运输机超低空空投大气扰动补偿控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运输机超低空空投技术能显著提高空军远程机动能力和后勤保障速度,对于军队应对多种安全威胁、完成多样化军事任务以及维护不断扩展的国家利益具有重要意义。由于运输机超低空空投属于C种飞机阶段,需要极高精度的航迹跟踪和姿态保持。空投过程中,运输机具有如下几个特点:一是速度低,气动特性大大降低,抗扰动能力较弱;二是货物对飞机的扰动剧烈,飞机重心发生变化;三是随着飞机高度下降,飞机遭遇紊流、低空风切变等大气扰动的概率会明显增加。
     本文通过研究与仿真,针对大气扰动对空投任务的影响,创新性地提出了扰动补偿控制方法。首先给出了研究飞行控制技术经常采用的三种大气扰动模型:随机紊流模型,离散突风模型和低空风切变模型。然后给出带大气扰动的超低空空投六自由度非线性数学模型,并在此基础上,深入分析了运输机与大气扰动运动的耦合。接着,采用经典控制理论分别设计了超低空空投下滑段、拉平段、空投拉起段的基本控制器和横侧向的基本控制器。在基本控制器基础上分别设计了大气扰动的纵向和横侧向补偿控制器。最后,引入模糊控制理论,设计了超低空空投大气扰动补偿的模糊控制器。
     通过仿真分析得出结论,大气扰动补偿的经典控制器和模糊控制器均能显著补偿大气扰动的影响。在受到一定强度大气扰动情况下,运输机的航迹和姿态均能够达到超低空空投性能的严格要求。两种控制器的比较可以看出,模糊控制器具有更好的鲁棒性,航迹跟踪效果也更精确。
The TransportAircraft Ultra-Low Altitude Airdrop (ULAA) Technology can observably enhance the capability of long-range mobility and the speed of logistics support of Air Force. It still has realistic significances for the military to respond to various security threats, accomplish diverse military tasks and protect the expanding national interests. Because the transport aircraft flies in C phase while Ultra-Low Altitude Airdrop, high-accuracy flightpath tracking and attitude hold are required. During the course of Ultra-Low Altitude Airdrop, the transport aircraft has the following characteristics: First, the aerodynamic performance is not excellent any more and the capability of disturbance rejection declines. Second, the cargo’s impact is very violent and the center of gravity of the aircraft shifts. Third, the probability of encountering turbulence, wind shear increases observably.
     Via research and simulations, disturbance compensation control methods are presented innovatively to slow down the effect caused by atmospheric disturbance. First of all, stochastic turbulence model, discrete gust model and low-level wind shear model which are usually used in flight control research are presented. Then the nonlinear six-degrees-of-freedom model of transport aircraft ULAA with atmospheric disturbance is provided. Based on this model, coupling movement of aircraft and disturbance is deeply analysed. After this, ULAA glide, flare, airdrop-pull up basic controllers and lateral basic controllers are designed using classical control theory. Based on the basic controllers, the longitudinal and lateral atmospheric disturbance compensating conrollers are designed. At last, fuzzy control theory is introduced and the ULAA longitudinal and lateral atmospheric disturbance compensating fuzzy conrollers are designed.
     After analysing the results of simulations, conclusions are presented that both classical controllers and fuzzy controllers can compensate the effects of atmospheric disturbance. The flight path and attitude could meet the exact demands of ULAA while the transport aircraft is disturbed by different kinds of atmosphere. Compared with each other, fuzzy controllers have stronger robustness and higher flight path tracking accuracy.
引文
[1] Leonard R, Tavernetti. The C-17: modern airlift technology. Aerospace Design Conference, 1992, AIAA-92-1262.
    [2] Kowal B, Scherz C, Quinlivan. C-17 flight control system. Digital Avionics Systems Conference, 1992 IEEE/AIAA 11th:1-6.
    [3]钟近曦,李小卫,杨天星.从C-17飞机的设计需求与能力看未来运输机的发展趋势.航空制造技术, 2005, 9: 52-57.
    [4] Arnold. The development of ultra low altitude dropping of heavy stores. AIAA Aerodynamic Deceleration on Systems Conference, 1966, p237-241.
    [5] Muhammad Abdullah Ghazi. Gust effect on fighter aircraft during manoeuvring flight. AIAA Atmospheric Flight Mechanics Conference,1994, p190-196.
    [6] Karpel, Moulin, Presente. Dynamic gust loads analysis for transport aircraft with nonlinear control effects. 49th AIAA Structures, Structural Dynamics and Materials Conference, 2008, AIAA 2008-1994.
    [7] Mark Rennie. Gust alleviation using trailing-edge flaps. 37th AIAA Aerospace Sciences Meeting and Exhibit, 1999, AIAA 99-0649.
    [8] Mutuel Laurence, Douglas Randal. AIAA Guidance, Navigation and Control Conference, 1997, AIAA-97-3623.
    [9] D Gangsaas, U Ly, Norman. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology. AIAA 19th Aerospace Sciences Meeting, 1981, AIAA-81-0021.
    [10] Malaek, Hojjat A Izadi. Flight envelope expansion in landing phase using classic, intelligent, and adaptive controllers. Journal of Aircraft,2006, 43(1): 91-101.
    [11]唐尧文.运输机超低空空投姿态控制与航迹跟踪研究, [硕士论文].南京:南京航空航天大学, 2010.
    [12]王永华.超低空空投飞行性能评估技术研究, [硕士论文].南京:南京航空航天大学, 2010.
    [13]杨雪松,王乘,李振环.超低空空投过程的仿真.华中科技大学学报(自然科学版), 2003, 31(4):108-110.
    [14]梁军,李科,朱齐丹.复杂大气环境下的飞行研究.机电设备, 2008, 2: 48-51.
    [15]吕新波,张欣,刘振钦.农林飞机超低空飞行大气紊流影响研究.飞行力学, 2008, 26(2): 64-67.
    [16]张军红,李振水,詹孟权. LQG控制理论在阵风载荷减缓系统中的应用.飞行力学, 2007, 25(2): 61-64.
    [17]史忠科,吴方向,王蓓.鲁棒控制理论,北京:国防工业出版社, 2003.
    [18]刘世前,胡金春,沈勇.基于协方差配置的飞机阵风减缓与乘坐品质控制.清华大学学报(自然科学版), 2007, 47(7): 1201-1203,1207.
    [19]鲁道夫·布罗克豪斯.飞行控制,北京:国防工业出版社, 1999.
    [20]郭玲.强扰动下飞翼飞机着陆控制技术研究, [硕士学位论文].南京:南京航空航天大学, 2009.
    [21]空军第八研究所,航空工业部六三〇所. GJB185-86,有人驾驶飞机(固定翼)飞行品质, 1986.
    [22]吴森堂,费玉华.飞行控制系统,北京:北京航空航天大学出版社, 2005.
    [23]张明廉.飞行控制系统,北京:航空工业出版社, 1994.
    [24]姚俊,马松辉. Simulink建模与仿真,西安:西安电子科技大学出版社, 2002.
    [25]陈少白,谭光兴,毛宗源.基于一种人工免疫算法的PID参数优化.武汉科技大学学报(自然科学版), 2006, 29(3): 313-315.
    [26] Biju Prasad B, S Pradeep. Automatic landing system design using feedback linearization method. AIAA Infotech@Aerospace 2007 Conference and Exhibit, 2007, AIAA 2007-2733.
    [27] Shyh Pyng Shue, Ramesh K. Agarwal, Yao Huang Kuo. Design of automatic landing systems using mixed H 2 /H∞control. 36th Aerospace Sciences Meeting and Exhibit, 1997,AIAA 98-0501.
    [28] Shashiprakash Singh, Radhakant Padhi. Automatic landing of unmanned aerial vehicles using dynamic inversion. Proceeding of the International Conference on Aerospace Science and Technology, 2008, INCAST 2008-082.
    [29]北京航空航天大学.一种小型无人机自动着陆拉平控制方法及其装置,中华人民共和国,发明专利, 200810241173.7, 2009年5月27日.
    [30]刘曙光,魏俊民,竺志超.模糊控制技术,北京:中国纺织出版社, 2001.
    [31]李少远,王景成.智能控制,北京:机械工业出版社, 2009.
    [32]曾光奇,胡均安,王东.模糊控制理论与工程应用,武汉:华中科技大学出版社, 2006.
    [33]赵明旺,王杰.智能控制,武汉:华中科技大学出版社, 2010.
    [34]李国勇.智能控制及其MATLAB实现,北京:电子工业出版社, 2005.
    [35]马小娟.特征结构配置方法在飞控系统设计中的应用, [硕士学位论文].西安:西北工业大学, 2006.
    [36]潘常春,陈欣.基于鲁棒特征结构配置的无人机直接侧力控制.飞行力学, 2004, 22(3): 84-87.
    [37] Chin Tang Weng. Analysis of dynamic ground effect for a jet transport in crosswind. AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2004, AIAA 2004-5066.
    [38]钱承山,吴庆宪.非线性系统模糊平滑切换多模型控制.山东大学学报, 2007, 37(3): 31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700