机械力促进的N-去甲酰化,交叉脱氢偶联反应用于制备喹啉/四氢异喹啉类衍生物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着医药化工行业的迅猛发展,大量的有机溶剂被耗费,同时在其生产、纯化和循环利用过程中存在危害性、环境污染和能源消耗等问题,导致我们对溶剂的依赖越来越不可持续。无溶剂反应避免了由于使用溶剂所带来的危险性、毒害性以及成本增加等缺点,成为近年来研究热点之一。机械球磨,作为促进无溶剂反应的一种新型反应方式,具备多种优势,已逐渐成为有机合成反应的一种有效手段。
     本论文的主要工作包括机械球磨条件下的去甲酰化反应和交叉脱氢偶联反应。具体内容如下:
     (1)简要介绍了机械化学的发展概况,综述了机械球磨技术在有机合成中的应用及影响反应的各类因素。
     (2)在高速球磨条件下,利用固体碱,实现对N-甲酰基-1,2-二氢喹啉类化合物的去甲酰基-芳构化反应。以固体NaOH为碱,聚乙二醇(PEG)2000为添加剂,NaCl为助磨剂进行无溶剂去甲酰基-芳构化反应,为2-芳(杂芳)基喹啉衍生物的合成提供了一条方便、快速、环境友好的路线。与传统方法相比,反应中不需要任何有毒有害的有机溶剂,时间短,收率高,底物适用范围广,后处理方便,充分体现了“绿色化学”的理念。此外,反应中所使用的添加剂及助磨剂能够多次循环使用并保持较高的反应活性。
     (3)在高速球磨条件下,二氯二氰基苯醌(DDO)促进四氢异喹啉(sp3C-H)与三种不同杂化类型的底物(spC-H,aryl-sp2C-H, sp3C-H)进行交叉脱氢偶联反应(CDC)。本文首次将机械球磨技术用于交叉脱氢偶联反应中,利用安全稳定且易于存储的DDQ作为氧化剂进行反应。对于硝基烷烃类化合物及丙二腈来说,在非金属催化下即可得到R--C-H的官能团化产物。对于炔烃和吲哚类化合物来说,反应中使用铜质研磨球,既作为研磨介质又作为反应催化剂,同样能够高效地制备得到氧化偶联产物;其中催化剂能够简单的从反应混合物中取出并重复使用。该类反应既具有CDC反应高原子经济性的特点,又具备机械球磨反应高效、快速、无溶剂的优势,为制备具有潜在抗肿瘤活性的四氢异喹啉衍生物提供了一条合理的途径。
     (4)在高速球磨条件下,利用2,6-吡啶二恶唑啉(Pybox)为手性配体,实现四氢异喹啉(sp3C-H)与炔烃(spC-H)的不对称交叉脱氢偶联(CDC)反应。高速球磨反应作为促进无溶剂反应的有效方式,被越来越多的运用于各类无溶剂有机反应中,但球磨条件下的对映选择性反应少有报道。本文首次采用这种非传统的反应方式进行以四氢异喹啉为底物的不对称交叉脱氢偶联反应,从而制备得到一系列具有潜在生物活性的手性四氢异喹啉衍生物,拓宽了机械球磨技术在不对称有机合成中的应用范围。这类反应具有时间短,操作简单,后处理方便,催化剂易于回收等优势。
     (5)机械力促进的交叉脱氢偶联反应用于吡喹酮药物中间体的制备及其衍生反应的研究。将机械球磨条件下的交叉脱氢偶联反应运用到吡喹酮关键中间体的制备中,使反应更为快速,高效。以N-对甲氧基苯基四氢异喹啉为底物,经脱氢偶联,催化氢化及氧化去保护三步反应制备得到1-氨基甲基-1,2,3,4-四氢异喹啉中间体,为构建吡喹酮及其类似物中间体提供一种新颖、有效的方法。此外,在对毗喹酮合成路线进行优化设计过程中,发现一种新型机械研磨条件下的无溶剂N-酰基四氢异喹啉氧化开环反应。文中对该类反应的底物范围、反应条件、选择性及反应机理等进行了较全面地研究,同时还将该反应在传统方式下进行以作比较。
With the rapid development of the pharmaceutical and chemical industry, current dependence on solvents appears increasingly unsustainable since it is wasteful of fossil-derived materials, environmentally problematic, hazardous and energy-demanding with regard to solvent production, purification and recycling. Solvent-free reactions avoid the dangers, toxic and costs-increase posed by the use of solvents, become one of the hot-spot recently. As a new way to promote solvent-free reactions, mechanical milling has various advantages and becomes an effective tool for organic synthesis reactions.
     In this thesis, investigations are focused on the deformylation and cross dehydrogenation coupling reaction under mechanical milling condition. The main contents include the following five aspects.
     (1) Briefly describes the development of the mechanical chemistry, the overview of mechanical milling in organic synthesis as well as various influencing factors.
     (2) Under high speed ball milling conditions, using solid base to realize the deformylation and aromatization reaction of N-formyl-1,2-dihydroquinolines. With solid NaOH as base, PEG2000as additive, NaCl as grinding aid, this solvent-free reaction providing a fast, convenient and environmentally friendly route for the preparation of2-aryl(heteroaryl)-quinolines. Compared with traditional deformylation methods, the reaction did not require any toxic organic solvents, Also, short reaction time, high yields, wide generality and simple isolation of the production all make this method fully embodied the concept of green chemistry. Additionally, additives and grinding aids used in the reaction could be reused many times with a high reaction activity.
     (3) Under high speed ball milling conditions, using DDQ to promote the cross-dehydrogenative coupling reaction (CDC) between tetrahydroisoquinoline (sp3C-H) with three different type of hybrid substrates (sp C-H, aryl-sp2C-H, sp3C-H). Mechanical milling technique has been first applied to the cross-dehydrogenative coupling reaction. DDQ, a safe, stable and easy-store oxidant was used in these reactions. For nitroalkanes and malononitrile, R-C-H-functionalized products were obtained without any metal catalyst. For alkynes and indoles, copper balls were used both as the reacting catalyst and milling balls; the recovery of the catalyst would be as simple as removing the copper ball from the reaction media. Such reactions have both the characteristic of high atom economy of CDC reaction, and the advantages of fast, efficient and solvent-free of mechanical milling reaction. This method provides a reasonable approach for the preparation of tetrahydroisoquinoline derivatives having potential anti-tumor activity.
     (4) Under high speed ball milling conditions, asymmetric alkynylation of prochiral sp3C-H bonds for the preparation of optically active tetrahydroisoquinolines was achieved by using PyBox as chiral ligand. Although High Speed Ball-Milling (HSBM) technique has been increasingly used in synthetic organic chemistry to promote several solvent-free reactions, only a few enantioselective reactions have been explored under HSBM conditions. The present work is attractive in the search of the application of this nonconventional methodology for the preparation of optically active tetrahydroisoquinoline derivatives through asymmetric CDC reactions. This could represent an interesting challenge for the development of enantioselective reactions in a ball mill. Fast, simple operation and easy to reuse the catalyst are advantages of the reaction.
     (5) Mechanically activated cross-dehydrogenative coupling reaction was applied for the preparation of praziquantel intermediates, while a derivative reaction was studied. Mechanically promoted CDC reaction was firstly applied to prepare the key intermediates of praziquantel, the reaction is more rapid and efficient. N-(4-methoxyphenyl) tetrahydroisoquinoline was used as the substrate, through cross-dehydrogenative coupling, catalytic hydrogenation, and oxidative deprotection three-step reactions to give1-aminomethyl-1,2,3,4-tetrahydroisoquinoline intermediates, which providing a novel and effective method for constructing praziquantel and its analogues intermediates. In addition, during the design and optimization process in praziquantel synthetic routes, a new type of solvent-free oxidative ring-opening reaction of N-acyl-tetrahydroisoquinoline under ball mill condition was discovered. In this reaction, a relative comprehensive study was carried out on the range of substrate, reaction conditions, selectivity and mechanism. For comparison, the reaction was also carried out in the traditional condition.
引文
[1]. Takacs, L. The mechanochemical reduction of AgCl with metals revisiting an experiment of M. Faraday[J]. J. Therm. Anal. Calorim.2007,90:81-84.
    [2]. Takacs, L. M. Carey Lea, the first mechanochemist[J]. J. Mater. Sci.2004,39: 4987-4993.
    [3]. (a) Patil, A. O.; Curtin, D. Y.; Paul, I. C. Solid-state formation of quinhydrones from their components. Use of solid-solid reactions to prepare compounds not accessible from solution[J]. J. Am. Chem. Soc.1984,106:348-353. (b) Etter, M.; Urbanczyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T. Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas[J]. J. Am. Chem. Soc.1990,112:8415-8426. (c) Caira, M. R.; Nassimbeni, L. R.; Wildervanck, A. F. Selective formation of hydrogen bonded cocrystals between a sulfonamide and aromatic carboxylic acids in the solid state[J]. J. Chem. Soc. Perkin Trans.21995,2213-2216. (d) Peddiredi, V. R.; Jones, W.; Chorlton, A. P.; Docherty, R. Creation of crystalline supramolecular arrays:a comparison of co-crystal formation from solution and by solid-state grinding[J]. Chem. Commun.1996, (8):987-988.
    [4]. (a) Toda, F.; Tanaka, K.; Iwata, S. J. Oxidative coupling reactions of phenols with iron(III) chloride in the solid state[J]. J. Org. Chem.1989,54:3007-3009. (b) Toda, F.; Takumi, H.; Akehi, M. Efficient solid-state reactions of alcohols: dehydration, rearrangement, and substitution[J]. J. Chem. Soc, Chem. Commun. 1990,(18):1270-1271.
    [5]. Sheldon, R. A. Green solvents for sustainable organic synthesis:state of the art[J]. Green Chem.2005,7:267-278.
    [6]. (a) Todres, Z. V. Organic mechanochemistry and its practical applications[M]. Taylor & Francis, Boca Raton,2006. (b). Rodriguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Solvent-Free Carbon-Carbon Bond Formations in Ball Mills[J]. Adv. Synth. Catal.2007,349:2213-2233. (c) Stolle, A.; Szuppa, T.; Leonhardt, S. E. S.; Ondruschka, B. Ball milling in organic synthesis:solutions and challenges[J]. Chem. Soc. Rev.2011,40:2317-2329. (d) James, S. L.; Adams, C. J.; Bolm, C.; et al. Mechanochemistry:opportunities for new and cleaner synthesis[J]. Chem. Soc. Rev.2012,41:413-447.
    [7].朱兴一.机械力化学技术在黄酮类化合物,吡唑啉类化合物合成及银杏叶黄酮提取中的应用研究[D].浙江工业大学博士学位论文,2009.
    [8]. Kaupp, G.; Naimi-Jamal, M. R.; Schmeyers, J. Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield[J]. Tetrahedron 2003,59:3753-3760.
    [9]. Wada, S.; Suzuki, H. Calcite and fluorite as catalysts for the Knoevenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions[J]. Tetrahedron Lett.2003,44:399-401.
    [10]. Mack, J.; Shumba, M. Rate enhancement of the Morita-Baylis-Hillman reaction through mechanochemistry[J]. Green Chem.2007,9:328-330.
    [11]. Waddell, D. C.; Mack, J. An environmentally benign solvent-free Tishchenko reaction[J]. Green Chem.2009,11:79-82.
    [12]. Mack, J.; Fulmer, D.; Sofel, S.; Santos, N. The first solvent-free method for the reduction of esters[J]. Green Chem.2007,9:1041-1043.
    [13]. Naimi-Jamal, M. R.; Mokhtari, J.; Dekamin, M. G.; Kaupp, G. Sodium tetraalkoxyborates:intermediates for the quantitative reduction of aldehydes and ketones to alcohols through ball milling with NaBH4[J]. Eur. J. Org. Chem. 2009, (21):3567-3572.
    [14]. Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K. Mechanically induced solid-state generation of phosphorus ylides and the solvent-free wittig reaction[J]. J. Am. Chem. Soc.2002,124:6244-6245.
    [15]. Gao, J.; Wang, G. W. Direct oxidative amidation of aldehydes with anilines under mechanical milling conditions [J]. J. Org. Chem.2008,73:2955-2958.
    [16]. Wang, G. W.; Gao, J. Solvent-free bromination reactions with sodium bromide and oxone promoted by mechanical milling[J]. Green Chem.2012,14: 1125-1131.
    [17]. (a) Declerck, V.; Nun, P.; Martinez, J.; Lamaty, F. Solvent-free synthesis of peptides[J]. Angew. Chem., Int. Ed.2009,48:9318-9321. (b) Hernandez, J. G.; Juaristi, E. Green synthesis of r,β-and β,β-dipeptides under solvent-free conditions[J]. J. Org. Chem.2010,75:7107-7111.
    [18]. Waddell, D. C.; Thiel, I.; Clark, T. D.; Macrum, S. T.; Mack, J. Making kinetic and thermodynamic enolates via solvent-free high speed ball milling[J]. Green Chem.2010,12:209-211.
    [19]. Nielsen, S. F.; Peters, D.; Axelsson, O. The Suzuki reaction under solvent-free conditions[J]. Synth. Commun.2000,30:3501-3509.
    [20]. Klingensmith, L. M.; Leadbeater, N. E. Ligand-free palladium catalysis of aryl coupling reactions facilitated by grinding[J]. Tetrahedron Lett.2003,44: 765-768.
    [21]. (a) Schneider, F.; Stolle, A.; Ondruschka, B.; Hopf, H. The Suzuki-Miyaura reaction under mechanochemical conditions[J]. Org. Process Res. Dev.2009,13: 44-48. (b) Schneider, F.; Ondruschka, B. Mechanochemical solid-state Suzuki reactions using an in situ generated base[J]. ChemSusChem 2008,1:622-625.
    [22]. Bernhardt, F.; Trotzki, R.; Szuppa, T.; Stolle, A.; Ondruschka, B. Solvent-free and time-efficient Suzuki-Miyaura reaction in a ball mill:the solid reagent system KF-A12O3 under inspection[J]. Beilstein J. Org. Chem.2010,6(7):1-9.
    [23]. Tullberg, E.; Peters, D.; Frejd, T. The Heck reaction under ball-milling conditions[J].J. Organomet. Chem.2004,689:3778-3781.
    [24]. Tullberg, E.; Schachter, F.; Peters, D.; Frejd, T. Solvent-free Heck-Jeffery reactions under ball-milling conditions applied to the synthesis of unnatural amino acids precursors and indoles[J]. Synthesis 2006,1183-1189.
    [25]. Zhu, X. Y.; Liu, J.; Chen, T.; Su, W. K. Mechanically activated synthesis of (E)-stilbene derivatives by high-speed ball milling [J]. Appl. Organometal. Chem.2012,26:145-147.
    [26]. Fulmer, D. A.; Shearhouse, W. C.; Mendonza, S. T.; Mack, J. Solvent-free Sonogashira coupling reaction via high speed ball milling[J]. Green Chem.2009, 1.1:1821-1825.
    [27]. Thorwirth, R.; Stolle. A.; Ondruschka, B. Fast copper-, ligand-and solvent-free Sonogashira coupling in a ball mill[J]. Green Chem.2010,12:985-991.
    [28]. Rantanen, T.; Schiffers, I.; Bolm, C. Solvent-free asymmetric anhydride opening in a ball mill[J]. Org. Process Res. Dev.2007,11(3):592-597.
    [29]. (a) Rodriguez, B.; Rantanen, T.; Bolm, C. Solvent-free asymmetric organocatalysis in a ball mill[J]. Angew. Chem.2006,118:7078-7080; Angew. Chem. Int. Ed.2006,45:6924-6926. (b) Rodriguez, B.; Bruckmann, A.; Bolm, C. A highly efficient asymmetric organocatalytic Aldol reaction in a ball mill[J]. Chem. Eur. J.2007,13:4710-4722.
    [30]. Guillena, G.; Hita, M. C.; Najera C.; Viozquez, S. F. A highly efficient solvent-free asymmetric direct Aldol reaction organocatalyzed by recoverable (5)-binam-L-prolinamides. ESI-MS evidence of the enamine-iminium formation[J]. J. Org. Chem.2008,73:5933-5943.
    [31]. Hernandez, J. G.; Juaristi, E. Asymmetric Aldol reaction organocatalyzed by (5)-proline-containing dipeptides:Improved stereoinduction under solvent-free conditions[J]. J. Org. Chem.2011,76:1464-1467.
    [32]. Hernandez, J. G.; Juaristi, E. Efficient ball-mill procedure in the 'green' asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides in the presence of water[J]. Tetrahedron 2011,67:6953-6959.
    [33]. Nun, P.; Perez, V.; Calmes, M.; Martinez, J.; Lamaty, F. Preparation of chiral amino esters by asymmetric phase-transfer catalyzed alkylations of schiff bases in a ball mill[J]. Chem. Eur. J.2012,18:3773-3779.
    [34]. Wang, Y. F.; Chen, R. X.; Wang, K.; Zhang, B. B.; Li, Z. B.; Xu, D. Q. Fast, solvent-free and hydrogen-bonding-mediated asymmetric Michael addition in a ballmill[J]. Green Chem.2012,14:893-895.
    [35]. Sikchi, S. A.; Hultin, P. G. Solvent-less protocol for efficient bis-N-Boc protection of adenosine, cytidine, and guanosine derivatives [J]. J. Org. Chem. 2006,71:5888-5891.
    [36]. Patil, P. R.; Kartha, K. P. R. Application of ball milling technology to carbohydrate reactions:I. Regioselective primary hydroxyl protection of hexosides and nucleoside by planetary ball milling[J]. J. Carbohydr. Chem. 2008,27:279-293.
    [37]. Giri, N.; Bowen, C.; Vyle, J. S.; James, S. L. Fast, quantitative nucleoside protection under solvent-free conditions[J]. Green Chem.2008,10:627-628.
    [38]. Patil, P. R.; Kartha, K. P. R. Solvent-free synthesis of thioglycosides by ball milling[J]. Green Chem.2009,11:953-956.
    [39]. Komatsu, K. The mechanochemical solid-state reaction of fullerenes[J]. Top. Curr. Chem.2005,254:185-206.
    [40]. Cheng, X.; Wang, G. W.; Murata Y.; Komatsu, K. Solvent-free synthesis of dihydrofuran-fused [60]fullerene derivatives by high-speed vibration milling[J]. Chin. Chem. Lett.2005,16:1327-1329.
    [41]. Watanabe, H.; Matsui, E.; Ishiyama, Y.; Senna, M. Solvent free mechanochemical oxygenation of fullerene under oxygen atmosphere[J]. Tetrahedron Lett.2007,48:8132-8137.
    [42]. (a) Suryanarayana, C. Mechanical alloying and milling[J]. Prog. Mater. Sci. 2001,46:1-184. (b) Balaz, P. Mechanochemistry in nanoscience and minerals engineering[M]. Springer, Heidelberg,2008,103-119.
    [43]. Kwade, A. Mill selection and process optimization using a physical grinding model[J]. Int. J. Miner. Process.2004,74:S93-S101.
    [44]. Schneider, F.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf, H. Energetic assessment of the Suzuki-Miyaura reaction:a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization[J]. Green Chem.2009,11:1894-1899.
    [45]. Zhang, Z.; Dong, Y W.; Wang, G. W.; Komatsu, K. Highly efficient mechanochemical reactions of 1,3-dicarbonyl compounds with chalcones and azachalcones catalyzed by potassium carbonate[J] Synlett 2004,61-64.
    [46]. Trotzki, R.; Hoffmann, M. M.; Ondruschka, B. Studies on the solvent-free and waste-free Knoevenagel condensation[J]. Green Chem.2008,10:767-772.
    [47]. T. Szuppa, A. Stolle, B. Ondruschka and W. Hopfe, Solvent-free dehydrogenation of y-terpinene in a ball mill:investigation of reaction parameters[J]. Green Chem.2010,12:1288-1294.
    [48]. Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopfe, W. An alternative solvent-free synthesis of Nopinone under ball-milling conditions:Investigation of reaction parameters[J]. ChemSusChem 2010,3:1181-1191.
    [49]. Qiu, W.; Hirotsu, T. A new method to prepare maleic anhydride grafted polypropylene)[J]. Macromol. Chem. Phys.2005,206:2470-2482.
    [50]. Thorwirth, R.; Bernhardt, F.; Stolle, A.; Ondruschka, B.; Asghari, J. Switchable selectivity during oxidation of anilines in a ball mill[J]. Chem. Eur. J.2010,16: 13236-13242.
    [51]. Kaupp, G.; Schmeyers, J.; Naimi-Jamal, M. R.; Zoz, H.; Ren, H. Reactive milling with Simoloyer:environmentally benign quantitative reactions without solvents and wastes[J]. Chem. Eng. Sci.2002,57:763-765.
    [52]. Garay, A. L.; Pichon, A.; James, S. L. Solvent-free synthesis of metal complexes[J]. Chem. Soc. Rev.2007,36:846-855.
    [53]. (a) Pichon, A.; James, S. L. An array-based study of reactivity under solvent-free mechano chemical conditions-insights and trends[J]. CrystEngComm 2008,10:1839-1847. (b) Yuan, W.; Friscic, T.; Apperley, D.; James, S. L. High reactivity of metal-organic frameworks under grinding conditions:Parallels with organic molecular materials[J]. Angew. Chem. Int. Ed. 2010,49:3916-3919. (c) Friscic, T. New opportunities for materials synthesis using mechanochemistry[J]. J. Mater. Chem.2010,20:7599-7605.
    [54]. Kubias, B.; Fait, M. J. G.; Schlogl, R. in Handbook of Heterogeneous Catalysis[M]. Wiley-VCH, Weinheim,2nd edn,2008,571-583.
    [55]. (a) Childs, S. L.; Zaworotko, M. J. The reemergence of cocrystals:The crystal clear writing is on the wall:Introduction to virtual special issue on pharmaceutical[J]. Cryst. Growth. Des.2009,9:4208-4211. (b) Friscic, T.; Jones, W. Recent advances in understanding the mechanism of cocrystal formation via grinding[J]. Cryst. Growth. Des.2009,9:1621-1637. (c) Lu, J.; Rohani, S. Preparation and characterization of Theophylline-Nicotinamide cocrystal[J]. Org. Process Res. Dev.2009,13:1269-1275.
    [1]. (a) Kalluraya, B.; Sreenivasa, S. Synthesis and pharmacological properties of some quinoline derivatives[J]. Farmaco 1998,53:399-404. (b) Dube, D.; Blouin, M.; Brideau, C.; Chan, C. C.; Yonug, R. N.; et al. Quinolines as potent 5-lipoxygenase inhibitors:synthesis and biological profile of L-746,530[J]. Bioorg. Med. Chem. Lett.1998,8:1255-1260. (c) Michael, J. P. Quinoline, quinazoline and acridone alkaloids[J]. Nat. Prod. Rep.1997,14:605-618. (d) Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. Synthesis and antibacterial evaluation of certain quinolone derivatives[J]. J. Med. Chem.2001, 44:2374-2377.
    [2]. Karramkam, M.; ric Dolle, F.; Valette, H. Synthesis of a Fluorine-18-labelled derivative of 6-nitroquipazine, as a radioligand for the In vivo serotonin transporter imaging with PET[J]. Bioorg. Med. Chem.2002,10:2611-2623.
    [3]. F□ssler, A.; Bold, G.; Capraro, H. G.; et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability[J].J. Med. Chem.1996,39:3203-3216.
    [4]. Benard, C.; Zouhiri, F.; Normand-Bayle, M.; et al. Linker-modified quinoline derivatives targeting HIV-1 integrase:synthesis and biological activity[J]. Bioorg. Med. Chem. Lett.2004,14:2473-2476.
    [5]. Yu, X. Y.; Hill, J. M.; Yu, G. X.; et al. A series of quinoline analogues as potent inhibitors of C. albicans prolyl tRNA synthetase[J]. Bioorg. Med. Chem. Lett. 2001,11:541-544.
    [6]. Makioka, Y.; Shindo, T.; Taniguchi, Y.; Takaki, K.; Fujiwar, Y. Ytterbium(Ⅲ) triflate catalyzed synthesis of quinoline derivatives from A'-arylaldimes and vinyl ethers[J]. Synthesis 1995,801-804.
    [7]. Cho, C. S.; Kim, B. T.; Kim, T. J.; Shim, S. C. Ruthenium-catalysed oxidative cyclisation of 2-aminobenzyl alcohol with ketones:modified Friedl□nder quinoline synthesis[J]. Chem. Commun.2001,24:2576-2577.
    [8]. (a) Huma, S. H. Z.; Haider, R.; Kalra, S. S.; Das, J.; Iqbal, J. Cu(I)-catalyzed three component coupling protocol for the synthesis of quinoline derivatives[J]. Tetrahedron Lett.2002,43:6485-6488. (b) Yadav, J. S.; Reddy, B. V. S.; Rao, R. S.; Naveenknumar, V.; Nagaiah, K. Microwave-assisted one-pot synthesis of 2,4-disubstituted quinolines under solvent-free conditions [J]. Synthesis 2003, 1610-1614.
    [9]. Sangu, K.; Fuchibe, K.; Akiyama, T. A novel approach to 2-arylated quinolines: electrocyclization of alkynyl imines via vinylidene complexes[J]. Org. Lett. 2004,6:353-355.
    [10]. Han, R. B.; Chen, S.; Lee, S. J.; Qi, F. Indium-mediated reductive cyclization of 2-nitrochal cones to quinolines [J]. Heterocycles 2006,68:1675-1684.
    [11]. Gabriele, B.; Mancuso, R.; Salerno, G.; Ruffolo, G.; Plastina, P. Novel and convenient synthesis of substituted quinolines by copper or palladium-catalyzed cyclodehydration of 1-(2-Aminoaryl)-2-yn-l-ols[J]. J. Org. Chem.2007,72: 6873-6877.
    [12]. Okauchi, T.; Tanaka, T.; Minami, T. Lewis acid promoted deoxygenative di[β,β-bis(ethylthio)]vinylation of aldehydes with trimethylsilylketene bis(ethylthio)acetal[J]. J. Org. Chem.2001,66:3924-3929.
    [13]. Panda, K.; Siddiqui, I.; Mahata, P. K.; Ila, H.; Jufjlappa, H. Heteroannulation of 3-bis(methylthio)acrolein with aromatic amines-a convenient highly regioselective synthesis of 2-(methylthio)quinolines and their benzo/hetero fused analogs-a modified skraup quinoline synthesis[J]. Synlett 2004,449-452.
    [14], Jia, C. S.; Zhang, Z.; Tu, S. J.; Wang, G. W. Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions:comparative study of microwave irradiation versus conventional heating[J]. Org. Biomol. Chem.2006,4:104-110.
    [15]. Li, A. H.; Ahmed, E.; Chen, X.; Cox, M. A highly effective one-pot synthesis of quinolines from o-nitroarylcarbaldehydes[J]. Org. Biomol. Chem.2007,5: 61-64.
    [16]. Martinez, R.; Ramon, D. J.; Yus, M. Transition-metal-free indirect Friedlander snthesis of quinolines from alcohols[J]. J. Org. Chem.2008,73:9778-9780.
    [17]. Movassaghi, M.; Hill, M. D.; A Versatile cyclodehydration reaction for the synthesis of isoquinoline and β-carboline derivatives[J]. Org. Lett.2008,10: 3485-3488.
    [18]. Meth-Cohn, O.; Taylor, D. L. The reverse Vilsmeier approach to the synthesis of quinolines, quinolinium salts and quinolones[J]. Tetrahedron 1995,51: 12869-12882.
    [19]. Korodi, F.; Cziaky Z. Synthesis of 2-chloro-2-alkyl and arylquinolines[J]. Org. Prep. Proced. Int.1990,22:579-588.
    [20]. Ali, M. M.; Tasneem; Rananna, K. C.; Prakash, P. K. S. An efficient and facile synthesis of 2-chloro-3-formyl quinolines from acetanilides in micellar media by Vilsmeier-Haack cyclisation[J]. Synlett 2001,251-253.
    [21]. Alila, S.; Selvi, S.; Balasubramanian, K. The Vilsmeier cyclization of 2'-azido and 2'-aminochalcones-a mild one pot synthesis of 2-aryl-4-chloroquinoline and its N-formyl-1,2-dihydro derivatives[J]. Tetradedron 2001,57:3465-3469.
    [22]. Adams, D.; Dominguez, J.; Lo Russo, V.; Morante de Rekowski, N. Synthesis of substituted quinolines by reaction of the Vilsmeier reagent with anilinobutenoates[J]. Gazz. Chim. Ital.1989,119(5):281-284.
    [23]. Perumal, P. T.; Amaresh, R. R. A novel one-pot synthesis of 2-aminoquinolines from arylazidoketones by cyclization under Vilsmeier conditions[J]. Tetradedron 1998,54:14327-14340.
    [24]. Li, Z. H.; Zheng, C.; Chen, R. E.; Su, W. K. Intramolecular cyclization of 2'-aminochalcones by halomethyleniminium salts derived from BTC/DMF[J]. Org. Prep. Proced. Int.2009,41:156-163.
    [25]. Manske, R. H. F.; Kukla, M. The Skraup synthesis of quinolines[J]. Org. React. 1953,7:58-98.
    [26]. Bergstrom, F. W. Heterocyclic N compounds. IIA. Hexacyclic compounds: pyridine, quinoline and isoquinoline[J]. Chem. Rev.1944,35:77-277.
    [27]. Cheng, C. C.; Yan, S. J. The Friedlander synthesis of quinolines[J]. Org. React. 1982,28:37-201.
    [28]. Jones, G. In the Chemistry of Heterocyclic Compounds[M]. John wiley and Sons, Part Ⅰ,1977,32:93.
    [29]. Manske, R. H. F. The chemistry of quinolines[J]. Chem. Rev.1942,30:113-144.
    [30]. Borsche, W.; Ried, W. Quinoline syntheses with (2-aminobenzylidene)-p-toluidines[J]. Justus Liebigs Ann. Chem.1943,554:269-290.
    [31]. Reitsema, R. H. The chemistry of 4-hydroxyquinolines[J]. Chem. Rev.1948,43: 43-68.
    [32]. Su, W. K.; Yu, J. B.; Li, Z. H.; Zheng, B. Unexpected and divergent reactions of N-formyl-1,2-dihydroquinolines with sodium azide:Highly chemoselective formation of 2-substituted quinolines and isoxazolo[4,3-c]quinolines[J]. Synlett 2010,1281-1284.
    [33]. Kumar, K. H.; Perumal, P. T. A novel one-pot oxidative deformylation of N-Formyldihydroquinolines employing ferric chloride hexahydrate. Synthesis of 4-chloro-2-phenylquinolines and 4-chloro-2-(1,3-diphenyl-1H-pyrazol-4-yl) quinolines[J]. J. Heterocycl Chem.2008,45:597-599.
    [34]. Ge, Y. Y.; Hu, L. Q. Microwave-assisted deformylation of N-aryl formamide by KF on basic Al2O3[J]. Tetrahedron Lett.2007,48:4585-4588.
    [35]. Dong, Y. W.; Wang, G. W.; Wang, L. Solvent-free synthesis of naphthopyrans under ball-milling conditions[J]. Tetrahedron 2008,6:410148-10154.
    [36]. (a) Harris, J. M.; Hundley, N. H.; Shannon, T. G.; Struck, E. C. Polyethylene glycols as soluble, recoverable, phase-transfer catalysts[J]. J. Org. Chem.1982, 47:4789-4791. (b) Gokel, G W.; Goli, D. M.; Schultz, R. A. Binding profiles for oligoethylene glycols and oligoethylene glycol monomethyl ethers and an assessment of their abilities to catalyze phase-transfer reactions[J]. J. Org. Chem.1983,48:2837-2842. (c) Sauvagnat, B.; Lamaty, F.; Lazaron, R; Martinez, J. Polyethylene glycol (PEG) as polymeric support and phase-transfer catalyst in the soluble polymer liquid phase synthesis of a-amino esters[J]. Tetrahedron Lett.1998,39:821-824. (d) Wang, L.; Zhang, Y. H.; Liu, L. F.; Wang, Y. G. Phosphine-free palladium acetate catalyzed suzuki reaction in water[J]. J. Org. Chem.2005,70:6122-6125.
    [37]. Han, R.; Chen, S.; Lee, S. J.; et al. Indium-mediate reductive cyclization of 2-nitrochalcones to quinolines[J]. Heterocycles 2006,68:1675-1684.
    [38]. Buu-Hoy, N. P.; Royer, R.; Xuong, N. D.; Jacquignon, P. The Pfitzinger reaction in the synthesis of quinoline derivatives[J]. J. Org. Chem.1953,18:1209-1224.
    [39]. Elderfield, R. C.; Gensler, W. J.; Bembry, T. H.; Kremer, C. B.; Head, J. D.; Brody,F.; Frohardt, R. Synthesis of 2-phenyl-4-cnloroquinolines[J]. J. Am. Chem. Soc.1946,68:1272-1276.
    [1]. (a) Tinsley, J. M. Name Reactions in Heterocyclic Chemistry[M]. John wiley and Son, Part 3, Quinolines and Isoquinolines. Pictet-Spengler isoquinoline synthesis 2005,469-479. (b) Chowdappa, N.; Sherigara, B. S.; Augustine, J. K.; Areppa, K..; Mandal, A. B. gem-Dibromomethylarenes as aldehyde surrogates in the Pictet-Spengler synthesis of tetrahydroisoquinolines and isoindoloisoquinolones[J]. Synthesis 2010,2949-2956. (c) Page, P. C. B.; Parkes, G. A.; Buckley, B. R.; Wailes, J. S. A Pictet-Spengler cyclization methodology for the construction of nonproteinogenic tetrahydroisoquinoline quaternary amino acids[J]. Synlett 2011,3005-3007. (d) Larsson, R.; Blanco, N.; Johansson, M.; Sterner, O. Synthesis of C-1 indol-3-yl substituted tetrahydroisoquinoline derivatives via a Pictet-Spengler approach[J]. Tetrahedron Lett.2012,53: 4966-4970.
    [2]. (a) Tinsley, J. M. Name Reactions in Heterocyclic Chemistry[M]. John wiley and Sons, Part 3, Quinolines and Isoquinolines. Pomeranz-Fritsch reaction: 2005,480-486. (b) Chrzanowska, M.; Grajewska, A.; Meissner, Z.; Rozwadowska, M.; Wiatrowska, I. A concise synthesis of tetrahydroisoquinoline-1-carboxylic acids using a Petasis reaction and Pomeranz-Fritsch-Bobbitt cyclization sequence[J]. Tetrahedron 2012,36: 3092-3097.
    [3]. (a) Tuan, L. A.; Kim, G. A short path to the 1,3-cis-substituted core skeleton of tetrahydroisoquinolines[J]. Bull. Korean Chem. Soc.2009,30:2489-2492. (b) Epishina, M. A.; Kulikov, A. S.; Struchkova, M. I.; et al. Ionic liquids-assisted synthesis of 3,4-dihydroisoquinolines by the Bischler-Napieralski reaction[J]. Mendeleev Commun.2012,22:267-269. (c) Shankar, R.; More, S. S.; Madhubabu, M. V.; Vembu, N.; Kumar, U. K. S. Synthesis of isoquinoline alkaloids via oxidative amidation-Bischler-Napieralski reaction[J]. Synlett 2012, 1013-1020.
    [4].(a)魏少荫,李敏.微管抑制剂那可丁及其衍生物的抗肿瘤作用研究进展[J].中国新药杂志,2006,15:1238-1243.(b) Tewari, D.; Saffari, B.; Cowan, C.; et al. Activity of trabectedin (ET-743, Yondelis) in metastatic uterine leiomyosarcoma [J]. Gynecol. Oncol.2006,102:421-424. (c) Sessa, C.; Perotti, A.; Noberasco, C.; et al. Phase I clinical and pharmacokinetic study of trabectedin and doxorubicin in advanced soft tissue sarcoma and breast cancer [J]. Eur. J. Cancer 2009,45:1153-1161. (d) McMeekin, D. S.; Lisyanskaya, A.; Crispens, M.; et al. Singleagent trabectedin as second-line therapy of persistent or recurrent endometrial cancer:results of a multicenter phase Ⅱ study[J]. Gynecol. Oncol.2009,114:288-292.
    [5]. Zhu, J.; Lu, J.; Zhou, Y.; et al. Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14a-demethylase(CYP51) of fungi[J]. Bioorg. Med. Chem. Lett.2006, 16:5285-5289.
    [6]. Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y; et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids[J]. Bioorg. Med. Chem. 2005,13:443-448.
    [7]. Tsoyi, K.; Kim, H. J.; Shin, J. S.; et al. HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesized tetrahydroisoquinoline alkaloid, CKD712, in cells activated with lipopolysacchride[J]. Cell Signal 2008,20:1839-1847.
    [8]. Pyo, M. K.; Lee, D. H.; Kim, D. H.; et al. Enantioselective synthesis of (R)-(+)-and (S)-(-)-higenamine and their analogues with effects on platelet aggregation and experimental animal model of disseminated intravascular coagulation[J]. Bioorg. Med. Chem. Lett.2008,18:4110-4114.
    [9]. Skogvall, S.; Dalence-Guzman, M. F.; Berglund, M.; et al. Discovery of a potent and long-acting bronchorelaxing capsazepinoid, RESPIR 4-95[J]. Pulm. Pharmacol. Ther.2008,21:125-133.
    [10]. (a) Gitto, R.; Ficarra, R.; Stancanelli, R.; et al. Synthesis, resolution, stereochemistry, and molecular modeling of (R)-and (S)-2-acetyl-1-(4-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquuioline AMPAR antagonists[J]. Bioorg. Med. Chem.2007,15:5417-5423. (b) Gitto, R.; De Luca, L.; Pagano, B.; et al. Synthesis and anticonvulsant evaluation of N-substituted isoquinoline AMPA receptor antagonists[J]. Bioorg. Med. Chem. 2008,16:2379-2384.
    [11]. Suckling, C. J.; Murphy, J. A.; Khalaf, A. I.; et al. M4 agonists/5HT7 antagonists with potential as antischizophrenic drugs:serominic compounds[J]. Bioorg. Med. Chem. Lett.2007,17:2649-2655.
    [12]. Deng, X. H.; Jimmy, T. L.; Liu, J.; et al. A practical synthesis of enantiopure 7-alkoxy-4-aryl-tetrahydroisoquinoline, a dual serotonin reuptake inhibitor/histamine H3 antagonist[J]. Org. Process Res. Dev.2007,11: 1043-1050.
    [13]. Li, Z. P.; Li, C. J. CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom[J]. J. Am. Chem. Soc.2004,126:11810-11811.
    [14]. Niu, M. Y.; Yin, Z. M.; Fu, H.; Jiang, Y. Y; Zhao, Y F. Copper-catalyzed coupling of tertiary aliphatic amines with terminal alkynes to propargylamines via C-H activation[J].J. Org. Chem.2008,73:3961-3963.
    [15]. Li, Z. P.; Li, C. J. CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp3 C-H and sp2 C-H bonds[J]. J. Am. Chem. Soc.2005,127:6968-6969.
    [16]. (a) Li, Z. P.; Li, C. J. Highly efficient copper-catalyzed nitro-mannich type reaction:cross-dehydrogenative-coupling between sp3 C-H bond and sp3 C-H bond[J]. J. Am. Chem. Soc.2005,127:3672-3673. (b) Li, Z. P.; Li, C. J. Highly efficient CuBr-catalyzed cross-dehydrogenative coupling (CDC) between tetrahydroisoquinolines and activated methylene compounds[J]. Eur. J. Org. Chem.2005,3173-3176.
    [17]. Basle, O.; Li, C. J. Copper-catalyzed oxidative sp3 C-H bond arylation with aryl boronic acids[J]. Org. Lett.2008,10:3661-3663.
    [18]. Correiaa, C. A.; Li, C. J. Copper-catalyzed cross-dehydrogenative coupling (CDC) of alkynes and benzylic C-H bonds[J]. Adv. Synth. Catal.2010,352: 1446-1450.
    [19]. Li, Z. P.; Cao, L.; Li, C. J. FeCl2-catalyzed selective C-C bond formation by oxidative activation of a benzylic C-H bond[J]. Angew. Chem. Int. Ed.2007,46: 6505-6507.
    [20], Guo, X. W.; Yu, R.; Li, H. J.; Li, Z. P. Iron-catalyzed tandem oxidative coupling and annulation:an efficient approach to construct polysubstituted benzofurans[J]. J. Am. Chem. Soc.2009,131:17387-17393.
    [21]. Volla, C. M. R.; Vogel, P. Chemoselective C-H bond activation:ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism[J]. Org. Lett.2009,11: 1701-1704.
    [22]. Ghobrial, M.; Harhammer, K.; Mihovilovic, M. D.; Schnurch, M. Facile, solvent and ligand free iron catalyzed direct functionalization of N-protected tetrahydroisoquinolines and isochroman[J]. Chem. Commun.2010,46: 8836-8838.
    [23]. Wurtz, S.; Rakshit, S.; Glorius, F.; Palladium-catalyzed oxidative cyclization of N-aryl enamines:from anilines to indoles[J]. Angew. Chem. Int. Ed.2008,47: 7230-7233.
    [24]. Stuart, D. R.; Bertrand-Laperle, M. G.; Fagnou, K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes [J]. J. Am. Chem. Soc.2008,130:16474-16475.
    [25]. Yu, A. H.; Gu, Z.; Chen, D.; He, W. M.; Tan, P.; Xiang, J. N. Highly efficient aerobic ruthenium-catalyzed oxidative cross-dehydrogenative coupling for sp3-sp3 carbon-carbon bond formation[J]. Catal. Commun.2009,11:162-166.
    [26]. Shu, X. Z.; Yang, Y. F.; Xia, X. F.; Ji, K. G.; Liu, X. Y.; Liang, Y. M. Platinum-catalyzed cross-dehydrogenative coupling reaction in the absence of oxidant[J]. Org. Biomol. Chem.2010,8:4077-4079.
    [27]. Sud, A.; Sureshkumar, D.; Klussmann, M. Oxidative coupling of amines and ketones by combined vanadium- and oganocatalysis[J]. Chem. Commun.2009, 3169-3171.
    [28]. Zhang, Y.; Li, C. J. DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones[J]. J. Am. Chem. Soc.2006, 128:4242-4243.
    [29]. Tsang, A. S. K.:Todd, M. H. Facile synthesis of vicinal diamines via oxidation of N-phenyltetrahydroisoquinolines with DDQ[J]. Tetrahedron Lett.2009,50: 1199-1202.
    [30]. Cheng, D. P.; Bao, W. L. Highly Efficient metal-free cross-coupling by C-H activation between allylic and active methylenic compounds promoted by DDQ[J]. Adv. Synth. Catal.2008,350:1263-1266.
    [31]. Li, Y.; Bao, W. L. A highly efficient, metal-free and convenient diarylallyl ether/thioether formation via oxidative C-H activation[J]. Adv. Synth. Catal. 2009,351:865-868.
    [32]. Jin, J.; Li, Y.; Wang, Z. J.; Qian, W. X.; Bao, W. L. A concise, metal-free approach to the synthesis of oxime ethers from cross-dehydrogenative-coupling of sp3 C-H bonds with oximes[J]. Eur. J. Org. Chem.2010,1235-1238.
    [33]. Wang, Z. M; Mo, H. J.; Cheng, D. P.; Bao, W. L. Metal-free synthesis of allylic amines by cross-dehydrogenative-coupling of 1,3-diarylpropenes with anilines and amides under mild conditions[J]. Org. Biomol. Chem.2012,10:4249-4255.
    [34]. (a) Zhu, X. Y; Li, Z. H.; Jin, C.; Xu, L.; Wu, Q. Q.; Su, W. K. Mechanically activated synthesis of 1,3,5-triaryl-2-pyrazolmes by high speed ball milling[J]. Green Chem.2009,11:163-165. (b) Zhu, X. Y; Li, Z. H.; Shu, Q. F.; Zhou, C. F.; Su, W. K. Mechanically activated solid-state synthesis of flavones by high-speed ball milling[J]. Syn. Commun.2009,39:4199-4211. (c) Yu, J. B.; Li, Z. H.; Su, W. K. Synthesis of quinolines by N-deformylation and aromatization via solvent-free high speed ball milling[J]. Syn. Commun.2013,4:1-4.
    [35]. (a) Zhang, Y. H.; Li, C. J. Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds[J]. Angew. Chem. Int. Ed. 2006,118:1983-1986. (b) Cheng, D. P.; Bao, W. L. Propargylation of 1,3-dicarbonyl compounds with 1,3-diarylpropynes via oxidative cross-coupling between sp3 C-H and sp3 C-H[J]. J. Org. Chem.2008,73:6881-6883. (c) Yu, B. X.; Jiang, T.; Li, J. P.; Su, Y. P.; Pan, X. F.; She, X. G A Novel prins cyclization through benzylic/allylic C-H activation[J]. Org. Lett.2009,11: 3442-3445. (d) Correia, C. A.; Li, C. J. Copper-catalyzed cross-dehydrogenative coupling (CDC) of alkynes and benzylic C-H bonds[J]. Adv. Synth. Catal.2010, 352:1446-1450.
    [36]. Colacino, E.; Nun, P.; Colacino, F. M.; Martinez, J.; Lamaty, F. Solvent-free synthesis of nitrones in a ball-mill[J]. Tetrahedron 2008,64:5569-5576.
    [37]. Dubs, C.; Hamashima, Y.; Sodeoka, M.; et al. Mechanistic studies on the catalytic asymmetric mannich-type reaction with dihydroisoquinolines and development of oxidative mannich-type reactions starting from tetrahydroisoquinolines[J]. J. Org. Chem.2008,73:5859-5871.
    [38]. Larsson, P. F; Correa, A.; Carril, M.; Norrby, P. O.; Bolm, C. Copper-catalyzed cross-couplings with part-per-million catalyst loadings[J]. Angew. Chem. Int. Ed. 2009,48:5691-5693.
    [39].赵冬梅,程卯生,黄文林,宋帅,蒋智.6.7-亚甲二氧基-1,2,3,4-四氢异喹啉衍生物及其制备方法和通途[P].CN:102030756.2011-04-27.
    [40]. Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Copper-catalyzed coupling of alkylamines and aryl iodides:an efficient system even in an air Atmosphere[J]. Org. Lett.2002,4:581-584.
    [41].朱驹,周有骏,吕加国等.新型1,2,3,4-四氢异喹啉类化合物的合成及抗真菌活性研究[J].第二军医大学学报,2006,27:1299-1303.
    [42]. Basle, O.; Li, C. J. Copper-catalyzed oxidative alkylation of sp3 C-H bond adjacent to a nitrogen atom using molecular oxygen in water [J]. Green Chem. 2007,9:1047-1050.
    [43]. Shu, X. Z.; Xia, X. F.; Yang, Y. F.; Ji, K. G.; Liu, X. Y.; Liang, Y. M. Selective functionalization of sp3 C-H bonds adjacent to nitrogen using(diacetoxyiodo)benzene (DIB)[J]. J. Org. Chem.2009,74:7464-7469.
    [44]. Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. Visible-light photoredox catalysis:Aza-Henry reactions via C-H functionalization[J]. J. Am. Chem. Soc.2010,132:1464-1465.
    [45]. Li, Z.; Li, C. J. Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom[J]. Org. Lett.2004,6:4997-4999.
    [46]. Alagiri, K.; Kumara, R. G. S.; Prabhu, K. R. An oxidative cross-dehydrogenative-coupling reaction in water using molecular oxygen as the oxidant:vanadium catalyzed indolation of tetrahydroisoquinolines[J]. Chem. Commun.2011,47:11787-11789.
    [1]. Chrzanowska, M.; Rozwadowska, M. D. Asymmetric synthesis of isoquinoline alkaloids[J]. Chem. Rev.2002,102:1669-1730.
    [2]. Mikami, Y.; Yokoyama, K.; Tabeta, H.; Nakagaki, K.; Arai, T. Saframycin S, a new saframycin group antibiotic[J]. J. Pharm. Dyn.1981,4:282-286.
    [3]. (a) Ikeda, Y.; Shimada, Y.; Honjo, K.; Okumoto, T.; Munakata, T. Safracins, new antitumor antibiotics. Ⅲ. Biological activity[J]. J. Antibiot.1983,36: 1290-1294. (b) Okumoto, T.; Kawana, M.; Nakamura, I.; Ikeda, Y.; Isagai, K. Activity of safracins A and B, heterocyclic quinone antibiotics, on experimental tumors in mice[J]. J. Antibiot.1985,38:767-771.
    [4]. Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Drug development from marine natural products[J]. Nat. Rev. Drug Discovery 2009,8:69-85.
    [5]. Tomita, F.; Takahashi, K.; Shimizu, K. DC-52, a novel antitumor antibiotic.1. Taxonomy, fermentation and biological activity[J].J. Antibiot.1983,36: 463-467.
    [6]. Kluepfel, D.; Baker, H. A.; Piattoni, G.; et al. Naphthyridinomycin, a new broad-spectrum antibiotic[J]. J. Antibiot.1975,28:497-502.
    [7], He, H. Y.; Shen, B.; Carter, G. T. Structural elucidation of lemonomycin, a potent antibiotic from Streptomyces candidus[J]. Tetrahedron Lett.2000,41: 2067-2071.
    [8]. Czarnocki, Z.; Mieczkowski, J. B. Enantioselective synthesis of R-(-)-and S-(+)-cryptostyline II[J]. Pol. J. Chem.1995,69:1447-1450.
    [9]. Kang, J.; Kim, J. B.; Cho, K. H.; Cho, B. T. Enantioselective catalytic reduction of dihydroisoquinoline derivatives[J]. Tetrahedron:Asymmetry 1997,8: 657-660.
    [10]. Hajipour, A. R.; Hantehzadeh, M. Asymmetric reduction of prochiral cyclic imines to alkaloid derivatives by novel asymmetric reducing reagent in THF or under solid-state conditions[J]. J. Org. Chem.1999,64:8475-8478.
    [11]. Gremmen, C.; Wanner, M. J.; Koomen, G.-J. Enantiopure tetrahydroisoquinolines via N-sulfinyl Pictet-Spengler reactions[J]. Tetrahedron Lett.2001,42:8885-8888.
    [12]. Gluszynska, A.; Rozwadowska, M. D. Enantioselective modification of the Pomeranz-Fritsch-Bobbitt synthesis of tetrahydroisoquinoline alkaloids synthesis of (-)-salsolidine and (-)-carnegine[J]. Tetrahedron:Asymmetry 2000, 11:2359.
    [13]. Yamazaki, N.; Suzuki, H.; Aoyagi, S.; Kibayashi, C. Lewis acid-mediated nucleophilic alkylations on chiral [6,3a,4]oxadiazaindano[5,4-a]isoquinolines. Asymmetric synthesis of 1-alkyl substituted tetrahydroisoquinolines [J]. Tetrahedron Lett.1996,37:6161.
    [14]. (a) Ukaji, Y.; Shimizu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata, K. Catalytic asymmetric addition of dialkylzinc to 3,4-dihydroisoquinoline N-oxides utilizing tartaric acid ester as a chiral auxiliary[J]. Bull. Chem. Soc. Jpn.2000, 73:447-452. (b) Wang, S.; Seto, C. T. Enantioselective addition of vinylzinc reagents to 3,4-dihydroisoquinolinei N-oxide[J]. Org. Lett.2006,8:3979-3982.
    [15]. Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. Enantioselective construction of quaternary stereocenter through a reissert-type reaction catalyzed by an electronically tuned bifunctional catalyst:efficient synthesis of various biologically significant compounds[J]. J. Am. Chem. Soc.2001,123: 10784-10785.
    [16]. Itoh, T.; Miyazaki, M.; Fukuoka, H.; Nagata, K.; Ohsawa, A. Formal total synthesis of (-)-emetine using catalytic asymmetric allylation of cyclic imines as a key step[J]. Org. Lett.2006,8:1295-1297.
    [17]. Taylor, A. M.; Schreiber, S. Enantioselective addition of terminal alkynes to isolated isoquinolineiminiums[J]. Org. Lett.2006,8:143-146.
    [18]. (a) Murahashi, S. I; Imada, Y.; Kawakami, T.; Harada, K.; Yonemushi, Y.; Tomita, N. Enantioselective addition of ketene silyl acetals to nitrones catalyzed by chiral titanium complexes.synthesis of optically active β-amino acids[J]. J. Am. Chem. Soc.2002,124:2888-2889. (b) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Enantioselective thiourea-catalyzed acyl-Mannich reactions of isoquinolines[J] Angew. Chem. Int. Ed.2005,44:6700-6704. (c) Frisch, K.; Langda, A.; Saaby, S.; J(?)rgensen, K. A. Organocatalytic diastereo-and enantioselective annulation reactions-construction of optically active 1,2-dihydroisoquinoline and 1,2-dihydrophthalazine derivatives[J]. Angew. Chem. Int. Ed.2005,44:6058-6063.
    [19]. Ito, K.; Akashi, S.; Saito, B.; Katsuki, T. Asymmetric intramolecular allylic amination:straightforward spproach to chiral C1-substituted tetrahydroisoquinolines[J]. Synlett 2003,1809-1812.
    [20]. Shi, C.; Ojima, I. Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination[J]. Tetrahedron 2007,63: 8563-8570.
    [21]. Meyers, A. I.; Nguyen, T. H. An asymmetric synthesis of S-(-)-noranicanine[J]. Heterocycles 1994,39:513-518.
    [22]. Li, Z. P.; Li, C. J. Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom[J]. Org. Lett.2004,6:4997-4999.
    [23]. Li, Z. P.; MacLeod, P. D.; Li, C. J. Studies on Cu-catalyzed asymmetric alkynylation of tetrahydroisoquinoline derivatives[J]. Tetrahedron:Asymmetry 2006,17:590-597.
    [24]. Su, W. K.; Yu, J. B.; Li, Z. H.; Jiang, Z. J. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines[J]. J. Org. Chem.2011,76: 9144-9150.
    [25]. (a) Rodriguez, B.; Rantanen, T.; Bolm, C. Solvent-free asymmetric organocatalysis in a ball mill[J]. Angew. Chem.2006,118:7078-7080; Angew. Chem. Int. Ed.2006,45:6924-6926. (b) Rodriguez, B.; Bruckmann, A.; Bolm, C. A highly efficient asymmetric organocatalytic Aldol reaction in a ball mill[J]. Chem. Eur. J.2007,13:4710-4722. (c) Guillena, G.; Hita, M. C.; Najera C.; Viozquez, S. F. A highly efficient solvent-free asymmetric direct Aldol reaction organocatalyzed by recoverable (S)-binam-L-prolinamides. ESI-MS evidence of the enamine-iminium formation[J]. J. Org. Chem.2008,73:5933-5943. (d) Hernandez, J. G.; Juaristi, E. Asymmetric Aldol reaction organocatalyzed by (5)-proline-containing dipeptides:Improved stereoinduction under solvent-free conditions[J]. J. Org. Chem.2011,76:1464-1467. (e) Hernandez, J. G.; Juaristi, E. Efficient ball-mill procedure in the 'green' asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides in the presence of water[J]. Tetrahedron 2011,67:6953-6959.
    [26]. Rantanen, T.; Schiffers, I.; Bolm, C. Solvent-free asymmetric anhydride opening in a ball mill[J]. Org. Process Res. Dev.2007,11(3):592-597.
    [27]. Wang, Y. F.; Chen, R. X.; Wang, K.; Zhang, B. B.; Li, Z. B.; Xu, D. Q. Fast, solvent-free and hydrogen-bonding-mediated asymmetric Michael addition in a ball mill[J]. Green Chem.2012,14:893-895.
    [28]. Nun, P.; Perez, V.; Calmes, M.; Martinez, J.; Lamaty, F. Preparation of chiral amino esters by asymmetric phase-transfer catalyzed alkylations of schiff bases in a ball mill[J]. Chem. Eur. J.2012,18:3773-3779.
    [29]. Li, Z. P.; Li, C. J. CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom[J]. J. Am. Chem. Soc.2004,126:11810-11811.
    [30]. Garay, A. L.; Pichon, A.; James, S. L. Solvent-free synthesis of metal complexes[J]. Chem. Soc. Rev.2007,36:846-855.
    [1]. Hotez, P. J.; Molyneux, D. H.; Fenwick, A.; et al. Control of neglected tropical diseases[J]. N. Engl. J. Med.2007,357:1018-1027.
    [2]. (a) Feldmeier, H.; Krantz, I.; Poggensee, G. Female genital schistosomiasis as a risk-factor for the transmission of HIV[J]. Int. J. STD. AIDS.1994,5:368-372. (b) Poggensee, G.; Feldmeier, H. Female genital schistosomiasis:facts and hypotheses[J]. Acta. Trop.2001,79:193-210. (c) Kjetland, E. F.; Ndhlovu, P. D.; Gomo, E.; et al. Association between genital schistosomiasis and HIV inrural Zimbabwean women[J]. AIDS 2006,20:593-600.
    [3]. Hotez, P. J.; Fenwick, A.; Kjetland, E. F. Africa's 32 cents solution for HIV/AIDS[J]. PLos. Negl. Trop. Dis.2009,3:e430.
    [4]. (a) Martinez, R.; Rubio, M. F.; Toscano, R. A.; et al. Praziquantel analogs. Synthesis of substituted 4-(2,3-and 4-R)-(phenylcarbonyl)piperazin-2-ones[J]. J. Heterocycl. Chem.1994,31:1521-1523; (b)胡玉琴,夏毅,周德涵等.血吸虫病化学预防药物的研究-吡喹酮类似物的合成[J].华西药学杂志,1996,11(3):129-133.(c)胡玉琴,周德涵,相丽珍等.血吸虫病化学预防药物4H-吡嗪并[2,1-a]异喹啉衍生物的合成[J].中国药物化学杂志,1997,7(1):37-42.
    [5]. Steinmann, P.; Keiser, J.; Bos, R.; et al. Schistosomiasis and water resources development:systematic review, meta-analysis, and estimates of people at risk[J]. Lancet Infect. Dis.2006,6(7):411-425.
    [6]. Melman, S. D.; Steinauer, M. L.; Cunningham, C.; et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni[J]. PLos. Negl. Trop. Dis.2009,3:e504.
    [7]. Maffrand, J. P.2-Acyl-1,3,4,6,7,11b)-hexahydro-2H-pyrazino[2,1-a]isoquinolin-4-ones and intermediates[P]. US:4523013,1983-08-05.
    [8]. Yuste, F.; Pallas, Y.; Barrios, H.; Ortiz. B.; Sanchez-Obregon, R. A short synthesis of praziquantel [J]. J. Heterocycl. Chem.1986,23:189-190.
    [9]. Kim, J. H.; Lee, Y. S.; Park, H.; Kim, C. S. Formation of pyrazinoisoquinoline ring system by the tandem amidoalkylation and N-acyliminium ion cyclization: an efficient synthesis of praziquantel[J]. Tetrahedron 1998,54:7395-7400.
    [10]. Kim, J. H.; Lee, Y. S.; Kim, C. S. Synthesis of praziquantel via N-acyliminium ion cyclization of amido acetals through several synthetic routes[J]. Heterocycles 1998,48(11):2279-2285.
    [11]. El-Fayyoumy, S.; Mansour, W.; Todd, M. H. Solid phase synthesis of praziquantel[J]. Tetrahedron Lett.2006,47:1287-1290.
    [12].单玉华,林富荣,袁顺福,徐平.吡喹酮合成工艺[P].CN:1683346A,2005-10-19.
    [13]. Berkowitz, W. F.; John, T. V. An internal imino-Diels-Alder route to a tetrahydroisoquinoline[J].J. Org. Chem.1984,49:5269-5271.
    [14]. Frehel, D.; Maffrand, J. P. New syntheses of praziquantel: 2-(cyclohexylcarbonyl)-1,2,3,6,7,11 11b-hexahydro-4H-pyrazino[2,1-a]isoquinolin-4-one[J]. Heterocycles 1983,20(9):1731-1735.
    [15].Seubert, J. Tetrahydroisoquinoline derivatives[P]. DE:2504250,1976-08-05. (b) Pohlke, R.4-Oxohexahydropyrazinoisoquinoline derivatives[P]. DE:2508947, 1976-09-09.
    [16].程训官,郑小红,夏铸,张昕宇,王宇,余瑜.抗血吸虫药物吡喹酮的新合成路线[J].重庆医科大学学报,2011,36(10):1208-1210.
    [17]. Roszkowski, P.; Maurin, J. K.; Czarnockia, Z. Enantioselective synthesis of (R)-(-)-praziquantel (PZQ)[J]. Tetrahedron:Asymmetry 2006,17:1415-1419.
    [18]. Anderson, J. C.; Chapman, H. A. Aluminum amalgam for the reduction of sensitive β-nitroamines to 1,2-diamines[J]. Synthesis 2006,19:3309-3315.
    [19]. Anderson, J. C.; Blake, A. J.; Howell, G. P.; Wilson, C. Scope and limitations of the nitro-Mannich reaction for the stereoselective synthesis of 1,2-diamines[J].J. Org. Chem.2005,70:549-555.
    [20]. Tsang, A. S. K.; Todd M. H. Facile synthesis of vicinal diamines via oxidation of N-phenyltetrahydroisoquinolines with DDQ[J]. Tetrahedron Lett.2009,50: 1199-1202.
    [21]. (a) Kronenthal, D. R.; Han, C. Y.; Taylor, M. K. Oxidative N-dearylation of 2-azetidinones.p-aniddine as a source of azetidinone nitrogen[J].J. Org. Chem. 1982,47:2765-2768. (b) Taniyama, D.; Hasegawa, M.; Tomioka K. A facile asymmetric synthesis of 1-substituted tetrahydroisoquinoline based on a chiral ligand-mediated additionof organolithium to imine[J]. Tetrahedron:Asymmetry 1999,10:221-223. (c) Di Fabio, R.; Alvaro, G.; Bertani, B.; et al. Novel stereocontrolled addition of sllylmetal reagents to α-imino esters:efficient synthesis of chiral tetrahydroquinoline derivatives[J]. J. Org. Chem.2002,67: 7319-7328. (d) Overman, L. E.; Owen, C. E.; Pavan, M. P. Catalytic asymmetric rearrangement of allylic N-aryl trifluoroacetimidates. A useful method for transforming prochiral allylic alcohols to chiral allylic amines[J]. Org. Lett.2003,5:1809-1812. (e) Shimizu, M.; Kimura, M.; Watanabe, T.; Tamaru, Y. Palladium-catalyzed allylation of imines with allyl alcohols[J]. Org. Lett.2005,7:637-640. (f) Liao, W. W.; Ibrahem, I.; Cordova A. A concise enantioselective synthesis of iminosugar derivatives[J]. Chem. Commun.2006, 674-676. (g) Giera, David S.; Sickert, M.; Schneider, C. A straightforward synthesis of (S)-anabasine via the catalytic, enantioselective vinylogous Mukaiyama-Mannich reaction[J]. Synthesis 2009,3797-3802. (h) Schultz, Danielle M.; Wolfe, J. P. Intramolecular alkene carboamination reactions for the synthesis of enantiomerically enriched tropane derivatives[J]. Org. Lett.2011, 13:2962-2965.
    [22]. Hedley, K. A.; Stanforth, S. P. Ring-opening reactions of N-aryl-1,2,3,4-tetrahydroisoquinoline derivatives[J]. Tetrahedron 1992,48: 743-750.
    [23]. Stanley, A. L.; Stanforth, S. P. Ring-opening reactions of halogenated N-aryl-1,2,3,4-tetrahydroisoquinoline and 2,3,4,5-tetrahydro-1H-benzazepine derivatives[J]. J. Heterocyclic Chem.1995,32:569-571.
    [24]. Beaumont, D.; Waigh, R. D.; Sunbhanich, M.; Nott, W. M. Synthesis of 1-(aminomethyl)-1,2,3,4-tetrahydroisoquinolines and their actions at adrenoceptors in vivo and in vitro[J]. J. Med. Chem.1983,26:507-515.
    [25]. Al-Hiaril, Y. M.; Sweileh, B. A.; Shakya, A. K.; Abu Sheikha, G.; Almuhtaseb, S. I. Synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinoline, Part Ⅰ:Grignard synthesis of 1-(substitutedbenzyl)-1,2,3,4-Tetrahydroisoquinoline models with potential antibacterial activity[J]. Jordan J. Pharm. Sci.2009,2(1):1-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700