无轴承异步电机非线性解耦控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无轴承异步电机结合了异步电机和磁轴承的特点,既可产生驱动负载的电磁转矩,又能产生支承转子的径向悬浮力,其潜在的应用价值和复杂的运行控制已成为目前高速交流传动领域一个新的研究方向。针对无轴承异步电机非线性、强耦合、多变量的特点,本文在国家自然科学基金(60674095、61174055)等项目的支持下,以无轴承异步电机的非线性解耦控制为研究重点,研究了无轴承异步电机的数学模型、基于转矩绕组转子磁场定向的无轴承异步电机控制方法、基于逆系统方法的无轴承异步电机非线性内模控制策略以及基于支持向量机α阶逆系统方法的无轴承异步电机解耦控制方法,设计了无轴承异步电机的数字控制系统。
     介绍了无轴承异步电机的结构、实现方法和径向悬浮力的产生原理,推导了径向悬浮力和旋转部分的数学模型,建立了转子运动方程。并通过有限元仿真,证明了所设计的无轴承异步电机结构和性能的正确性。
     针对无轴承异步电机电磁转矩和径向悬浮力之间的强耦合特性,研究了基于转矩绕组转子磁场定向的无轴承异步电机控制策略。为解决转子磁场定向控制系统转子径向悬浮力之间存在耦合的问题,本文在以往基于转矩绕组转子磁场定向控制的无轴承异步电机系统基础上,加入悬浮控制绕组转子电流的补偿量,使得改进的系统具有更好的悬浮特性。
     为了实现无轴承异步电机电磁转矩和悬浮力之间的动态解耦控制,本文采用基于逆系统方法的非线性内模控制策略。在运用逆系统方法将无轴承异步电机解耦成转子径向位移、转速和转子磁链四个独立的伪线性子系统后,对伪线性系统引入内模控制策略,保证了控制系统的鲁棒性和抗干扰能力。
     针对建立无轴承异步电机的精确数学模型比较困难的问题,利用支持向量机来辨识无轴承异步电机的逆模型,并将它串联在原系统之前,接着采用线性系统综合的方法对无轴承异步电机进行复合控制。仿真试验结果表明,支持向量机α阶逆系统方法不仅能够实现无轴承异步电机转速子系统和转子径向位移子系统之间的动态解耦控制,而且较一般的逆系统方法鲁棒性更强,跟踪精度更高。
     本文设计了以TMS320F2812数字信号处理器为核心的无轴承异步电机数字控制系统,包括硬件电路设计和软件编程。硬件电路设计由主电路、驱动电路、保护电路、检测电路和故障信号处理电路等构成。软件部分则基于无轴承异步电机转子磁场定向控制策略,介绍了数字控制系统的软件结构,并给出了各个程序模块详细的流程图。
The bearingless induction motor, which combines characteristics of induction motor and magnetic bearings, can provide both torque and radial suspension forces. The potential value and the complex operation control has become a new research field of the high-speed AC drive. Because the bearingless induction motor is a nonlinear, multi-variable and strong-coupled system, this dissertation focuses on the nonlinear decoupling control of the motor supported by the National Natural Science Foundation under grant 60674095 and 61174055. The mathematical model of the bearingless induction motor, the rotor flux oriented control method for the torque windings and the nonlinear internal model control strategy based on inverse system theory are studied. Besides, the nonlinear decoupling control strategy based on support vector machine (SVM)α-th order inverse system is also proposed, and the digital control system of the bearingless induction motor is designed.
     The structure, implementation and the principle of the radial suspension force of the bearingless motor is introduced, the mathematical model of the suspension force and the rotation part of the motor is derived, and the motion equations are set up. By finite element simulation, the structure and performance of the bearingless motor are verified.
     To realize the decoupling control of electromagnetic torque and radial suspension force of the bearingless induction motor, the rotor flux oriented controller for the drive control system is utilized. However, in the control algorithm based on rotor flux orientation of torque windings, coupling still exists between the radial suspension forces. A novel rotor flux oriented control system is proposed in which the rotor currents generated by the suspension control windings are taken into account. So the improved rotor flux oriented control system has better suspension characteristic than the previous one.
     In this dissertation, a new internal model control (IMC) strategy based on inverse system theory is proposed to realize the dynamic decoupling control between torque and suspension force for bearingless induction motor. Inverse system method is used to decouple the original nonlinear system into four independent pseudo-linear subsystems, that is, two radial displacement subsystems, a speed subsystem and a rotor flux subsystem. Then, the internal model control method is introduced to the four pseudo-linear subsystems to ensure the robustness and anti-jamming ability of the closed-loop system.
     Since the accurate mathematical description of the bearingless induction motor is difficult to acquire, SVM regression method is used to identify the inverse model of the bearingless induction motor. By cascading the inverse model with the original one, the nonlinear bearingless induction motor system is decoupled. Then, linear control system techniques are applied to the linear subsystems to synthesize and simulation. The results show that the dynamic decoupling control among the speed subsystem and the rotor displacement subsystems can realized by SVMα-th order inverse system. Besides, the SVMα-th order inverse system has better robustness and higher tracking accuracy than the inverse system method.
     A digital control system for real-time control is designed on DSP (TMS320F2812) which includes hardware design and software programming. The hardware circuits are composed of the the main circuit, the drive circuit, the protection circuits, the test circuits, the fault signal processing circuit and so on. In the software part, based on rotor flux oriented control of the bearingless induction motor, the software architecture of the digital control system is given and the detailed flow charts of all program modules are introduced.
引文
[1]R. Bosch. Development of a bearingless motor [C]//Proc. Int. Conf. Electric Machines (ICEM'88),1988:373-375
    [2]P. K. Hermann. A radial active magnetic bearing [P]. London Patent:No.1 478 868. 1973-10-20
    [3]P. K. Hermann. A radial active magnetic bearing having a rotating drive [P]. London Patent: No.1 500 809.1974-02-09
    [4]P. Meinke, G. Flachenecker. Electromagnetic drive assembly for rotary bodies using a magnetically mounted rotor [P]. United States Patent:No 3 988 658.1974-07-29
    [5]A. Chiba, T. Deido, T. Fukao, et al. An analysis of bearingless AC motors [J]. IEEE Trans. on Energy Conver,1994,9(1):61-68
    [6]R. Schoeb, J. Bichsel. Vector control of the bearingless motor[C]//Proc.4th Int. Symp. Magnetic Bearings, Zurich, Switzerland.1994:327-332
    [7]J. Bichsel. Beitraege zum lagerlosen elektromotor [D]. Schweiz:Eidgenoessische Technische Hochschule Zuerich,1990
    [8]A. Chiba, K. Chida, T. Fukao. Principles and characteristics of a reluctance motor with windings of magnetic bearing [C]//Proc. Int. Power Electron. Conf. Tokyo,1990:919-926
    [9]Y. Okada. Levitation control of permanent magnet type rotating motor [C]//Proc. of Symposium on Dynamics of Electro Magnetic Force. Tokyo,1992:251-256
    [10]J. Zhou, K. J. Tseng. A disk-type bearingless motor for use as satellite momentum-reaction wheel[C]//IEEE Annual Power Electronics,2002,4(s):1971-1978
    [11]K. Nenninger, W. Amrhein, S. Silber, G. Trauner. Bearingless single-phase PM motor with low-cost rotary angle sensor[C]//Proc. of 6th International Symposium on Magnetic Suspension Technology. Turin, Italien,2001
    [12]A. O. Salazar, A. Chiba, T. Fukao. A review of developments in bearingless Motors [C]//Proc. of the 7th International Symposium on Magnetic Bearings. Zurich,2000:335-4001
    [13]Pascal N. Boesch, N. Barletta. High power bearingless slice motor for bearingless canned pumps[C]//Proc. of 9th International Symposium on Magnetic Bearings, Kentucky, USA, August,2004
    [14]A. Chiba, M. Hanazawa, T. Fukao, et al. Effects of magnetic saturation on radical force of bearingless synchronous reluctance motors [J]. IEEE Trans. on Industry Applications,1996, 32(2):354-362
    [15]M. Ooshima, A. Chiba, T. Fukao. Characteristics of a permanent magnet type bearingless motor [J]. IEEE Trans. on Industrial Application,1996,32(2):363-370
    [16]M. Ooshima, S. Miyazawa, A. Chiba, et al. Performance evaluation and test results of a 11, OOOr/min,4kW surface-mounted permant magnet-type bearingless motor [C]//Proc. of 7th International Symposium on Magnetic Bearings. ETH Zurich,2000:377-382
    [17]Lyndon S. Stephens, H. Chin. Robust stability of the Lorentz-type self bearing servomotor [C]//Proc. of 8th International Symposium on Magnetic Bearings. Mito, Japan,2002:27-33
    [18]Zhaohui Ren, Lyndon S. Stephens. Performance of a six degree-of-freedom precision pointing test rig using slotless self-bearing motors[C]//Proc. of 9th International Symposium on Magnetic Bearings. Kentucky, USA, August,2004
    [19]Wang Baoguo, Wang Fengxiang. Modeling and analysis of levitation force considering air-gap eccentricity in a bearingless induction motor [C]//Proc. of the Fifth International Conference on Electrical Machine and Systems,2001:934-937
    [20]王风翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算[J].电工技术学报,2002,17(5):6-10
    [21]王宝国,王风翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析[J].中国电机工程学报,2002,2(5):105-108
    [22]邓智泉,张宏荃,王晓琳,等.基于气隙磁场定向的无轴承异步电机非线性解耦控制[J].电工技术学报,2002,17(6):19-24
    [23]Deng Zhiquan, Zhang Hongquan, Wang Xiaoling, et al. Nonlinear decoupling control of the bearingless induction motors based on the airgap motor flux orientation [J]. Chinese Journal of Aeronautics,2002,15(1):38-43
    [24]王宇,邓智泉,王晓琳.无轴承异步电机的直接转矩控制技术研究[J].中国电机工程学报,2008,28(21):80-84
    [25]贺益康,年珩,阮秉涛.感应型无轴承电机的优化气隙磁场定向控制[J].中国电机工程学报,2004,24(6):116-121
    [26]年珩,贺益康,秦峰,等.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报,2004,24(11):101-105
    [27]年珩,贺益康,黄雷.内插式无轴承电机转子位置/位移综合自检测[J].中国电机工程学报,2007,27(9):52-58
    [28]孙玉坤,任元,黄永红.磁悬浮开关磁阻电机悬浮力与旋转力的神经网络逆解耦控制[J].中国电机工程学报,2008,28(9):81-85
    [29]张亮,孙玉坤.基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制[J].中国电机工程学报,2006,26(19):121-126
    [30]刘国海,孙上坤,张浩,等.基于神经网络逆系统的磁悬浮开关磁阻电动机的解耦控制[J].电工技术学报,2005,20(9):39-43
    [31]刘贤兴,董磊,范文进,等.五自由度无轴承异步电机的α阶逆系统解耦控制[C]//Proc.of the 26th Chinese Control Conference, Zhangjiajie,2007:262-266
    [32]董磊,刘贤兴,孙宇新.无轴承异步电机径向悬浮力的微分几何变结构解耦控制 [C]//Proc. of the 26th Chinese Control Conference, Zhangjiajie,2007:17-21
    [33]张婷婷,朱熀秋.无轴承同步磁阻电机逆系统的解耦控制[J].控制理论与应用,2011,28(4):545-550
    [34]高为炳.非线性系统导论[M].北京:科学出版社,1988
    [35]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2005
    [36]邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103
    [37]刘贤兴,卜言柱,胡育文,等.基于精确线性化解耦的永磁同步电机空间矢量调制系统[J].中国电机工程学报,2007,27(30):55-59
    [38]查晓明,张茂松,孙建军.链式D-STATCOM建模及其状态反馈精确线性化解耦控制[J].中国电机工程学报,2010,30(28):107-113
    [39]张兴华,戴先中.基于逆系统方法的感应电机调速控制系统[J].控制与决策,2000,15(6):708-711
    [40]李擎,杨立永,李正熙,等.异步电动机定子磁链与电磁转矩的逆系统解耦控制方法[J].中国电机工程学报,2006,26(6):146-150
    [41]葛友,李春文,孙政顺.逆系统方法在电力系统综合控制中的应用[J].中国电机工程学报,2001,21(4):1-4
    [42]张腾,戴先中,陆翔.基于逆系统方法的汽轮发电机综合控制器[J].电力系统自动化,2001,25(6):27-30
    [43]O. Ichikawa, C. Michioka, A. Chiba, et al. A decoupling control method of radial rotor positions in synchronous reluctance type bearingless motors [C]//Proc. Int. Power Elect. Conf. (IPEC-Yokohamo'95), Japan,1995:346-351
    [44]T. Takenaga, Y. Kubota, A. Chiba, et al. A principle and a design of a consequent-pole bearingless motor [C]//Proc. of 8th International Symposium on Magnetic Bearings, Mito, Japan,2002:259-264
    [45]T. Fujishiro, R. Hanawa, Y. Sakata, et al. An analysis of an induction bearingless motor with a squirrel-cage rotor[C]//Proc. of 8th International Symposium on Magnetic Bearings, Mito, Japan,2002:253-258
    [46]T. Suzuki, A. Chiba, A. Rahman, et al. An air-gap-flux-oriented vector controller for stable operation of bearingless induction motors [J]. IEEE Trans. on Industry Applications,2000, 36(4):1069-1076
    [47]曹建荣,虞烈,谢友柏.磁悬浮电动机状态反馈线性化控制[J].中国电机工程学报,2001,21(9):22-26
    [48]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1998
    [49]A. Chiba, T. Fukao, M. A. Rahman. Vibration suppression of a flexible shaft with a simplified bearingless induction motor drive [J]. IEEE Trans. on Industry Applications,2008, 44(3):745-752
    [50]邓智泉,严仰光.无轴承交流电机的基本理论和研究现状[J].电工技术学报,2000,15(2):29-35
    [51]邱家俊.机电耦联动力系统的振动[M].北京:科学出版社,1996
    [52]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989
    [53]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2006
    [54]李华德.交流调速控制系统[M].北京:电子工业出版社,2003
    [55]T. Hiromi, T. Katou, A. Chiba, et al. A novel magnetic suspension-force compensation in bearingless induction-motor drive with squirrel-cage rotor [J], IEEE Trans. on Industry Applications,2007,43(1):66-76
    [56]X. Dai, J. Liu, C. Feng, et al. Neural network α-th order inverse inverse system method for the control of nonlinear continuous systems [J], IEE Proc. Control Theory Appl.,1998, 145(6):519-522
    [57]X. Dai, D. He, X. Zhang, et al. MIMO system invertibility and decoupling control strategies based on ANN a th-order inversion [J], IEE Proc. Control Theory Appl.,2001,148(2): 125-136
    [58]X. Dai, D. He, T. Zhang, et al. ANN generalized inversion for the linearization and decoupling control of nonlinear systems [J], IEE Proc. Control Appl.,2003,150(3):267-277
    [59]W. Wang, X. Dai. An Interactor algorithm for invertibility in general nonlinear systems[C]//Proc. of the Fifth IEEE World Congress on Intelligent Control and Automation, Hangzhou, P.R.China,2004:59-63
    [60]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991
    [61]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005
    [62]戴先中,刘国海,张兴华.交流传动神经网络逆控制[M].北京:机械工业出版社,2007
    [63]Tong H. Lee, Teck S. Low, Abdullah Al-Mamun, et al. Internal model control(IMC) approach for designing disk drive servo-controller [J], IEEE Trans. On Industrial Electronics, 1995,42(3):248-256
    [64]Isabelle Rivals, Leon Personnaz. Nonlinear internal model control using neural networks: application to processes with delay and design issues [J], IEEE Transactions on Neural Networks,2000,11(1):80-90
    [65]Qing-Guo Wang, Qiang Bi, Yong Zhang. Partial internal model control [J]. IEEE Trans. on Industrial Electronics,2001,48(5):976-982
    [66]Reda Boukezzoula, Sylvie Galichet, Laurent Foulloy. Nonlinear internal model control: application of inverse model based fuzzy control [J],2003,11(6):814-829
    [67]Massimo Canale, Lorenzo Fagiano, Antonella Ferrara, et al. Comparing internal model control and sliding-mode approaches for vehicle yaw control [J], IEEE Trans. on Intelligent Transportation Systems,2009,10(1):31-41
    [68]Jiancheng Fang, Yuan Ren. High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method [J], IEEE Trans, on Industrial Electronics,2011,58(9):4331-4342
    [69]周涌,陈庆伟,胡维礼.内模控制研究的新发展[J],控制理论与应用,2004,21(3):475-482
    [70]陈庆伟,吕朝霞,胡维礼,等.基于逆系统方法的非线性内模控制[J],自动化学报,2002,28(5):715-721
    [71]房方,刘吉臻,谭文.单元机组协调系统的非线性内模控制[J],中国电机工程学报,2004,24(4):195-199
    [72]郭家虎,蔡旭,龚幼民.双馈风力发电系统的非线性解耦控制[J],控制理论与应用,2009,26(9):958-964
    [73]Vapnik V N. Statistical learning theory [M]. New York:Wiley,1998
    [74]Vapnik V N. An overview of statistical learning theory [J]. IEEE Trans, on Neural Networks, 1999,10(5):955-999
    [75]Suykens J A K. Support vector machines:a nonlinear modeling and control perspective [J]. European Journal of Control,2001,7(2-3):311-327
    [76]Suykens J A K. Nonlinear modeling and support vector machines[C]//IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary,2001:287-294
    [77]Liu San, Ming Ge. An effective learning approach for nonlinear system modeling[C]//Proc. of the 2004 IEEE International Symposium on Intelligent Control, Taipei, Taiwan,2004: 73-77
    [78]M E. Mavroforakis, S Theodoridis. A geometric approach to support vector machine (SVM) classification [J]. IEEE Trans. on Neural Networks,2006,17(3):671-682
    [79]袁小芳,王耀南,杨辉前.基于支持向量机的非线性逆控制及仿真研究[J],湖南大学学报(自然科学版),2006,33(1):71-74
    [80]钟伟民,皮道映,孙优贤.基于支持向量机的直接逆模型辨识[J],控制理论与应用,2005,22(2):307-3110
    [81]何峻峰,张曾科.基于支持向量机的逆系统离散控制方法[J],清华大学学报(自然科学版),2005,45(1):100-102
    [82]宋夫华,李平.支持向量机α阶逆系统解耦控制方法[J].浙江大学学报(工学版),2007,41(2):226-229
    [83]宋夫华,李平.支持向量机α阶逆系统控制一离散非线性系统[J].浙江大学学报(工学版),2006,40(12):2098-2012
    [84]邓乃扬,田英杰.数据挖掘中的新方法一支持向量机[M].北京:科学出版社,2004
    [85]张学工.关于统计学习理论与支持学习机[J].自动化学报,2000,26(1):32-42
    [86]荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿 真学报,2006,18(11):3204-3208
    [87]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002
    [88]苏奎峰,吕强,耿庆锋,等.TMS320F2812原理与开发[M].北京:电子工业出版社,2005
    [89]徐科军,张瀚,陈智渊TMS320X281xDSP原理与应用[M].北京:北京航空航天大学出版社,2006
    [90]苏奎峰,蔡昭权,吕强,等TMS320X281xDSP应用系统设计[M].北京:北京航空航天大学出版社,2008
    [91]苏奎峰,常天庆TMS320X281xDSP原理及C程序开发[M].北京:北京航空航天大学出版社,2008
    [92]章云,谢莉萍,熊红艳.DSP控制器及其应用[M].北京:机械工业出版社,2001
    [93]林辉,王辉.电力电子技术[M].武汉:武汉工业大学出版社,2002
    [94]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000
    [95]Bimal K. Bose. Modern Power Electronics and AC Drives [M]. Beijing:China Machine Press,2003
    [96]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700