面向预警的一体化强震仪实时嵌入式Linux系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震预警是近二十年来新发展起来的减轻地震损失、降低地震次生灾害、减少人员伤亡的有效手段。其技术核心是从各个环节缩短数据处理所需时间,并结合地震P波传播速度快于破坏性S波和面波传播速度,以及电磁波传播速度远远大于地震波波速的原理,使得在破坏性地震发生后,破坏性地震波到来前,提供数秒至数十秒的预警时间,以便于采取相应应急处理措施。由于地震预警系统对于信息的高度时效性要求,需要从各个环节进行突破,从而缩短整个系统数据处理时间,增加预警时间,减少“盲区”范围。在前端用于实时数据获取的仪器方面,也有许多地方值得改进,如减少实时数据传输网络延迟、缩短数据的传输间隔、为现有绝大部分强震观测台站提供网络数据传输支持、引入数字校正技术、解决时间“跳秒”现象和个别地方GPS天线架设不便的问题等。本文对上述各个环节进行了探讨和研究,并将研究结果应用到了最新研发的一款强震观测仪器内部Linux系统上,形成了一套基于单台仪器的“现地”地震预警系统,相关主要工作概括如下:
     1、在一体化设计的强震仪中引入了数字校正技术。通过采用重力法测试15个不同的位置数据计算加速度计的灵敏度和安装方位角偏差,并将计算结果应用到了嵌入式软件系统中进行实时数据校正,有效提升了实时数据的精度和准确性;在前人工作的基础上,提出了一种新的加速度计温度补偿算法。该算法采用恒温MEMS加速度计输出数据的低频段(10-4Hz)对力平衡加速度计进行实时温度补偿,并在算法实现时采用了MEMS恒温点迁移的方式动态调整恒温MEMS温度,可以拓展仪器的应用范围和降低系统功耗。测试结果表明,经过补偿后的力平衡加速度计的零点漂移水平降至恒温MEMS加速度计的零点漂移水平,大约降低了一到二个量级,水平向的补偿结果好于垂直向。另外,通过低通滤波器的使用,力平衡加速度计的低频段噪声亦有了改善,实现了温度补偿的目标;
     2、提出了一种采用GPS与NTP联合对系统进行授时服务的算法。在GPS信息存在的情况下,整个系统的授时精度可以达到±10μs;在单独使用NTP授时的情况下,系统的授时精度可达到±2ms。系统经过长期的运行测试,结果表明,使用这种算法可以有效解决在单独使用GPS授时服务时出现的“跳秒”现象和个别地方GPS天线架设不便的问题,而且授时精度也能够满足强震观测台站对时间服务的要求;
     3、研究出了新型的实时嵌入式Linux内核数据处理系统,对实时数据流缓存机制和组织管理结构进行了全新设计,将传统以秒为单位获取实时数据流的方式修改为根据用户指定数据帧长度提供内核实时数据流访问服务,有效提升了预警时间,最多可增加0.9s;通过将原来在单独的数据处理芯片上实现的实时FIR滤波和抽取运算移植到ARM9CPU上,与其它的系统功能一起共享CPU,并采用优化后的嵌入式ARM汇编来实现,有效降低了整机系统的成本和负载;
     4、研究出了一种新型的网络实时数据服务方式,即快速数据服务,可以按照100ms量级的数据包格式进行实时数据传输,并设计出了一种新型的实时数据解压缩算法用以解决由于以更低的延时进行数据传输带来的更大的传输数据量的问题。通过与现有世界地震行业应用最广泛的Steim2压缩算法相比,本文设计的压缩算法在各种类型的32位数据压缩方面都具有一定的优势,尤其是在编码长度超过20位后,本文的压缩算法不会出现Steim2算法中发生的数据扩展现象,仍然具有一定的压缩比;
     5、依托汶川主震及其余震的强震动观测数据,统计分析了特征周期τ。与震级的关系、P波前3s位移幅值Pd与PGV的关系以及τc×Pd与震级的关系。统计结果表明,两种预警参数不仅可以单独应用,也可以联合起来进行破坏性地震和非破坏性地震判别,并指出在实际应用时,考虑到我国的建筑物情况,可以适当降低τ。×Pd阈值,以便于更好地应用到我国的地震预警系统中。最后将这些统计结果应用到了一体化强震仪中,研发出了一套实时地震预警数据处理系统,可以直接用于“现地”地震预警。
Earthquake early warning (EEW) is a new technology and new measure for seismic hazard mitigation in last twenty years and has the potential to reduce fatalities, casualties and costs. Its core technology is to shorten the data processing time in all aspects, and combine with the principles that the P-wave (traveling at about6-7km/s) is faster than S-and surface waves (traveling at about3.5km/s or less) and information (which travels at the speed of an electromagnetic signal-about300,000km/s) is much faster than seismic waves (which travel at speeds of the order of a few km/s) so that it can provide few seconds to tens of seconds of advanced warning time for impending ground motions, allowing for mitigation measures to be taken in the short time. In order to obtain high timeliness for earthquake information, we need to break from every aspect for shortening data processing time of the system, increasing lead-time and reducing the range of "blind zone". From the point of view of earthquake instruments for real-time data acquisition, there is plenty of room for improvement, such as decreasing network latency of real-time data transimission, shortening the data transmission interval, providing network support for the vast majority of existing strong-motion observation stations, introducing digital correction, resolving "jumping seconds" phenomenon and problems of inconveniently installing GPS antenna in some places, etc. In this paper, these aspects are studied and the results are applied to a real-time embedded Linux system in the newly developed strong-motion seismograph in which an onsite-warning EEWs based on a single instrument is developed. The contents are summarized as follows:
     1. Digital correction techniques have been introduced into the integrated strong-motion seismograph. Fifteen different position data measured by Gravimetric Method are used to calculate sensitivity and installation azimuth deviation of the accelerometer and the results are applied to the embedded software system for real-time data correction, effectively improving the precision and accuracy of real-time data. On the basis of previous work, a new temperature compensation algorithm for accelerometer has been proposed. This algorithm uses the low frequency band (10-4Hz) of the thermostatic MEMS accelerometer data to compensate the force-balance accelerometer in real-time and MEMS thermostat point migration is adopted to dynamically adjust the thermostatic MEMS temperature, which can expand application range of the instrument and reduce system power. The test results show that the zero-drift level of the compensated force-balanced accelerometer reduces to the level of the thermostatic MEMS accelerometer, approximately one or two orders of the results without compensation, and the compensation results of the two horizontal components are better than the vertical component's. In addition, the low-band noise of the force-balanced accelerometer is also improved through the use of low-pass filter and the goal of temperature compensation is achieved.
     2. An algorithm combining GPS and NTP for system timing service has been proposed. The timing accuracy can reach±10μs when existing GPS information, while using only NTP the timing accuracy can reach±2ms. The results obtained from long-term test show that this algorithm can effectively resolve the "jump second" problem when using only GPS for timing service and the inconvenience settiing up GPS antenna in some places, while timing accuracy can meet the requirements of the strong motion observation stations on time service.
     3. A new real-time data processing system in embedded Linux kernel has been developed, in which the caching mechanism and the organization and management structure have been newly designed and the mode for accessing real-time data stream has been changed from by a packet per second into by the user-specified data frame length, effectively increasing lead time to a maximum of0.9s. By porting the real-time FIR filtering and decimation operations originally realized in a separate data processing chip to the ARM9CPU which is shared with other system functions, and realizing these operations in optimized embedded ARM assembly language, the cost of the whole system and the CPU load have been effectively reduced.
     4. A new method for real-time network data service, namely "rapid data service", has been developed. According to this method, the real-time data can be transferred by the order of100ms. In order to solve the problem of more amount of data transmitted which is caused by the low-latency data transmission, a new algorithm for real-time data compression and decompression has been proposed. By comparing with the Steim2compression algorithm which is most wided used and has the best compression ratio recognized by the world seismic industry now, the newly designed algorithm has advantages in various types of32bit data compression. Especially in the code length of more than20bits, the compression algorithm will not appear the data expansion phenomenon existed in the Steim2algorithm and still has a certain degree of compression ratio.
     5. Based on the strong motion data of Wenchuan earthquake and its aftershocks, we have statistically analyzed the relationship between characteristic period (τc) and magnitude, the relationship between the displacement amplitude of the first3s of P wave (Pd) and the peak ground velocity (PGV), the relationship between τc×Pd and magnitude. The results show that these two early warning parameters can not only be applied independently, but also be joined together to discriminate damaging earthquakes from non-damaging earthquakes. In practical applications, taking into account buildings in China, the threshold of τc×Pd should be appropriately reduced in order to be applied to China's earthquake early warning systems better. Finally, these results have been applied to the integrated strong motion seismograph and a real-time EEW data processing system has been developed which can be directly used for "On-site" EEW.
引文
Andrew N S, Dominic S, Chris W著,沈建华译.2005.ARM嵌入式系统开发——软件设计与优化.北京:北京航空航天大学出版社.
    陈凯,邓明,张启升,等.2009.海底可控源电磁测量电路的Linux驱动程序.地球物理学进展,24(4):1499-1506.
    丁玉美,高西全.2001.数字信号处理.西安:西安电子科技大学出版社.
    杜美琪.1996.加速度计静态标定方法及设备.地震工程与工程振动,16(2):127-132.
    过润秋,郑晓成,王成.2007.加速度计静态温度模型辨识及温度补偿方法研究.西安电子科技大学学报(自然科学版),34(3):438-442.
    胡蝶.2011.MEMS加速度计校正系统研究.[硕士学位论文].湖北:武汉理工大学.
    黄翔,江道灼.2010. GPS同步时钟的高精度守时方案.电力系统自动化,34(18):74-77.
    蒋效雄,刘雨,苏宝库.2010.高精度加速度计重力场标定试验方法.吉林大学学报(工学版),40(1):287-292.
    金星,张红才,李军,等.2012.地震预警震级确定方法研究.地震学报,34(5):593-610.
    Karim Yaghmour著.2003.韩存兵,龚波改译.2004.构建嵌入式Linux系统.北京:中国电力出版社.
    李清梅.2005.石英挠性加速度计温度误差建模与补偿技术研究.[硕士学位论文].北京:国防科学技术大学.
    李文燕,郭涛,徐香菊.2012. MEMS高量程微加速度计温度补偿的设计.计算机测量与控制,20(10):2857-2859.
    李小军,周正华,于海英,等.2010.汶川8.0级地震强震动观测及记录初步分析.http://22 2.222.119.9/selnewxix1.asp?id=747.
    刘桂生,罗新恒,张国育.2003.TDE-324C地震数据采集器的设计.地震地磁观测与研究,24(2):10-17.
    刘攀龙,王国松.2010.石英挠性加速度计的温度补偿研究.弹箭与制导学报,5:233-234.
    陆其鹄,彭克中,易碧金.2007.我国地球物理仪器的进展.地球物理学进展,22(4):1322-1327.
    卢祥弘,陈儒军,何展翔.2010.基于FPGA的恒温晶振频率校准系统的设计.电子技术应用,7:104-107.
    马强.2008.地震预警技术研究与应用.[博士学位论文].哈尔滨:中国地震局工程力学研究所.
    彭朝勇,薛兵.2007.一种嵌入式Linux串口驱动开发模式.微计算机信息,33(5-2):56-57.
    钱朋安,吴仲城,戈瑜,等.2005.一体化三轴线加速度静态标定方法的研究.传感技术学报, 18(1):86-89.
    任春华,潘英俊,李俊峰,等.2007.基于神经网络的石英加速度计的二维时、温漂移补偿.中国惯性技术学报,15(3):366-369.
    宋宝华2008. Linux设备驱动开发详解.北京:人民邮电出版社.
    宋丽君,秦永元.2009.微机电加速度计的六位置标定.传感技术学报,22(11):1557-1561.
    苏中,李擎.2004.基于仿真技术的加速度计标度因数温度补偿.电子测量与仪器学报,18(4):25-28.
    孙枫,曹通.2011.基于Kalman滤波的加速度计十位置标定方法.系统工程与电子技术,33(10):2272-2276.
    万柯松,倪四道,曾祥方,等.2009.汶川大地震中的应急地震学.中国科学D辑:地球科学,39(1):1-10.
    王成.2007.基于DSP的加速度计温度补偿系统设计与研究.[硕士学位论文].陕西:西安电子科技大学.
    王翠芳,杨晓源,宋澄,等.2010.地震数据采集器中的GPS授时技术和校时技术.地震地磁观测与研究,31(1):57-61.
    王翠芳,王松,邵玉平,等.2011. Steim2压缩算法的优点和缺点.国际地震动态,2011(2):14-18.
    王洪体,陈阳,庄灿涛.2004. SEED格式Steim2数据压缩算法在实时地震数据传输中的应用.地震地磁观测与研究,25(4):14-19.
    王洪体,庄灿涛,薛兵,等.2006.数字地震观测网络通讯与记录系统.地震学报,28(5):540-545.
    王洪体.2006.数字地震仪网络化与智能化技术研究.[博士学位论文].北京:中国地震局地球物理研究所.
    王淑娟,黄显林,刘升才.1997.加速度计温度模型的辨识.中国惯性技术学报,5(1):31-36.
    吴荣辉,王建军,续春荣,等.2005.基于IPv6的地震传感器网络及其应用前景展望.国际地震动态,2005(10):31-36.
    邢馨婷,熊磊,赵君辙,等.2008.加速度计温度补偿方法.计测技术,28(1):51-56.
    熊伟.2006.挠性陀螺和加速度计温度特性模型研究及误差补偿技术.[硕士学位论文].陕西:西北工业大学.
    许洋,吴忠良,蒋长胜,等.2008.用前3秒P波估计地震大小的早期预警方法是否适用于短周期记录?——1999年集集地震序列的模拟实验.地震学报,30(2):135-143.
    于湘涛,张兰,郭琳瑞,等.2011.基于小波最小二乘支持向量机的加速度计温度建模和补偿.中国惯性技术学报,19(1):99-102.
    袁一凡.1998.由地震动三要素确定地震动强度(烈度)的研究.国家地震局工程力学研究所.
    张红才,金星,李军,等.2012.地震预警震级计算方法研究综述.地球物理学进展,27(2):464-474.
    张红才,金星,李军,等.2013.地震预警系统研究及应用进展.地球物理学进展,28(2):706-719.
    张丽杰,常佶.2011.一种MEMS加速度计温度模型辨识及温度补偿方法.传感技术学报,24(11):1551-1555.
    张鹏飞,王宇,龙兴武,等.2007.加速度计温度补偿模型的研究.传感技术学报,20(5):1012-1016.
    张献功.2006.高精度GPS同步时钟研究与开发.[硕士学位论文].北京:北京交通大学.
    赵龙.2006.基于NTP协议的网络授时研究.[硕士学位论文].辽宁:辽宁工程技术大学.
    赵英,王旖旎,马严,等.2008.基于NTP的时钟调整策略分析.小型微型计算机系统,29(10):1811-1815.
    郑水明,王岚,黄江,等.2010.汶川地震强震观测.大地测量与地球动力学,28(6):73-75.
    中国地震局.2003.中华人民共和国地震行业标准地震数据交换格式DB/T 2.北京:地震出版社.
    中国地震局监测预报司.2003.数字地震观测技术.北京:地震出版社.
    朱小毅,张妍,娄文宇.2006.地震计远程监控功能接口的实现.地震地磁观测与研究,27(4):77-82.
    130-SMHR. http://www.reftek.com/pdf/130-SMHR.pdf.
    Alcik H, Ozel O, Apaydin N, et al.2009. A study on warning algorithms for Istanbul earthquake early warning system. Geophysical Research Letters,36(5), L00B05.
    Alcik H, Ozel O, Wu Y M, et al.2011. An alternative approach for the Istanbul earthquake early warning system. Soil Dynamics and Earthquake Engineering,31(2):181-187.
    Allen R M, Kanamori H.2003. The potential for earthquake early warning in southern California. Science,300(5620):786-789.
    Allen R M, Brown H, Hellweg M, et al.2009. Real-time earthquake detection and hazard assessment by ElarmS across California. Geophysical Research Letters,36, L00B08. doi:10.1029/2008GL036766.
    Allen R V.1978. Automatic earthquake recognition and timing from single traces. Bulletin of Seismological Society of America,68(5):1521-1532.
    Allen R V.1982. Automatic phase pickers:Their present use and future prospects. Bulletin of the Seismological Society of America,72(6B):225-242.
    Anderson K R.1981. Epicentral location using arrival time order. Bulletin of Seismological Society of America,70(2):541-545.
    Baer M, Kradolfer U.1987. An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America,77(4):1437-1445.
    Basalt. http://www.kinemetrics.com/Uploads/PDFs/basalt.pdf.
    Beravs T, Podobnik J, Munih M.2012. Three-axial accelerometer calibration using Kalman filter covariance matrix for online estimation of optimal sensor orientation. IEEE Transactions on Instrumentation and Measurement,64(9):2501-2511.
    Bose M, Wenzel F, Erdik M.2008. PreSEIS:A neural network-based approach to earthquake early warning for finite faults. Bulletin of the Seismological Society of America,98(1):366-382.
    Bose M, Hauksson E, Solanki K, et al.2009. Real-time testing of the on-site warning algorithm in southern California and its performance during the July 29,2008 MW 5.4 Chino Hills earthquake. Geophysical Research Letters,36, L00B03. doi:10.1029/2008GL036366.
    Brown H, Allen R M, Grasso V F.2009. Testing ElarmS in Japan. Seismological Research Letters, 80(5):727-739.
    Brune J.1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research,75(26):4997-5009.
    Campbell K W, Bozorgnia Y.2010. Analysis of cumulative absolute velocity (CAV) and JMA instrumental seismic intensity (IJMA) using the PEER-NGA strong motion database. Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley:1-7.
    Chen D Y, Lin T L, Wu Y M, et al.2012. Testing a P-wave earthquake early warning system by simulating the 1999 Chi-Chi, Taiwan, MW 7.6 earthquake. Seismological Research Letters, 83(1):103-108.
    Chen Y J.2011. Earthquake early warning system using a single station. San Lien Technics,80: 6-10.
    Chen Z L, Stewart R R.2006. A multi-window algorithm for real-time automatic detection and picking of P-phases of microseismic events. CREWES Research Report,18.
    CMG-5TDE. http://www.guralp.com/datasheets/DAS-050-0006.pdf.
    Cooper J D.1868. Letter to editor, San Francisco Daily Evening Bulletin, Nov.3,1868.
    Cua G, Fischer M, Heaton T, et al.2009. Real-time performance of the Virtual Seismologist earthquake early warning algorithm in southern California. Seismological Research Letters, 80(5):740-747.
    cv_575. http://www.to-soku.co.jp/products/memory/pdf/cv 575.pdf.
    cv374_a-b. http://www.to-soku.co.jp/products/memory/pdf/cv374_a-b.pdf.
    Deering S and Hinden R.1998. Internet Protocol, Version 6 (IPv6) Specification. http://ww w.ietf.org/rfc/rfc2460.txt.
    Earle P S, Shearer P M.1994. Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America,84(2):366-376.
    Ellsworth W, Heaton H.1994. Real-time analysis of earthquakes:Early-warning systems and rapid damage assessment. Sensors,11:27-33.
    Ellsworth W L, Beroza G C.1995. Seismic evidence for an earthquake nucleation phase. Science, 268(5212):851-855.
    Erdik M, Fahjan Y, Ozel O, et al.2003. Istanbul earthquake rapid response and the early warning system. Bulletin of Earthquake Engineering,1(1):157-163.
    Espinosa-Aranda J M, Jimenez A, Ibarrola G, et al.1995. Mexico city seismic alert system. Seismological Research Letters,66:42-53.
    Espinosa-Aranda J M, Cuellar A, Garcia A, et al.2009. Evolution of the Mexican seismic alert system (SASMEX). Seismological Research Letters,80(5):694-706.
    Festa G, Zollo A, Lancieri M.2008. Earthquake magnitude estimation from early radiated energy. Geophysical Research Letters,35:L22307.
    Fleming K, Picozzi M, Milkereit C, et al.2009. The self-organizing seismic early warning information network (SOSEWIN). Seismological Research Letters,80(5):755-771.
    Font W T, Ong S K, Nee A Y C.2008. Methods for in-field user calibration for an inertial measurement unit without external equipment. Meas. Sci. Technol.,19(8):1-11, doi:10.1088/0957-0233/19/8/085202.
    Forsberg T, Grip N, Sabourova N.2013. Non-iterative calibration for accelerometers with three non-orthogonal axes, reliable measurement setups and simple supplementary equipment. Meas. Sci. Technol.,24(3),035002, doi:10.1088/0957-0233/24/3/035002.
    Goltz J D, Flores P J.1997. Real-time earthquake early warning and public policy:A report on Mexico City's Sistema de Alerta Sismica. Seismological Research Letters,68:727-733.
    Horiuchi S, Negishi H, Abe K, et al.2005. An automatic processing system for broadcasting earthquake alarms. Bulletin of Seismological Society of America,95(2):708-718.
    Horiuchi S, Horiuchi Y, Yamamoto S, et al.2009. Home seismometer for earthquake early warning. Geophysical Research Letters,36:L00B04, doi:10.1029/2008GL036572.
    Hoshiba M, Kamigaichi O, Saito M, et al.2008. Earthquake early warning starts nationwide in Japan. Eos, Transactions, American Geophysical Union,89:73-80.
    Hsiao N C, Wu Y M, Shin T C, et al.2009. Development of earthquake early warning system in Taiwan. Geophysical Research Letters,36, L00B02. doi:10.1029/2008GL036596.
    IA-2. http://www.geosig.com/IA-2-Internet-Accelerograph-id 10381.html.
    Iio Y.1992. Slow initial phase of the P-wave velocity pulse generated by microearthquakes. Geophysical Research Letters,19(5):477-480.
    Iio Y.1995. Observations of the slow initial phase generated by microearthquakes:Implications for earthquake nucleation and propagation. Journal of Geophysical Research,1995,100(B8): 15333-15349.
    Ionescu C, Bose M, Wenzel F, et al.2007. An early warning system for deep Vrancea (Romania) earthquakes. In:Gasparini P, Manfredi G, Zschau J (Eds.), Earthquake Early Warning Systems, Springer, Berlin:343-349.
    Jonathan C, Alessandro R, Greg K H.2005. Linux device drivers (Third edition). O'Reilly'.
    Kamigaichi O, Saito M, Doi K, et al.2009. Earthquake early warning in Japan:Warning the general public and future prospects. Seismological Research Letters,80(5):717-726.
    Kanamori H.1993. Locating earthquakes with amplitude:application to real-time seismology. Bulletin of Seismological Society of America,83(1):264-268.
    Kanamori H, Hauksson E, Heaton T.1997. Real-time seismology and earthquake hazard mitigation. Nature,390(6659):461-464.
    Kanamori H.2005. Real-time seismology and earthquake damage mitigation. Annual Review of Earth and Planetary Sciences,33:195-214.
    Kilb D, Gomberg J.1994. The initial subevent of the 1994 Northridge, California, earthquake:Is earthquake size predictable? Journal of Seismological,3(4):409-420.
    Kohler N, Cua G, Wenzel F, et al.2009. Rapid source parameter estimations of southern California earthquakes using PreSEIS. Seismological Research Letters,80(5):748-754.
    Lancieri M, Zollo A.2008. A Bayesian approach to the real-time estimation of magnitude from the early P and S wave displacement peaks. Journal of Geophysical Research,113:B12302, doi:10.1029/2007JB005386.
    Levy R, Le Traon O, Masson S, et al.2012. An integrated resonator-based thermal compensation for Vibrating Beam Accelerometers, Sensors,2012 IEEE:1-5.
    Li X F, Li D H, Gao J M, et al.2012. Temperature drift compensation algorithm based on BP and GA in Quartzes flexible accelerometer. Applied Mechanics and Materials,249-259:95-99.
    Lin T L, Wu Y M, Chen D Y.2011. Magnitude estimation using initial P-wave amplitude and its spatial distribution in earthquake early warning in Taiwan. Geophysical Research Letters,38, L09303. doi:10.1029/2011GL047461.
    Lockman A B, Allen R M.2005. Single-station earthquake characterization from early warning. Bulletin of Seismological Society of America,95(6):2029-2039.
    Mackley J, Nahavandi S.2004. Active temperature compensation for an accelerometer based angle measuring device. Robotics:trends, principles and applications:proceedings of the Sixth Biannual World Automation Congress (WAC), ISORA, Seville, Spain:1-6.
    Mills D L.1992. Network Time Protocol (Version 3) specification, implementation and analysis. Network Working Group Report RFC-1305, University of Delaware, March,113 pp.
    Mori J, Kanamori H.1996. Initial rupture of earthquakes in the 1995 Ridgecrest, California, sequence. Geophysical Research Letters,23(18):2437-2440.
    Nakamura Y.1988. On the urgent earthquake detection and alarm system (UrEDAS). In: Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan,7: 673-678.
    Nakamura Y.1996. Real-time information systems for hazards mitigation. In:Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico,7:673-678.
    Nakamura Y.2004. UrEDAS, urgent earthquake detection and alarm system, now and future. In: Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, paper no.908.
    Nakamura Y, Saita J.2007. UrEDAS, the earthquake warning system:Today and tomorrow.In: Gasparini P, Manfredi G, Zschau J (Eds.), Earthquake Early Warning Systems, Springer, Berlin:249-282.
    Nakatani M, Kaneshima S, Fukao Y.2000. Size-dependent microearthquake initiation inferred from high-gain and low-noise observations at Nikko district, Japan. Journal of Geophysical Research,105(B12):28095-28109.
    Odaka T, Ashiya K, Tsukada S, et al.2003. A new method of quickly estimating epicentral distance and magnitude from a single seismic record. Bulletin of Seismological Society of America,93(1):526-532.
    Olivieri M, Allen R M, Wurman G. 2008. The potential for earthquake early warning in Italy using ElarmS. Bulletin of the Seismological Society of America,98(1):495-503.
    Olson E L, Allen R M.2005. The deterministic nature of earthquake rupture. Nature,438(7065): 212-215.
    Pan Y J, Li L L, Ren C H, et al.2010. Study on the compensation for a quartz accelerometer based on a wavelet neural network. Meas. Sci. Technol.,21(10),105202.
    Peng H S, Wu Z L, Wu Y M, et al.2011. Developing a prototype earthquake early warning system in the Beijing capital region. Seismological Research Letters,82(3):394-403.
    Rosenberger A.2009. Arrival-time order location revisited. Bulletin of Seismological Society of America,99(3):2027-2034.
    Rydelek P, Pujol J.2004. Real-time seismic warning with a two-station subarray. Bulletin of Seismological Society of America,94(4):1546-1550.
    Satriano C, Lomax A, Zollo A.2008. Real-time evolutionary earthquake location for seismic early warning. Bulletin of Seismological Society of America,98(3):1482-1494.
    Schweitzer J, Fyen J, Mykkeltveit S.2002. Seismic arrays. In:Bormann P (Ed.), IASPEI New Manual of Seismological Observatory Practice, Potsdam, Germany:GeoForschungsZentrum Potsdam.
    Shieh J T, Wu Y M, Allen R M.2008. A comparison of τc and τpmax for magnitude estimation in earthquake early warning. Geophysical Research Letters,35, L20301.
    Sleeman R, yan Eck T.1999. Robust automatic P-phase picking:An on-line implementation in the analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors, 113:265-275.
    Sokolov V, Furumura T, Wenzel F.2010. On the use of JMA intensity in earthquake early warning systems. Bulletin of Earthquake Engineering,8:767-786.
    Suarez G, Novelo D, Mansilla E.2009. Performance evaluation of the seismic alert system (SAS) in Mexico City:A seismological and a social perspective. Seismological Research Letters, 80(5):707-716.
    Tee K S, Awad M, Dehghani A, et al.2011. Triaxial accelerometer static calibratin. Proceedings of the World Congress on Engineering 2011 Vol Ⅲ, London, U.K.:2164-2167.
    Tsukada S, Detweiler S T, Ellsworth W L.2005. The challenge of earthquake disaster mitigation; earthquake early warning and estimated seismic intensity. Open-File Report, U. S. Geological Survey:7.
    Umeda Y.1990. High-amplitude seismic waves radiated from the bright spot of an earthquake. Tectonophysics,1990,175(1-3):81-92.
    Umeda Y.1992. The bright spot of an earthquake. Tectonophysics,211(1-4):13-22.
    Weber E, Iannaccone G, Zollo A, et al.2007. Development and testing of an advanced monitoring infrastructure (ISNET) for seismic early warning applications in the Campania region of southern Italy. In:Gasparini P, Manfredi G, Zschau J (Eds.), Earthquake Early Warning Systems, Springer, Berlin:325-341.
    Wenzel F, Onescu M, Baur M, et al.1999. An early warning system for Bucharest. Seismological Research Letters,70(2):161-169.
    Wolfe C J.2006. On the properties of predominant-period estimators for earthquake early warning. Bulletin of Seismological Society of America,96(5):1961-1965.
    Won S P, Golnaraghi F.2010. A triaxial accelerometer calibration method using a mathematical model. IEEE T Instrum Meas,59(8):2144-2153, doi:10.1109/TIM.2009.2031849.
    Wu Y M, Shin T C, Tsai Y B.1998. Quick and reliable determination of magnitude for seismic early warning. Bulletin of the Seismological Society of America,88(5):1254-1259.
    Wu Y M, Teng T L.2002. A virtual subnetwork approach to earthquake early warning. Bulletin of the Seismological Society of America,92(5):2008-2018.
    Wu Y M, Kanamori H.2005a. Experiment on an onsite early warning method for the Taiwan early warning system. Bulletin of the Seismological Society of America,95(1):347-353.
    Wu Y M, Kanamori H.2005b. Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bulletin of the Seismological Society of America,95(3): 1181-1185.
    Wu Y M, Li Z.2006. Magnitude estimation using the first three seconds p-wave amplitude in earthquake early warning. Geophysical Research Letters,33:L16312.
    Wu Y M, Kanamori H, Allen R M, et al.2007. Determination of earthquake early warning parameters, tc and Pd, for southern California. Geophysical Journal International,170: 711-717.
    Wu Y M, Kanamori H,2008a. Development of an earthquake early warning system using real-time strong motion signals. Sensors,8(1):1-9.
    Wu Y M, Kanamori H.2008b. Exploring the feasibility of onsite earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth, Planets and Space,60:155-160.
    Wurman G, Allen R M, Lombard P.2007. Toward earthquake early warning in northern California. Journal of Geophysical Research,112, B08311. doi:10.1029/2006JB004830.
    Yamamoto S, Rydelek P, Horiuchi S, et al.2008. On the estimation of seismic intensity in the earthquake warning systems. Geophysical Research Letters,35:L07302.
    Zhang H J, Thurber C, Rowe C.2003. Automatic P-wave arrival detection and picking wih multiscale wavelet analysis for single component recordings. Bulletin of the Seismological Society of America,93:1904-1912.
    Zhang H L, Wu Y X, Wu M P, et al.2008. A multi-position calibration algorithms inertial measurement units. In AIAA Guidance, Navigation and Control Conference and Exhibit, number AIAA 2008-7437, page (15 pp), Honolulu, Hawaii. doi:10.2514/6.2008-7437.
    Zhang H L, Wu Y X, Wu W Q, et al.2010. Improved multiposition calibration for inertial measurement units. Meas. Sci. Technol.,21(1):(11 pp). doi:10.1088/0957-0233/21/1/015107.
    Zhou H W.1994. Rapid three-dimensional hypocentral determination using a master station method. Journal of Geophysical Research,9(8):15439-15455.
    Zollo A, Lancieri M, Nielsen S.2006. Earthquake magnitude estimation from peak amplitude of very early seismic signals on strong motion records. Geophysical Research Letters,33, L23312. doi:10.1029/2006GL027795.
    Zollo A, Iannaccone G, Lancieri M, et al.2009. Earthquake early warning system in southern Italy: Methodologies and performance evaluation. Geophysical Research Letters,36, L00B07. doi:10.1029/2008GL036689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700