activation of transcription by Stat1and Stat3requires both tyrosine and serine phosphorylation. Cell,1995,82(2):241~250
    [135] Turkson J, Bowman T, Adnane J, et al. Requirement for Ras/Rac1-mediatedp38and c-Jun N-terminal kinase signaling in Stat3transcriptional activityinduced by the Src oncoprotein. Mol Cell Biol,1999,19(11):7519~7528
    [136] Shuai K, Horvath C M, Huang L H, et al. Interferon activation of thetranscription factor Stat91involves dimerization through SH2-phosphotyrosylpeptide interactions. Cell,1994,76(5):821~828
    [137] Turkson J, Ryan D, Kim J S, et al. Phosphotyrosyl peptides blockStat3-mediated DNA binding activity, gene regulation, and cell transformation.J Biol Chem,2001,276(48):45443~45455
    [138] Bromberg J F, Horvath C M, Besser D, et al. Stat3activation is required forcellular transformation by v-src. Mol Cell Biol,1998,18(5):2553~2558
    [139] Turkson J, Kim J S, Zhang S, et al. Novel peptidomimetic inhibitors of signaltransducer and activator of transcription3dimerization and biological activity.Mol Cancer Ther,2004,3(3):261~269
    [140] Siddiquee K, Zhang S, Guida W C, et al. Selective chemical probe inhibitor ofStat3, identified through structure-based virtual screening, induces antitumoractivity. Proc Natl Acad Sci U S A,2007,104(18):7391~7396
    [141] Blaskovich M A, Sun J, Cantor A, et al. Discovery of JSI-124(cucurbitacin I), aselective Janus kinase/signal transducer and activator of transcription3signaling pathway inhibitor with potent antitumor activity against human andmurine cancer cells in mice. Cancer Res,2003,63(6):1270~1279
    [142] Song H, Wang R, Wang S, et al. A low-molecular-weight compound discoveredthrough virtual database screening inhibits Stat3function in breast cancer cells.Proc Natl Acad Sci U S A,2005,102(13):4700~4705
    [143] Jain K K. Use of bacteria as anticancer agents. Expert Opin Biol Ther,2001,1(2):291~300
    [144] Anderson W F. Human gene therapy. Nature,1998,392(6679Suppl):25~30
    [145] Fischer A, Hacein-Bey-Abina S, Lagresle C, et al.[Gene therapy of severecombined immunodeficiency disease: proof of principle of efficiency andsafety issues. Gene therapy, primary immunodeficiencies, retrovirus, lentivirus,genome]. Bull Acad Natl Med,2005,189(5):779~785,786~788
    [146] Marshall E. Gene therapy on trial. Science,2000,288(5468):951~957
    [147] Verma I M, Somia N. Gene therapy--promises, problems and prospects.Nature,1997,389(6648):239~242
    [148] Loeffler J P, Behr J P. Gene transfer into primary and established mammaliancell lines with lipopolyamine-coated DNA. Methods Enzymol,1993,217:599~618
    [149] Abdelhady H G, Allen S, Davies M C, et al. Direct real-time molecular scalevisualisation of the degradation of condensed DNA complexes exposed toDNase I. Nucleic Acids Res,2003,31(14):4001~4005
    [150] Bielinska A U, Kukowska-Latallo J F, Jr Baker J R. The interaction of plasmidDNA with polyamidoamine dendrimers: mechanism of complex formation andanalysis of alterations induced in nuclease sensitivity and transcriptionalactivity of the complexed DNA. Biochim Biophys Acta,1997,1353(2):180~190
    [151] Jang J H, Shea L D. Intramuscular delivery of DNA releasing microspheres:microsphere properties and transgene expression. J Control Release,2006,112(1):120~128
    [152] Singh M, Briones M, Ott G, et al. Cationic microparticles: A potent deliverysystem for DNA vaccines. Proc Natl Acad Sci U S A,2000,97(2):811~816
    [153] Munier S, Messai I, Delair T, et al. Cationic PLA nanoparticles for DNAdelivery: comparison of three surface polycations for DNA binding, protectionand transfection properties. Colloids Surf B Biointerfaces,2005,43(3-4):163~173
    [154] Oster C G, Kim N, Grode L, et al. Cationic microparticles consisting ofpoly(lactide-co-glycolide) and polyethylenimine as carriers systems for parentalDNA vaccination. J Control Release,2005,104(2):359~377
    [155] Conner S D, Schmid S L. Regulated portals of entry into the cell. Nature,2003,422(6927):37~44
    [156] Schatzlein A G. Targeting of Synthetic Gene Delivery Systems. J BiomedBiotechnol,2003,2003(2):149~158
    [157] O'Hagan D T, Singh M, Ulmer J B. Microparticle-based technologies forvaccines. Methods,2006,40(1):10~19
    [158] Mislick K A, Baldeschwieler J D. Evidence for the role of proteoglycans incation-mediated gene transfer. Proc Natl Acad Sci U S A,1996,93(22):12349~12354
    [159] Hardingham T E, Fosang A J. Proteoglycans: many forms and many functions.FASEB J,1992,6(3):861~870
    [160] Yanagishita M, Hascall V C. Cell surface heparan sulfate proteoglycans. J BiolChem,1992,267(14):9451~9454
    [161] Kichler A, Mason A J, Bechinger B. Cationic amphipathic histidine-richpeptides for gene delivery. Biochim Biophys Acta,2006,1758(3):301~307
    [162] Thomas M, Klibanov A M. Enhancing polyethylenimine's delivery of plasmidDNA into mammalian cells. Proc Natl Acad Sci U S A,2002,99(23):14640~14645
    [163] Rittner K, Benavente A, Bompard-Sorlet A, et al. New basicmembrane-destabilizing peptides for plasmid-based gene delivery in vitro andin vivo. Mol Ther,2002,5(2):104~114
    [164] El-Andaloussi S, Holm T, Langel U. Cell-penetrating peptides: mechanisms andapplications. Curr Pharm Des,2005,11(28):3597~3611
    [165] Khalil I A, Kogure K, Akita H, et al. Uptake pathways and subsequentintracellular trafficking in nonviral gene delivery. Pharmacol Rev,2006,58(1):32~45
    [166] Rejman J, Bragonzi A, Conese M. Role of clathrin-and caveolae-mediatedendocytosis in gene transfer mediated by lipo-and polyplexes. Mol Ther,2005,12(3):468~474
    [167] von Gersdorff K, Sanders N N, Vandenbroucke R, et al. The internalizationroute resulting in successful gene expression depends on both cell line andpolyethylenimine polyplex type. Mol Ther,2006,14(5):745~753
    [168] Akinc A, Thomas M, Klibanov A M, et al. Exploringpolyethylenimine-mediated DNA transfection and the proton sponge hypothesis.J Gene Med,2005,7(5):657~663
    [169] Boussif O, Lezoualc'H F, Zanta M A, et al. A versatile vector for gene andoligonucleotide transfer into cells in culture and in vivo: polyethylenimine. ProcNatl Acad Sci U S A,1995,92(16):7297~7301
    [170] Li W, Nicol F, Jr Szoka F C. GALA: a designed synthetic pH-responsiveamphipathic peptide with applications in drug and gene delivery. Adv DrugDeliv Rev,2004,56(7):967~985
    [171] Cheung C Y, Murthy N, Stayton P S, et al. A pH-sensitive polymer thatenhances cationic lipid-mediated gene transfer. Bioconjug Chem,2001,12(6):906~910
    [172] Kyriakides T R, Cheung C Y, Murthy N, et al. pH-sensitive polymers thatenhance intracellular drug delivery in vivo. J Control Release,2002,78(1-3):295~303
    [173] Murthy N, Robichaud J R, Tirrell D A, et al. The design and synthesis ofpolymers for eukaryotic membrane disruption. J Control Release,1999,61(1-2):137~143
    [174] Lechardeur D, Lukacs G L. Nucleocytoplasmic transport of plasmid DNA: aperilous journey from the cytoplasm to the nucleus. Hum Gene Ther,2006,17(9):882~889
    [175] Dauty E, Verkman A S. Actin cytoskeleton as the principal determinant ofsize-dependent DNA mobility in cytoplasm: a new barrier for non-viral genedelivery. J Biol Chem,2005,280(9):7823~7828
    [176] Pante N, Kann M. Nuclear pore complex is able to transport macromoleculeswith diameters of about39nm. Mol Biol Cell,2002,13(2):425~434
    [177] Cartier R, Reszka R. Utilization of synthetic peptides containing nuclearlocalization signals for nonviral gene transfer systems. Gene Ther,2002,9(3):157~167
    [178] Kichler A, Pages J C, Leborgne C, et al. Efficient DNA transfection mediatedby the C-terminal domain of human immunodeficiency virus type1viralprotein R. J Virol,2000,74(12):5424~5431
    [179] Moffatt S, Wiehle S, Cristiano R J. A multifunctional PEI-based cationicpolyplex for enhanced systemic p53-mediated gene therapy. Gene Ther,2006,13(21):1512~1523
    [180] Talsma S S, Babensee J E, Murthy N, et al. Development and in vitro validationof a targeted delivery vehicle for DNA vaccines. J Control Release,2006,112(2):271~279
    [181] Bremner K H, Seymour L W, Logan A, et al. Factors influencing the ability ofnuclear localization sequence peptides to enhance nonviral gene delivery.Bioconjug Chem,2004,15(1):152~161
    [182] Haberland A, Bottger M. Nuclear proteins as gene-transfer vectors. BiotechnolAppl Biochem,2005,42(Pt2):97~106
    [183] Kaouass M, Beaulieu R, Balicki D. Histonefection: Novel and potent non-viralgene delivery. J Control Release,2006,113(3):245~254
    [184] Mesika A, Kiss V, Brumfeld V, et al. Enhanced intracellular mobility andnuclear accumulation of DNA plasmids associated with a karyophilic protein.Hum Gene Ther,2005,16(2):200~208
    [185] Kulkarni R P, Wu D D, Davis M E, et al. Quantitating intracellular transport ofpolyplexes by spatio-temporal image correlation spectroscopy. Proc Natl AcadSci U S A,2005,102(21):7523~7528
    [186] Suh J, Wirtz D, Hanes J. Efficient active transport of gene nanocarriers to thecell nucleus. Proc Natl Acad Sci U S A,2003,100(7):3878~3882
    [187] Monsigny M, Rondanino C, Duverger E, et al. Glyco-dependent nuclear importof glycoproteins, glycoplexes and glycosylated plasmids. Biochim BiophysActa,2004,1673(1-2):94~103
    [188] Roche A C, Fajac I, Grosse S, et al. Glycofection: facilitated gene transfer bycationic glycopolymers. Cell Mol Life Sci,2003,60(2):288~297
    [189] Rudolph C, Plank C, Lausier J, et al. Oligomers of the arginine-rich motif of theHIV-1TAT protein are capable of transferring plasmid DNA into cells. J BiolChem,2003,278(13):11411~11418
    [190] Monsigny M, Rondanino C, Duverger E, et al. Glyco-dependent nuclear importof glycoproteins, glycoplexes and glycosylated plasmids. Biochim BiophysActa,2004,1673(1-2):94~103
    [191] Grosse S, Thevenot G, Monsigny M, et al. Which mechanism for nuclear importof plasmid DNA complexed with polyethylenimine derivatives? J Gene Med,2006,8(7):845~851
    [192] Brunner S, Sauer T, Carotta S, et al. Cell cycle dependence of gene transfer bylipoplex, polyplex and recombinant adenovirus. Gene Ther,2000,7(5):401~407
    [193] Honore I, Grosse S, Frison N, et al. Transcription of plasmid DNA: influence ofplasmid DNA/polyethylenimine complex formation. J Control Release,2005,107(3):537~546
    [194] Pollard H, Remy J S, Loussouarn G, et al. Polyethylenimine but not cationiclipids promotes transgene delivery to the nucleus in mammalian cells. J BiolChem,1998,273(13):7507~7511
    [195] Twaites B R, de Las H A C, Lavigne M, et al. Thermoresponsive polymers asgene delivery vectors: cell viability, DNA transport and transfection studies. JControl Release,2005,108(2-3):472~483
    [196] Yokoyama M. Gene delivery using temperature-responsive polymeric carriers.Drug Discov Today,2002,7(7):426~432
    [197] Kurisawa M, Yokoyama M, Okano T. Gene expression control by temperaturewith thermo-responsive polymeric gene carriers. J Control Release,2000,69(1):127~137
    [198] Saito G, Swanson J A, Lee K D. Drug delivery strategy utilizing conjugation viareversible disulfide linkages: role and site of cellular reducing activities. AdvDrug Deliv Rev,2003,55(2):199~215
    [199] El-Sayed M E, Hoffman A S, Stayton P S. Rational design of composition andactivity correlations for pH-sensitive and glutathione-reactive polymertherapeutics. J Control Release,2005,101(1-3):47~58
    [200] Read M L, Bremner K H, Oupicky D, et al. Vectors based on reduciblepolycations facilitate intracellular release of nucleic acids. J Gene Med,2003,5(3):232~245
    [201] Li Z, Huang L. Sustained delivery and expression of plasmid DNA based onbiodegradable polyester, poly(D,L-lactide-co-4-hydroxy-L-proline). J ControlRelease,2004,98(3):437~446
    [202] Erbacher P, Roche A C, Monsigny M, et al. The reduction of the positivecharges of polylysine by partial gluconoylation increases the transfectionefficiency of polylysine/DNA complexes. Biochim Biophys Acta,1997,1324(1):27~36
    [203] Laemmli U K. Characterization of DNA condensates induced by poly(ethyleneoxide) and polylysine. Proc Natl Acad Sci U S A,1975,72(11):4288~4292
    [204] Wolfert M A, Seymour L W. Chloroquine and amphipathic peptide helicesshow synergistic transfection in vitro. Gene Ther,1998,5(3):409~414
    [205] Kwoh D Y, Coffin C C, Lollo C P, et al. Stabilization of poly-L-lysine/DNApolyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta,1999,1444(2):171~190
    [206] Colin M, Moritz S, Fontanges P, et al. The nuclear pore complex is involved innuclear transfer of plasmid DNA condensed with an oligolysine-RGD peptidecontaining nuclear localisation properties. Gene Ther,2001,8(21):1643~1653
    [207] Putnam D, Gentry C A, Pack D W, et al. Polymer-based gene delivery with lowcytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci U SA,2001,98(3):1200~1205
    [208] Mckenzie D L, Smiley E, Kwok K Y, et al. Low molecular weight disulfidecross-linking peptides as nonviral gene delivery carriers. Bioconjug Chem,2000,11(6):901~909
    [209] Kakizawa Y, Harada A, Kataoka K. Glutathione-sensitive stabilization of blockcopolymer micelles composed of antisense DNA and thiolated poly(ethyleneglycol)-block-poly(L-lysine): a potential carrier for systemic delivery ofantisense DNA. Biomacromolecules,2001,2(2):491~497
    [210] Park S, Healy K E. Compositional regulation ofpoly(lysine-g-(lactide-b-ethylene glycol))-DNA complexation and stability. JControl Release,2004,95(3):639~651
    [211] Bikram M, Lee M, Chang C W, et al. Long-circulating DNA-complexedbiodegradable multiblock copolymers for gene delivery: degradation profilesand evidence of dysopsonization. J Control Release,2005,103(1):221~233
    [212] Plank C, Zatloukal K, Cotten M, et al. Gene transfer into hepatocytes usingasialoglycoprotein receptor mediated endocytosis of DNA complexed with anartificial tetra-antennary galactose ligand. Bioconjug Chem,1992,3(6):533~539
    [213] Mckee T D, Derome M E, Wu G Y, et al. Preparation ofasialoorosomucoid-polylysine conjugates. Bioconjug Chem,1994,5(4):306~311
    [214] Mislick K A, Baldeschwieler J D, Kayyem J F, et al. Transfection offolate-polylysine DNA complexes: evidence for lysosomal delivery. BioconjugChem,1995,6(5):512~515
    [215] Wagner E, Cotten M, Mechtler K, et al. DNA-binding transferrin conjugates asfunctional gene-delivery agents: synthesis by linkage of polylysine orethidium homodimer to the transferrin carbohydrate moiety. Bioconjug Chem,1991,2(4):226~231
    [216] Mousazadeh M, Palizban A, Salehi R, et al. Gene delivery to brain cells withapoprotein E derived peptide conjugated to polylysine (apoEdp-PLL). J DrugTarget,2007,15(3):226~230
    [217] Trubetskoy V S, Torchilin V P, Kennel S J, et al. Use of N-terminal modifiedpoly(L-lysine)-antibody conjugate as a carrier for targeted gene delivery inmouse lung endothelial cells. Bioconjug Chem,1992,3(4):323~327
    [218] Suh W, Chung J K, Park S H, et al. Anti-JL1antibody-conjugated poly(L-lysine) for targeted gene delivery to leukemia T cells. J Control Release,2001,72(1-3):171~178
    [219] Boussif O, Lezoualc'H F, Zanta M A, et al. A versatile vector for gene andoligonucleotide transfer into cells in culture and in vivo: polyethylenimine. ProcNatl Acad Sci U S A,1995,92(16):7297~7301
    [220] Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vectordesign based on poly(ethylene imine) and its derivatives. J Gene Med,2005,7(8):992~1009
    [221] Brissault B, Kichler A, Guis C, et al. Synthesis of linear polyethyleniminederivatives for DNA transfection. Bioconjug Chem,2003,14(3):581~587
    [222] Ferrari S, Moro E, Pettenazzo A, et al. ExGen500is an efficient vector for genedelivery to lung epithelial cells in vitro and in vivo. Gene Ther,1997,4(10):1100~1106
    [223] Godbey W T, Barry M A, Saggau P, et al. Poly(ethylenimine)-mediatedtransfection: a new paradigm for gene delivery. J Biomed Mater Res,2000,51(3):321~328
    [224] Sonawane N D, Jr Szoka F C, Verkman A S. Chloride accumulation andswelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.J Biol Chem,2003,278(45):44826~44831
    [225] Godbey W T, Wu K K, Mikos A G. Poly(ethylenimine) and its role in genedelivery. J Control Release,1999,60(2-3):149~160
    [226] Fischer D, Li Y, Ahlemeyer B, et al. In vitro cytotoxicity testing of polycations:influence of polymer structure on cell viability and hemolysis. Biomaterials,2003,24(7):1121~1131
    [227] Fischer D, Bieber T, Li Y, et al. A novel non-viral vector for DNA deliverybased on low molecular weight, branched polyethylenimine: effect of molecularweight on transfection efficiency and cytotoxicity. Pharm Res,1999,16(8):1273~1279
    [228] Kunath K, von Harpe A, Fischer D, et al. Low-molecular-weightpolyethylenimine as a non-viral vector for DNA delivery: comparison ofphysicochemical properties, transfection efficiency and in vivo distribution withhigh-molecular-weight polyethylenimine. J Control Release,2003,89(1):113~125
    [229] Dunlap D D, Maggi A, Soria M R, et al. Nanoscopic structure of DNAcondensed for gene delivery. Nucleic Acids Res,1997,25(15):3095~3101
    [230] Goula D, Benoist C, Mantero S, et al. Polyethylenimine-based intravenousdelivery of transgenes to mouse lung. Gene Ther,1998,5(9):1291~1295
    [231] Sung S J, Min S H, Cho K Y, et al. Effect of polyethylene glycol on genedelivery of polyethylenimine. Biol Pharm Bull,2003,26(4):492~500
    [232] Petersen H, Fechner P M, Martin A L, et al.Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence ofcopolymer block structure on DNA complexation and biological activities asgene delivery system. Bioconjug Chem,2002,13(4):845~854
    [233] Mao S, Neu M, Germershaus O, et al. Influence of polyethylene glycol chainlength on the physicochemical and biological properties of poly(ethyleneimine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes.Bioconjug Chem,2006,17(5):1209~1218
    [234] Merdan T, Kunath K, Petersen H, et al. PEGylation of poly(ethylene imine)affects stability of complexes with plasmid DNA under in vivo conditions in adose-dependent manner after intravenous injection into mice. Bioconjug Chem,2005,16(4):785~792
    [235] Godbey W T, Wu K K, Mikos A G. Tracking the intracellular path ofpoly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U SA,1999,96(9):5177~5181
    [236] Xiong M P, Forrest M L, Karls A L, et al. Biotin-triggered release ofpoly(ethylene glycol)-avidin from biotinylated polyethylenimine enhances invitro gene expression. Bioconjug Chem,2007,18(3):746~753
    [237] Borchard G. Chitosans for gene delivery. Adv Drug Deliv Rev,2001,52(2):145~150
    [238] Maclaughlin F C, Mumper R J, Wang J, et al. Chitosan and depolymerizedchitosan oligomers as condensing carriers for in vivo plasmid delivery. JControl Release,1998,56(1-3):259~272
    [239] Kiang T, Wen J, Lim H W, et al. The effect of the degree of chitosandeacetylation on the efficiency of gene transfection. Biomaterials,2004,25(22):5293~5301
    [240] Huang M, Fong C W, Khor E, et al. Transfection efficiency of chitosan vectors:effect of polymer molecular weight and degree of deacetylation. J ControlRelease,2005,106(3):391~406
    [241] Ishii T, Okahata Y, Sato T. Mechanism of cell transfection withplasmid/chitosan complexes. Biochim Biophys Acta,2001,1514(1):51~64
    [242] Romoren K, Pedersen S, Smistad G, et al. The influence of formulationvariables on in vitro transfection efficiency and physicochemical properties ofchitosan-based polyplexes. Int J Pharm,2003,261(1-2):115~127
    [243] Koping-Hoggard M, Tubulekas I, Guan H, et al. Chitosan as a nonviral genedelivery system. Structure-property relationships and characteristics comparedwith polyethylenimine in vitro and after lung administration in vivo. Gene Ther,2001,8(14):1108~1121
    [244] Thanou M, Florea B I, Geldof M, et al. Quaternized chitosan oligomers as novelgene delivery vectors in epithelial cell lines. Biomaterials,2002,23(1):153~159
    [245] Germershaus O, Mao S, Sitterberg J, et al. Gene delivery using chitosan,trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan blockcopolymers: establishment of structure-activity relationships in vitro. J ControlRelease,2008,125(2):145~154
    [246] Yu H, Chen X, Lu T, et al. Poly(L-lysine)-graft-chitosan copolymers: synthesis,characterization, and gene transfection effect. Biomacromolecules,2007,8(5):1425~1435
    [247] Lee D, Zhang W, Shirley S A, et al. Thiolated chitosan/DNA nanocomplexesexhibit enhanced and sustained gene delivery. Pharm Res,2007,24(1):157~167
    [248] Kim T H, Ihm J E, Choi Y J, et al. Efficient gene delivery by urocanicacid-modified chitosan. J Control Release,2003,93(3):389~402
    [249] Park I K, Kim T H, Park Y H, et al. Galactosylated chitosan-graft-poly(ethyleneglycol) as hepatocyte-targeting DNA carrier. J Control Release,2001,76(3):349~362
    [250] Park I K, Park Y H, Shin B A, et al. Galactosylated chitosan-graft-dextran ashepatocyte-targeting DNA carrier. J Control Release,2000,69(1):97~108
    [251] Chan P, Kurisawa M, Chung J E, et al. Synthesis and characterization ofchitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targetedgene delivery. Biomaterials,2007,28(3):540~549
    [252] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films. Science,2004,306(5696):666~669
    [253] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science,2008,321(5887):385~388
    [254] Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for deliveryof water-insoluble cancer drugs. J Am Chem Soc,2008,130(33):10876~10877
    [255] Mankoff D A. A definition of molecular imaging. J Nucl Med,2007,48(6):18N,21N
    [256] Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature,2008,452(7187):580~589
    [257] Sun X, Liu Z, Welsher K, et al. Nano-Graphene Oxide for Cellular Imaging andDrug Delivery. Nano Res,2008,1(3):203~212
    [258] Chen M L, Liu J W, Hu B, et al. Conjugation of quantum dots with graphene forfluorescence imaging of live cells. Analyst,2011,136(20):4277~4283
    [259] Guo C, Book-Newell B, Irudayaraj J. Protein-directed reduction of grapheneoxide and intracellular imaging. Chem Commun (Camb),2011,47(47):12658~12660
    [260] Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumoruptake and efficient photothermal therapy. Nano Lett,2010,10(9):3318~3323
    [261] Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-termbiodistribution, and toxicology of PEGylated graphene in mice. ACS Nano,2011,5(1):516~522
    [262] Massoud T F, Gambhir S S. Molecular imaging in living subjects: seeingfundamental biological processes in a new light. Genes Dev,2003,17(5):545~580
    [263] Alauddin M, Song J K, Choe J C, et al. Infrared predissociation of ternarycluster cations: the solvent effects on the branching ratio. Phys Chem ChemPhys,2012,14(11):3864~3871
    [264] Hong H, Yang K, Zhang Y, et al. In vivo targeting and imaging of tumorvasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano,2012,6(3):2361~2370
    [265] Zhang Y, Hong H, Engle J W, et al. Positron emission tomography and opticalimaging of tumor CD105expression with a dual-labeled monoclonal antibody.Mol Pharm,2012,9(3):645~653
    [266] Zhang Y, Hong H, Engle J W, et al. Positron Emission Tomography andNear-Infrared Fluorescence Imaging of Vascular Endothelial Growth Factorwith Dual-Labeled Bevacizumab. Am J Nucl Med Mol Imaging,2012,2(1):1~13
    [267] Gollavelli G, Ling Y C. Multi-functional graphene as an in vitro and in vivoimaging probe. Biomaterials,2012,33(8):2532~2545
    [268] Zhang L, Xia J, Zhao Q, et al. Functional graphene oxide as a nanocarrier forcontrolled loading and targeted delivery of mixed anticancer drugs. Small,2010,6(4):537~544
    [269] Bao H, Pan Y, Ping Y, et al. Chitosan-functionalized graphene oxide as ananocarrier for drug and gene delivery. Small,2011,7(11):1569~1578
    [270] Huang P, Xu C, Lin J, et al. Folic Acid-conjugated Graphene Oxide loaded withPhotosensitizers for Targeting Photodynamic Therapy. Theranostics,2011,1:240~250
    [271] Zhang W, Guo Z, Huang D, et al. Synergistic effect of chemo-photothermaltherapy using PEGylated graphene oxide. Biomaterials,2011,32(33):8555~8561
    [272] Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale,2011,3(3):1252~1257
    [273] Zhang L, Lu Z, Zhao Q, et al. Enhanced chemotherapy efficacy by sequentialdelivery of siRNA and anticancer drugs using PEI-grafted graphene oxide.Small,2011,7(4):460~464
    [274] Geim A K, Novoselov K S. The rise of graphene. Nat Mater,2007,6(3):183~191
    [275] Eda G, Chhowalla M. Graphene-based composite thin films for electronics.Nano Lett,2009,9(2):814~818
    [276] Yuan Z L, Guan Y J, Chatterjee D, et al. Stat3dimerization regulated byreversible acetylation of a single lysine residue. Science,2005,307(5707):269~273
    [277] Ogris M, Walker G, Blessing T, et al. Tumor-targeted gene therapy: strategiesfor the preparation of ligand-polyethylene glycol-polyethylenimine/DNAcomplexes. J Control Release,2003,91(1-2):173~181
    [278] Menard-Moyon C, Kostarelos K, Prato M, et al. Functionalized carbonnanotubes for probing and modulating molecular functions. Chem Biol,2010,17(2):107~115
    [279] Godbey W T, Wu K K, Mikos A G. Poly(ethylenimine) and its role in genedelivery. J Control Release,1999,60(2-3):149~160
    [280] Tang M X, Szoka F C. The influence of polymer structure on the interactions ofcationic polymers with DNA and morphology of the resulting complexes.Gene Ther,1997,4(8):823~832
    [281] Bromberg J F, Wrzeszczynska M H, Devgan G, et al. Stat3as an oncogene. Cell,1999,98(3):295~303
    [282] Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene,2000,19(21):2474~2488
    [283] Chen C L, Hsieh F C, Lieblein J C, et al. Stat3activation in human endometrialand cervical cancers. Br J Cancer,2007,96(4):591~599
    [284] Okazaki H, Tokumaru S, Hanakawa Y, et al. Nuclear translocation ofphosphorylated STAT3regulates VEGF-A-induced lymphatic endothelial cellmigration and tube formation. Biochem Biophys Res Commun,2011,412(3):441~445
    [285] Xie T X, Wei D, Liu M, et al. Stat3activation regulates the expression of matrixmetalloproteinase-2and tumor invasion and metastasis. Oncogene,2004,23(20):3550~3560
    [286] Sherr C J. Mammalian G1cyclins. Cell,1993,73(6):1059~1065
    [287] Kimura S, Maekawa T, Hirakawa K, et al. Alterations of c-myc expression byantisense oligodeoxynucleotides enhance the induction of apoptosis in HL-60cells. Cancer Res,1995,55(6):1379~1384
    [288] Evan G I, Wyllie A H, Gilbert C S, et al. Induction of apoptosis in fibroblasts byc-myc protein. Cell,1992,69(1):119~128
    [289] Citro G, D'Agnano I, Leonetti C, et al. c-myc antisense oligodeoxynucleotidesenhance the efficacy of cisplatin in melanoma chemotherapy in vitro and innude mice. Cancer Res,1998,58(2):283~289
    [290] D'Agnano I, Valentini A, Fornari C, et al. Myc down-regulation inducesapoptosis in M14melanoma cells by increasing p27(kip1) levels. Oncogene,2001,20(22):2814~2825
    [291] Wyllie A H. Apoptosis: an overview. Br Med Bull,1997,53(3):451~465
    [292] Jacobson M D, Burne J F, King M P, et al. Bcl-2blocks apoptosis in cellslacking mitochondrial DNA. Nature,1993,361(6410):365~369
    [293] Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependentformation of Apaf-1/caspase-9complex initiates an apoptotic protease cascade.Cell,1997,91(4):479~489
    [294] Yin X M, Oltvai Z N, Korsmeyer S J. BH1and BH2domains of Bcl-2arerequired for inhibition of apoptosis and heterodimerization with Bax. Nature,1994,369(6478):321~323
    [295] Leiter U, Schmid R M, Kaskel P, et al. Antiapoptotic bcl-2and bcl-xL inadvanced malignant melanoma. Arch Dermatol Res,2000,292(5):225~232
    [296] Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases. Nature,2000,407(6801):249~257
    [297] Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor(VEGF) and its receptors. FASEB J,1999,13(1):9~22
    [298] Dvorak H F. Vascular permeability factor/vascular endothelial growth factor: acritical cytokine in tumor angiogenesis and a potential target for diagnosis andtherapy. J Clin Oncol,2002,20(21):4368~4380
    [299] Gitay-Goren H, Halaban R, Neufeld G. Human melanoma cells but not normalmelanocytes express vascular endothelial growth factor receptors. BiochemBiophys Res Commun,1993,190(3):702~708
    [300] Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumoruptake and efficient photothermal therapy. Nano Lett,2010,10(9):3318~3323
    [301] Li Y, Liu Y, Fu Y, et al. The triggering of apoptosis in macrophages by pristinegraphene through the MAPK and TGF-beta signaling pathways. Biomaterials,2012,33(2):402~411
    [302] Robinson J T, Tabakman S M, Liang Y, et al. Ultrasmall reduced grapheneoxide with high near-infrared absorbance for photothermal therapy. J Am ChemSoc,2011,133(17):6825~6831
    [303] Howell S M, Molgaard H V, Greaves M F, et al. Localisation of the genecoding for the haemopoietic stem cell antigen CD34to chromosome1q32. HumGenet,1991,87(5):625~627
    [304] Cohen P R, Rapini R P, Farhood A I. Dermatopathologic advances in clinicalresearch. The expression of antibody to CD34in mucocutaneous lesions. off.Dermatol Clin,1997,15(1):159~176
    [305] Miyachi K, Fritzler M J, Tan E M. Autoantibody to a nuclear antigen inproliferating cells. J Immunol,1978,121(6):2228~2234
    [306] Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer withmany partners. J Cell Sci,2003,116(Pt15):3051~3060
    [307] Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-termbiodistribution, and toxicology of PEGylated graphene in mice. ACS Nano,2011,5(1):516~522
    [308] Yang K, Gong H, Shi X, et al. In vivo biodistribution and toxicology offunctionalized nano-graphene oxide in mice after oral and intraperitonealadministration. Biomaterials,2013,34(11):2787~2795
    [309] Mullick C S, Lalwani G, Zhang K, et al. Cell specific cytotoxicity and uptake ofgraphene nanoribbons. Biomaterials,2013,34(1):283~293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700