电纺PLGA/明胶组织工程支架和药物载体的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝法是制备微纳米级连续纤维的有效手段,其独特优势在于,所制备出的纤维膜比表面积大、孔隙小且孔隙率高,不但与细胞外基质的结构相似,而且能够装载药物,因此在生物医学领域具有广泛的应用前景。本论文采用静电纺丝法制备了聚乙丙交酯(PLGA)/明胶复合纳米纤维,并对其在组织工程支架、表面矿化、表面修饰及药物控释等方面开展系统研究工作。具体研究内容包括以下几个方面:
     首先,利用静电纺丝法成功制备出具有非定向和定向结构的PLGA/明胶纳米纤维膜,通过扫描电子显微镜、衰减全反射傅立叶变换红外光谱、吸水率实验、拉伸实验对戊二醛交联前后的纤维的表面形貌、化学结构、亲水性及力学性能等进行表征。研究发现,随着明胶含量的增加,非定向纤维的直径呈现先降后升的趋势,直径分布范围变宽,纤维膜亲水性提高,纤维膜的弹性模量和拉伸强度呈现出先升后降的趋势。交联后纤维膜亲水性下降,但拉伸性能有所提高。与非定向纤维膜相比,定向纤维膜的纤维直径、孔隙率和吸水率略低,但拉伸强度显著提高。神经干细胞培养结果表明,明胶的加入显著改善了纤维膜的细胞相容性,纤维的定向结构更有利于细胞的黏附与增殖。
     其次,采用浓缩模拟体液法、过饱和法和交替矿化法在PLGA和PLGA/明胶9/1电纺纤维的表面进行矿化沉积。三种方法都使矿化速率显著提高,其中浓缩模拟体液法和交替矿化法都在短时间内将大量矿化物沉积到纤维表面,而过饱和法的矿化物产量相对较低,但纤维膜中的大量孔隙却得以保留。由于明胶对Ca2+离子具有吸附作用,因此会促进矿化物的形核过程,导致矿化物在PLGA/明胶9/1纤维表面沉积速度大于PLGA纤维。由三种矿化方法得到的钙磷矿化物都包含透钙磷灰石(DCPD)、磷酸八钙(OCP)和羟基磷灰石(HA),浓缩模拟体液法形成矿化物以DCPD为主,而过饱和法和交替矿化法中的HA含量有所增加。细胞培养结果显示,矿化后的纤维膜对骨细胞的黏附、增殖和分化均有良好的促进作用,因此矿化纤维在骨组织培养及修复方面具有潜在应用价值。
     再次,采用表面截留法对PLGA电纺纤维支架进行表面修饰。通过考察三氟乙醇水溶液浓度、溶胀时间和截留大分子溶液浓度对截留效果的影响,确定了截留的最佳工艺条件,获得表面截留明胶的PLGA电纺纤维以及表面截留接枝海藻酸钠/明胶的PLGA电纺纤维。表面形貌与红外光谱的结果证实,天然大分子是通过截留而非黏附固定在PLGA纤维表面。经过截留修饰的PLGA纤维膜产生的收缩现象增加了纤维膜单位面积上的纤维密度,从而使纤维膜的力学性能提高。经过表面修饰的PLGA电纺纤维的亲水性和细胞相容性大大提高,其中海藻酸钠/明胶截留接枝的PLGA纤维的亲水性和细胞相容性要高于明胶截留的PLGA纤维,显示了双层大分子修饰的优势。采用表面截留方法不仅改善PLGA电纺纤维的亲水性和细胞相容性,而且提高其力学性能,充分拓展了其在生物医学领域中的用途。
     最后,分别采用静电纺丝法和溶液浇注法制备装载药物芬布芬的PLGA/明胶电纺纤维膜和浇注薄膜。芬布芬在纤维中呈无定形态,而在薄膜中以结晶态存在,从而导致纤维膜的药物释放速率高于薄膜。载药体中明胶含量增加导致载体溶胀率增大,从而使药物释放速率增大,而交联处理降低了纤维膜的溶胀率,从而使药物释放速率随交联时间延长而降低。与非定向纤维膜相比,定向纤维膜由于纤维排列紧密阻碍了药物的扩散,从而使药物释放速率略有降低。在不同pH值缓冲液中,PLGA基体的玻璃化转变温度发生变化,导致药物释放速率随pH值增加而增大。通过研究甲硝唑/芬布芬双药载体的药物释放性能,发现双层结构载药纤维膜适合作双药载体,因为每种药物可以独立装载与释放,两种药物的释放不产生相互干扰,而且其含量可由载药纤维的层厚进行调节。在药物释放过程中,采用外裹PLGA纤维的方法可以有效缓解药物释放初期的突释现象。
Electrospining is an effective method to yield continues fiber of nanometer tomicrometer scale. The fibrous membrane with large surface to volume ratio, interconnectedpores and high porosity, is similar to extracellular matrix and can carry drugs, thus has broadapplication in biomedical fields. In this paper, the electrospun nanofibers consisted ofsynthetic polymer poly(D,L-lactide-co-glycolide)(PLGA) and natural polymer gelatin areinvestigated systematically in tissue engineering, surface mineralization, surface entrapmentand drug release. The main contents are as followed:
     Firstly, randomly-oriented and aligned nanofibers with different ratios of PLGA/gelatinare produced through electrospinning. The surface morphology, chemical structure,hydrophilicity and mechanical property of PLGA/gelatin nanofibers before and aftercrosslinking are revealed by scanning electron microscope (SEM), attenuated total reflectionFourier transform infrared (ATR-FT-IR), swelling ratio and tensile test. It is found that thefiber diameter first increases and then decreases with broader fiber diameter distribution whenthe gelatin content increases. The hydrophilicity of fibrous scaffolds increases with increasingof gelatin content. The increasing of gelatin makes the elastic modulus and tensile stress offibrous scaffolds first increase and then decrease sharply. The crosslinking by glutaraldehydedecreases the hydrophilicity, but improves the elastic modulus and tensile stress of fibrousscaffolds. Compared with randomly-oriented PLGA/gelatin nanofibrous scaffolds, the fiberdiameter, porosity and swelling ratio of aligned nanofibrous scaffolds are lower, but theelastic modulus and tensile stress are higher than that of randomly-oriented nanofibrousscaffolds. Moreover, the addition of gelatin improves the biocompatibility of the nanofibrousscaffold, and aligned nanofibrous scaffold reveals better performance for cell adhesion andproliferation.
     Secondly, calcium phosphate apatite mineralization on the PLGA and PLGA/gelatin9/1nanofibrous scaffolds is prepared by three methods: concentrated simulated body fluid(10SBF), supersaturated calcification solution and alternate soaking. The carboxyl groups ofgelatin could lead to the enrichment of Ca2+ion, which could induce the nucleation ofcrystallites and result in the higher weight increase of mineralized PLGA/gelatin9/1nanofibers than PLGA nanofibers. The results of EDS, FT-IR and XRD depicts the apatiteyielded by three methods all contains DCPD, OCP and HA. The main component in10SBF isDCPD, and HA content is increasing in the other two methods. The efficiency of mineralization is higher, and large apatite coats on the nanofibers. It is also found that themineralized nanofibers show positive influence on adhesion, proliferation and differentiationof cells, which has a potential application in bone tissue engineering.
     Thirdly, the entrapment technology is used for surface modification of PLGA electrospunnanofibers with natural polymers. The influence of concentration of2,2,2-thifluoroethanolaqueous solution, swelling time and concentration of entrapment polymer on entrapment areinvestigated to confirm the best conditions and obtain the gelatin entrapment PLGAnanofibers and sodium alginate/gelatin entrapment-graft PLGA nanofibers. The results ofSEM and FT-IR shows the natural polymer is entrapping on the surface of PLGA nanofibers.The water contact angle test shows the higher hydrophilicity of modified PLGA nanofibers,and the hydrophilicity of sodium alginate/gelatin entrapment-graft PLGA nanofibers is betterthan that of gelatin entrapment PLGA nanofibers. The mechanical property of PLGAnanofibers is improved through entrapment. The MTT results shows that the entrapmentenhances the biocompatibility of the PLGA elecrospun nanofibers, and the biocompatibility ofsodium alginate/gelatin entrapment-graft PLGA nanofibers is better than that of gelatinentrapment PLGA nanofibers. The entrapment not only improves the hydrophilicity but alsoenhances the mechanical property, thus broader the application as tissue engineeringscaffolds.
     Fourthly, fenbufen (FBF)-loaded electrospun PLGA and PLGA/gelatin nanofibrousscaffolds as well as FBF-loaded solvent-cast films are produced and their drug releasecharacteristics are further investigated. It is found that FBF is in amorphous condition withinthe electrospun nanofibers but form crystal within the films, which lead to the higher drugrelease rate of nanofibers than that of films. The increasing of gelatin in the drug carrierenhances the swelling ratio, resulting in the large drug release. But after crosslinking, the drugrelease decreases with the increasing of crosslinking time. The structure of alignednanofibrous membrane is more compact than that of randomly-oriented nanofibrousmembrane, which leads to the lower drug release. In addition, the pH value of the buffersolution could change the Tgof the polymer, which affects the drug release rate. The furtherinvestigation finds that multi-layer structure is suitable as the two drug carrier ofmetronidazole/fenbufen, and the drug content depends on the thickness of the layer. Finally,the outer protected PLGA nanofibrous layer of the drug-loaded nanofibrous membrane couldinhibit the burst release of the drug effectively.
引文
[1]汪信,刘孝恒.纳米材料学简明教程[M]北京:化学工业出版社,2010:7-14P
    [2]陈翌庆,石瑛.纳米材料学基础[M]长沙:中南大学出版社,2009:4P
    [3]吴大诚,杜仲良.纳米纤维[M]北京:化学工业出版社,2003:9-11P
    [4]赵婷婷,张玉梅,崔峥嵘,王华平.纳米纤维的技术发展[J].产业用纺织品.2003,21:38-42P
    [5]王二兰,陶庭先,辛后群,陈培根,张宇东,吴之传.纳米纤维的制备及研究进展[J].纺织科技进展.2006,3:13-16P
    [6] Formhals A. US patent1,975,504,1934.
    [7] Formhals A. US patent2,160,962,1939.
    [8] Formhals A. US patent2,187,306,1940.
    [9] Formhals A. US patent2,323,025,1943.
    [10]Formhals A. US patent2,349,950,1944.
    [11]Simons HL. US patent3,280,229,1966.
    [12]Baumgarten PK. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid andInterface Science.1971,36:71–79P
    [13]Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays andlayer-by-layer stacked films[J]. Advanced Materials.2004,16:361-366P
    [14]Zhang D, Chang J. Electrospinning of three-dimensional nanofibrous tubes withcontrollable architectures[J]. Nano Letters.2008,8:3283-3287P
    [15]Manesh K.M., Santhosh P., Gopalan A., Lee K-P. Electrospun poly(vinylidenefluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novelglucose sensor[J]. Analytical Biochemistry.2007,360:189-195P
    [16]Yang D, Niu X, Liu Y, Wang Y, Gu X, Song L, Zhao R, Ma L, Shao Y, Jiang X.Electrospun nanofibrous membranes: a novel solid substrate for microfluidicimmunoassays for HIV[J]. Advanced Materials.2008,20:4770–4775P
    [17]Cheah YL, Gupta N, Pramana SS, Aravindan V, Wee G, Srinivasan M. Morphology,structure and electrochemical properties of single phase electrospun vanadium pentoxidenanofibers for lithium ion batteries[J]. Journal of Power Sources.2011,196:6465-6472P
    [18]Mollá S, Compa V. Performance of composite Nafion/PVA membranes for directmethanol fuel cells[J]. Journal of Power Sources.2011,196:2699-2708P
    [19]Reneker DH, Yarin AL, Fong H, Sureeporn K. Bending instability of electrically chargedliquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics.2000,87:4531–4547P
    [20]Shin YM, Hohman MM, Brenner MP, Rutledge GC. Experimental characterization ofelectrospinning: the electrically forced jet and instabilities[J]. Polymer.2001,42:9955–9967P
    [21]Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: a whipping fluid jetgenerates submicron polymer fibers[J]. Applied Physics Letters.2001,78:1149–1151P
    [22]Taylor GI. Disintegration of water drops in an electric field[J]. Proceedings of RoyalSociety of London. Series A.1964,280:383-397P
    [23]Taylor GI. Electrically driven jets[J]. Proceedings of Royal Society of London. Series A.1969,313:453-475P
    [24]Hohman MM, Shin M, Rutledge G. Electrospinning and electrically forced jets. I.Stability theory[J]. Physics of Fluids.2001,13:2201–2220P
    [25]Zuo WW, Zhu MF, Yang W, Yu H, Chen YM, Zhang Y. Experimental study onrelationship between jet instability and formation of beaded fibers duringelectrospinning[J]. Polymer Engineering and Science.2005,45:704–709P
    [26]Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT. Evaluation ofelectrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermalreconstitution[J]. Acta Materialia.2007,3:321–330P
    [27]Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel[J]. Advanced Materials.2004,16:1151–1170P
    [28]Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on themorphology of electrospun nanofibers and textiles[J]. Polymer.2001,42:261–272P
    [29]Mckee MG, Wilkes GL, Colby RH, Long TE. Correlations of solution rheology withelectrospun fiber formation of linear and branched polyesters[J]. Macromolecules.2004,37:1760–1767P
    [30]Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers[J]. Physica StatusSolidi.2007,204:1830–1834P
    [31]Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Regeneration of bombyx mori silkby electrospinning—part1: processing parameters and geometric properties[J]. Polymer.2003,44:5721–5727P
    [32]Jun Z, Hou H, Schaper A, Wendorff JH, Greiner A. Poly-l-lactide nanofibers byelectrospinning-influence of solution viscosity and electrical conductivity on fiberdiameter and fiber morphology[J]. e-Polymers.2003,9:1–9P
    [33]尹君,李秋瑾,封亚培,张同华,张慧萍,晏雄.静电纺丝工艺参数对聚己内酯纳米纤维直径的影响[J].合成纤维.2009,38:26-30P
    [34]Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly(methylmethacrylate): exploring relationships between fiber formation, viscosity,molecular weight and concentration in a good solvent[J]. Polymer.2005,46:4799–4810P
    [35]Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiberfabrication via electrospinning process[J]. Polymer.2005,46:6128–6134P
    [36]McKee MG, Layman JM, Cashion MP, Long TE. Phospholipid non-woven electrospinmembranes[J]. Science.2006,311:353–355P
    [37]Pham QP, Sharma U, Mikos AG. Electrospun poly (ε-caprolactone) microfiber andmultilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurementof cellular infiltration[J]. Biomacromolecules.2006,7:2796–2805P
    [38]Hayati I, Bailey AI, Tadros TF. Investigations into the mechanisms ofelectrohydrodynamic spraying of liquids[J]. Journal of Colloid and Interface Science.1987,117:205–221P
    [39]Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship ofelectrospun bioadsorbable nanofiber membrane[J]. Polymer.2002,43:4403–4412P
    [40]Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats[J]. European Polymer Journal.2005,41:423–432P
    [41]Kim B, Park H, Lee SH, Sigmund WM. Poly (acrylic acid) nanofibers byelectrospinning[J]. Material Letters.2005,59:829–832P
    [42]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6fibers:effect of solution conditions on morphology and average fiber diameter[J].Macromolecular Chemistry and Physics.2004,205:2327–2338P
    [43]Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers[J].Polymer.2002,43:3303–3309P
    [44]Reneker DH, Chun L. Nanometre diameters of polymer, produced by electrospinning[J].Nanotechnology.1996,7:216–223P
    [45]Yordem OS, Papila M, Mencelo lu YZ. Effects of electrospinning parameters onpolyacrylonitrile nanofiber diameter: an investigation by response surfacemethodology[J]. Materials and Design.2008,29:34–44P
    [46]Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro-and nanostructured surfacemorphology on electrospun polymer fibers[J]. Macromolecules.2002,35:8456-8466P
    [47]Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphologyof electrospun polystyrene fibers: effect of humidity andmolecular weight in theelectrospinning process[J]. Macromolecules2004,37:573–578P
    [48]You Y, Youk JH, Lee SW, Min B-M, Lee SJ, Park WH. Preparation of porous ultrafinePGA fibers via selective dissolution of electrospun PGA/PLA blend fibers[J]. MaterialsLetters.2006,60:757-760P
    [49]Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, N. Cohen, Baumgarten CM,Mathews J, Simpson DG. Regulation of cellular infiltration into tissue engineeringscaffolds composed of submicron diameter fibrils produced by electrospinning[J]. ActaBiomaterialia.2005,1:377–385P
    [50]Huang L, Nagapudi K, Apkarian RP, Chaikof EL. Engineered collagen-PEO nanofibersand fabrics[J]. Journal of Biomaterials Science. Polymer Edition.2001,12:979–993P
    [51]Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LYL, Hutmacher DW,Sheppard C, Raghunath M. Electro-spinning of pure collagen nano-fibres–just anexpensive way to make gelatin[J]. Biomaterials.2008,29:2293–2305P
    [52]Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomimeticsfor guided tissue regeneration[J]. Advanced Functional Materials.2005,15:1988–1994P
    [53]Songchotikunpan P, Tattiyakul J, Supaphol P. Extraction and electrospinning of gelatinfrom fish skin[J]. International Journal of Biological Macromolecules.2008,42:247-255P
    [54]McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL. Electrospun fibrinogen:feasibility as a tissue engineering scaffold in a rat cell culture model[J]. Journal ofBiomedical Materials Research Part A.2007,81:299–309P
    [55]Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroinnanofibers and its effect on the adhesion and spreading of normal human keratinocytesand fibroblasts in vitro[J]. Biomaterials.2004,25:1289–1297P
    [56]Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan D, Leisk G. Silk-basedelectrospun tubular scaffolds for tissue-engineered vascular grafts[J]. Journal ofBiomaterials Science: Polymer Edition.2008,19:653–664P
    [57]Matsuda T, Kagata G, Kino R, Tanaka J. Preparation of chitosan nanofiber tube byelectrospinning[J]. Journal of Nanoscience and Nanotechnology.2007,7:852–855P.
    [58]Schiffman JD, Schauer CL. One-step electrospinning of cross-linked chitosannanofibers[J]. Biomacromolecules.2007,8:2665–2667P
    [59]Chen F, Li X, Mo X, He C, Wang H, Ikada Y. Biocompatibility, alignment degree andmechanical properties of an electrospun chitosan-P(LLA-CL) fibrous scaffold[J]. Journalof Biomaterials Science: Polymer Edition.2008,19:677–691P
    [60]Liu Y, Ma G, Fang D, Xu J, Zhang H, Nie J. Effects of solution properties and electricfield on the electrospinning of hyaluronic acid[J]. Carbohydrate Polymers.2011,83:1011-1015P
    [61]Bhattarai N, Zhang M. Controlled synthesis and structural stability of alginate basednanofibers[J]. Nanotechnology.2007,18:1–10P
    [62]Han D, Gouma PI. Electrospun bioscaffolds that mimic the topology of extracellularmatrix[J]. Nanomedicine: Nanotechnology, Biology and Medicine.2006,2:37–41P
    [63]Wang S, Zhang Y, Wang H, Dong Z. Preparation, characterization and biocompatibility ofelectrospinning heparin-modified silk fibroin nanofibers[J]. International Journal ofBiological Macromolecules.2011,48:345-353P
    [64]Hou H, Reneker DH. Carbon nanotubes on nanobibers: a novel structure hased onelectrospun polymer nanofibers[J]. Advanced.Materials.2004,16:69-73P
    [65]Graeser M, Bognitzki M, Massa W, Pietzonka C, Greiner A, Wendorff JH. Magneticallyanisotropic cobalt and iron nanofibers via electrospinning[J]. Advanced Materials.2007,19:4244-4247P
    [66]Bognitzki, Becker M, Graeser M, Massa W, Wendorff JH, Schaper A, Weber D, Beyer A,G lzh user A, Greiner A. Preparation of sub-micrometer copper fibers viaelectrospinning[J]. Advanced Materials.2006,18:2384-2386P
    [67]Li M, Gao Y, Wei Y, MacDiarmid AG, Lelkes PI. Electrospinning polyaniline-containedgelatin nanofibers for tissue engineering applications[J]. Biomaterials.2006,27:2705-2715P
    [68]Chen J-P, Chang G-Y, Chen J-K. Electrospun collagen/chitosan nanofibrous membrane aswound dressing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2008,313-314:183-188P
    [69]Ra EJ, An KH, Kim KK, Jeong SY, Lee YH. Anisotropic electrical conductivity ofMWCNT/PAN nanofiber paper[J]. Chemical Physics Letters.2005,413:188–193P
    [70]Pan C, Ge L-Q, Gu Z-Z. Fabrication of multi-walled carbon nanotube reinforcedpolyelectrolyte hollow nanofibers by electrospinning[J]. Composites Science andTechnology.2007,67:3271–3277P
    [71]Meng ZX, Zheng W, Li L, Zheng YF. Fabrication and characterization ofthree-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning[J].Materials Science and Engineering: C.2010,30:1014-1021P
    [72]Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E. Aligned PLGA/HA nanofibrousnanocomposite scaffolds for bone tissue engineering[J]. Acta Biomaterialia.2009,5:305-315P
    [73]Sheikh FA, Barakat NAM, Kanjwal MA, Jeon S-H, Kang H-S, Kim H-Y. Self synthesizeof silver nanoparticales in/on polyurethane nanofibers: nano-biotechnological approach[J].Journal of Applied Polymer Science.2010,115:3189-3198P
    [74]Zhuang X, Cheng B, Kang W, Xu X. Electrospun chitosan/gelatin nanofibers containingsilver nanoparticles[J]. Carbohydrate Polymers.2010,82:524-527P
    [75]An K, Liu H, Guo S, Kumar DNT, Wang Q. Preparation of fish gelatin and fishgelatin/poly(l-lactide) nanofibers by electrospinning[J]. International Journal ofBiological Macromolecules.2010,47:380-388P
    [76]Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL. Thepotential to improve cell infiltration in composite fiber-aligned electrospun scaffolds bythe selective removal of sacrificial fibers[J]. Biomaterials.2008,29:2348-2358P
    [77]Kim GH, Cho YS, Kim WD. Stability analysis for multi-jets electrospinning processmodified with a cylindrical electrode[J]. European Polymer Journal.2006,42:2031-2038P
    [78]Li X, Yao C, Sun F, Song T, Li Y, Pu Y. Conjugate electrospinning of continuousnanofiber yarn of poly(l-lactide)/nanotricalcium phosphate nanocomposite[J]. Journal ofApplied Polymer Science.2008,107:3756–3764P
    [79]Lin T, Wang H, Wang X. Self-crimping bicomponent nanofibers electrospun frompolyacrylonitrile and elastomeric polyurethane[J]. Advanced Materials.2005,17:2699-2703P
    [80]刘亦节,黎雁,蒋宏亮,胡应乾,朱康杰.同轴电纺制备刚性多糖纳米纤维膜[J].功能高分子学报.2008,21:20-24P
    [81]孙良奎,程海峰,楚增勇,周永江,孙国亮. C/SiO2同轴复合纤维的制备及性能研究[J].无机材料学报.2009,24:310-314P
    [82]Saraf A, Baggett L, Raphael RM, Kurtis Kasper F, Mikos AG. Regulated non-viral genedelivery from coaxial electrospun fiber mesh scaffolds[J]. Journal of Controlled Release.2010,143:95-103P
    [83]He W, Ma ZW, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coatedbiodegradable polymer nanofiber mesh and its potential for endothelial cells growth[J].Biomaterials.2005,26:7606-7615P
    [84]Zhu X, Chian KS, Chan-Park MBE, Lee ST. Effect of argon-plasma treatment onproliferation of human-skin-derived fibroblast on chitosan membrane in vitro[J]. Journalof Biomedical Materials Research Part A.2005,73A:264–274P
    [85]Favia P, Ricardo A, Plasma treatment and plasma deposition of polymer for biomedicalapplications[J]. Surface and Coatings Technology.1998,1:98-102P
    [86]Park H, Lee KY, Lee SJ, Park KE, Park WH. Plasma-treated poly(lactic-co-glycolic acid)nanofibers for tissue engineering[J]. Macromolecular Research.2007,15:238–243P
    [87]Ma ZW, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and tocontrol cell orientation[J]. Tissue Engineering.2005,11:1149–1158P
    [88]贾俊,段媛媛,陈亚芍,周建学,张少锋.胶原改性PLGA电纺纤维的制备及其细胞相容性研究[J].临床口腔医学杂志.2007,6:323-325P
    [89]He W, Yong T, Ma ZW, Inai R, Teo WE, Ramakrishna S. Biodegradable polymernanofiber mesh to maintain functions of endothelial cells[J]. Tissue Engineering.2006,12:2457–2466P
    [90]Baek HS, Park YH, Ki CS, Park JC, Rah DK. Enhanced chondrogenic responses ofarticular chondrocytes onto porous silk fibroin scaffolds treated with microwave-inducedargon plasma[J]. Surface and Coatings Technology.2008,202:5794–5797P
    [91]Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth usingnano-structured scaffolds coupled with laminin[J]. Biomaterials.2008,29:3574–3582P
    [92]Park K, Ju YM, Son JS, Ahn KD, Han DK. Surface modification of biodegradableelectrospun nanofiber scaffolds and their interaction with fibroblasts[J]. Journal ofBiomaterials Science: Polymer Edition.2007,18:369–382P
    [93]Croll TI, Connor AJ, Stevens GW, Cooper-White JJ. Controllable surface modification ofpoly(lactic-co-glycolic acid)(PLGA) by hydrolysis or aminolysis I: physical, chemical,and theoretical aspects[J]. Biomacromolecules.2004,5:463–473P
    [94]Chen F, Lee CN, Teoh SH. Nanofibrous modification on ultra-thin poly(epsilon-caprolactone) membrane via electrospinning[J]. Material Science and Engineering: C.2007,27:325–332P
    [95]Zhu YB, Gao CY, Liu XY, Shen JC. Surface modification of polycaprolactone membranevia aminolysis and biomacromolecule immobilization for promoting cytocompatibility ofhuman endothelial cells[J]. Biomacromolecules.2002,3:1312–1319P
    [96]Oyane A, Uchida M, Yokoyama Y, Choong C, Triffitt J, Ito A. Simple surfacemodification of poly(epsilon-caprolactone) to induce its apatite-forming ability[J].Journal of Biomedical Materials Research Part A.2005,75A:138–145P
    [97]Chen JL, Chu B, Hsiao BS. Mineralization of hydroxyapatite in electrospun nanofibrouspoly(l-lactic acid) scaffolds[J]. Journal of Biomedical Materials Research Part A.2006,79A:307–317P
    [98]Zhu YB, Leong MF, Ong WF, Chan-Park MB, Chian KS. Esophageal epitheliumregeneration on fibronectin grafted poly(l-lactide-co-caprolactone)(PLLC) nanofiberscaffold[J]. Biomaterials.2007,28:861–868P
    [99]Kim TG, Park TG. Biodegradable polymer nanocylinders fabricated by transversefragmentation of electrospun nanofibers through aminolysis[J]. Macromolecular RapidCommunications.2008,29:1231–1236P
    [100]赵长生.生物医用高分子材料[M]北京:化学工业出版社2009:199P
    [101]金岩.组织工程学原理与技术[M]西安:第四军医大学出版社2004,5:6P
    [102]阮建明,邹俭鹏,黄伯云.生物材料学[M]北京:科学出版社2004:325P
    [103] Powell HM, Supp DM, Boyce ST. Influence of electrospun collagen on woundcontraction of engineered skin substitutes[J]. Biomaterials.2008,29:834-843P
    [104] Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers usingelectrospun nanofibers immobilized with human epidermal growth factor (EGF)[J].Biomaterials.2008,29:587-596P
    [105] Jang J-H, Castano O, Kim H-W. Electrospun materials as potential platforms forbone tissue engineering[J]. Advanced Drug Delivery Reviews.2009,61:1065-1083P
    [106] Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, W.J. StarkWJ. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bonesubstitute material for complex defects[J]. Acta Biomaterialia.2009,5:1775-1784P
    [107] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials.2000,21:2529-2543P
    [108] Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stemcells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiberscaffold[J]. Biomaterials.2007,28:316-325P
    [109] Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P. Bone scaffolds fromelectrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend[J]. Polymer.2007,48:1419-1427P
    [110] Gupta D, Venugopal J, Mitra S, Giri Dev VR, Ramakrishna S. Nanostructuredbiocomposite substrates by electrospinning and electrospraying for the mineralization ofosteoblasts[J]. Biomaterials.2009,30:2085–2094P
    [111] Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospunbiomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissueengineering[J]. Biomaterials.2008,29:4314–4322P
    [112]许益民,漆松涛,曾绍文等.新型小口径生物型人造血管的光镜和扫描电镜观察[J].南方医科大学学报.2006,27:866-874P
    [113] Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I,Feijen J. Electrospinning of collagen and elastin for tissue engineering applications[J].Biomaterials.2006,27:724–734P
    [114] Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ. Bilayered scaffold for engineeringcellularized blood vessels[J]. Biomaterials.2010,31:4313-4321P
    [115] Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM.Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers usingpulsatile perfusion bioreactors[J]. Biomaterials.2007,28:1115-1122P
    [116] Keilhoff G, Pratsch F, Wolf G, Fansa H. Bridging extra large defects of peripheralnerves: possibilities and limitations of alternative biological grafts from acellular muscleand schwann cells[J]. Tissue Engineering.2005,11:1004-1014P
    [117] Yu X, Bellamkonda RV. Tissue-engineered scaffolds are effective alternatives toautografts for bridging peripheral nerve gaps[J]. Tissue Engineering.2003,9:421-430P
    [118]王建广,刘俊建,范存义,莫秀梅,何创龙,陈峰.同轴静电纺丝法制备神经生长因子纳米纤维缓释载体[J].中国组织工程研究与临床康复.2008,12:4440-4444P
    [119] Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospunfibrous scaffolds on schwann cell maturation[J]. Biomaterials.2008,29:653-661P
    [120] Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scalepoly(l-lactic acid) aligned fibers and their potential in neural tissue engineering[J].Biomaterials.2005,26:2603–2610P
    [121] Gupta D, Venugopal J, Molamma P. Prabhakaran MP, Giri Dev VR, Low S, ChoonAT, Ramakrishna S. Aligned and random nanofibrous substrate for the in vitro culture ofschwann cells for neural tissue engineering[J]. Acta Biomaterialia.2009,5:2560–2569P
    [122]褚薛蕙,施晓雷,冯章启,顾忠泽,丁义涛.肝脏组织工程纳米纤维支架材料的比较研究[J].中国生物工程学报.2009,28:476-480P
    [123] Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S. Electrospundegradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissueengineering[J]. Biomaterials.2005,26:4606-4615P
    [124] Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun alignedpoly(ε-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletalmuscle myotubes[J]. Biomaterials.2008,29:2899-2906P
    [125] Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, Southgate J.Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitrobiological studies[J]. Biomaterials.2006,27:3136-3146P
    [126] Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG.Polyhydroxyethylaspartamide-based micelles for ocular drug delivery[J]. InternationalJournal of Pharmaceutics.2009,378:177-186P
    [127] Guan J, Ferrell N, Lee LJ, Hansford DJ. Fabrication of polymeric microparticles fordrug delivery by soft lithography[J]. Biomaterials.2006,27:4034-4041P
    [128] Hirose M, Tachibana A, Tanabe T. Recombinant human serum albumin hydrogel as anovel drug delivery vehicle[J]. Materials Science and Engineering: C.2010,30:664-696P
    [129] Min KH, Kim J-H, Bae SM, Shin H, Kim MS, Park S, Lee H, Park R-W, Kim I-S,Kim K, Kwon IC, Jeong SY, Lee DS. Tumoral acidic pH-responsiveMPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy[J]. Journal ofControlled Release.2010,144:259-266P
    [130] Colinet I, Dulong V, Mocanu G, Picton L, Le Cerf D. New amphiphilic andpH-sensitive hydrogel for controlled release of a model poorly water-soluble drug[J].European Journal of Pharmaceutics and Biopharmaceutics.2009,73:345-350P
    [131] Wu J, Wei W, Wang L-Y, Su Z-G, Ma G-H. Preparation of uniform-sizedpH-sensitive quaternized chitosan microsphere by combining membrane emulsificationtechnique and thermal-gelation method[J]. Colloids and Surfaces B: Biointerfaces.2008,63:164-175P
    [132] Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affectingacoustically triggered release of drugs from polymeric micelles[J]. Journal of ControlledRelease.2000,69:43-52P
    [133] Oh KT, Oh YT, Oh N-M, Kim K, Lee DH, Lee ES. A smart flower-like polymericmicelle for pH-triggered anticancer drug release[J]. International Journal ofPharmaceutics.2009,375:163-169P
    [134] Brandl F, Kastner F, Gschwind RM, Blunk T, Te mar J, G pferich A.Hydrogel-based drug delivery systems: comparison of drug diffusivity and releasekinetics[J]. Journal of Controlled Release.2010,142:221-228P
    [135] Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectablethermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers[J]. Journal ofControlled Release.2000,63:155-163P
    [136] Jeyanthi R, Rao KP. Controlled release of anticancer drugs fromcollagen-poly(HEMA) hydrogel matrices[J]. Journal of Controlled Release.1990,13:91-98P
    [137]张琨,李敬安,程莉萍,李云峰,张志斌. SA/GT/CS复合水凝胶载药微球的制备与药物释放性能研究[J].材料导报.2008,12:116-117P
    [138] Tungprapa S, Jangchud I, Supaphol P. Release characteristics of four drugs fromdrug-loaded electrospun cellulose acetate fiber mats[J]. Polymer.2007,48:5030-5041P
    [139] Xu X, Chen X, Ma P, Wang X, Jing X. The release behavior of doxorubicinhydrochloride from medicated fibers prepared by emulsion-electrospinning[J]. EuropeanJournal of Pharmaceutics and Biopharmaceutics.2008,70:165-170P
    [140] Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: a faciletechnique to fabricate drug delivery systems[J]. Advanced Drug Delivery Reviews.2009,61:1043-1054P
    [141] Zamani M, Morshed M, Varshosaz J, Jannesari M. Controlled release ofmetronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontaldiseases[J]. European Journal of Pharmaceutics and Biopharmaceutics.2010,75:179-185P
    [142] Shen X, Yu D, Zhu L, Branford-White C, White K, Chatterton NP. Electrospundiclofenac sodium loaded Eudragit L100-55nanofibers for colon-targeted drugdelivery[J]. International Journal of Pharmaceutics.2011,408:200-207P
    [143] Loh XJ, Peh P, Liao S, Sng C, Li J. Controlled drug release from biodegradablethermoresponsive physical hydrogel nanofibers[J]. Journal of Controlled Release.2010,143:175-182P
    [144] Huang HH, He CL, Wang HS, Mo XM. Preparation of core-shell biodegradablemicrofibers for long-term drug delivery[J]. Journal of Biomedical Materials ResearchPart A.2009,90:1243-1251P
    [145] Yang Y, Li X, Cui W, Zhou S, Tan R, Wang C. Structural stability and release profilesof proteins from core-shell poly(l-lactide) ultrafine fibers prepared by emulsionelectrospinning[J]. Journal of Biomedical Materials Research Part A.2008,86A:374-385P
    [146] Kown IK, Matsuda T. Co-electrospun nanofiber fabrics made ofpoly(l-lactide-co-ε-caprolactone)(PLCL) with type I collagen or heparin[J].Biomacromolecules.2005,6:2096-2105P
    [147] Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of alignednanofibrous PLGA/collagen blends as bone tissue scaffolds[J]. Polymer.2009,50:3778-3785P
    [148] Cheng M, Deng J, Yang F, Gong Y, Zhao N, Zhang X. Study on physical propertiesand nerve cell affinity of composite films from chitosan and gelatin solutions[J].Biomaterials.2003,24:2871-2880P
    [149] Tataru G, Popa M, Desbrieres J. Magnetic microparticles based on naturalpolymers[J]. International Journal of Pharmaceutics.2011,404:83-93P
    [150] Chen ZG, Mo XM, He CG, Wang HS. Intermolecular interactions in electrospuncollagen–chitosan complex nanofibers[J]. Carbohydrate Polymers.2008,72:410-418P
    [151] Jegal S-H, Park J-H, Kim J-H, Kim T-H, Shin US, Kim T-II, Kim H-W. Functionalcomposite nanofibers of poly(lactide-co-caprolactone) containing gelaitn–apatite bonemimetic precipitate for bone regeneration[J]. Acta Biomaterialia.2011,7:1609-1617P
    [152] Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatinfibers and gelatin/PCL composite fibrous scaffolds[J]. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials.2005,72B:156–165P
    [153] Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporationinto electrospun poly(l-lactide-co-caprolactone) fibers on mechanical properties andcytocompatibility[J]. Biomaterials.2008,29:1872-1879P
    [154] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH,Ramakrishna S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nervetissue engineering[J]. Biomaterials.2008,29:4532-4539P
    [155] Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrousstructure: a potential scaffold for blood vessel engineering[J]. Biomaterials.2004,25:877-886P
    [156] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatinnanofiber prepared from gelatin–formic acid solution[J]. Polymer.2005,46:5094-5102P
    [157] Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK.Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactonefabricated by electrospinning[J]. Journal of Biomaterials Science: Polymer Edition.2006,17:969-984P
    [158] Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A. Electrospungelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphologyafter exposure to water[J]. Acta Biomaterialia.2011,7:1702-1709P
    [159] Inan B, Arslan YE, Seker S, El in AE, El in YM. Periodontal ligament cellularstructures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrousmembrane scaffolds[J]. Journal of Biomedical Materials Research Part A.2009,90A:186-195P
    [160] Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H. The development ofgenipin-crosslinked poly(caprolactone)(PCL)/gelatin nanofibers for tissue engineeringapplications[J]. Macromolecular Bioscience.2010,14:91-100P
    [161] Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity viaelectrospinning for enhanced cell attachment and proliferation[J]. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials.2006,78:283-290P
    [162] Jongwattanapisan P, Charoenphandhu N, Krishnamra N, Thongbunchoo J, Tang I-M,Hoonsawat R, Smith SM, Pon-On W. In vitro study of the SBF and osteoblast-like cellson hydroxyapatite/chitosan–silica nanocomposite[J]. Materials Science and Engineering:C.2011,31:290-299P
    [163] Scharnweber D, Born R, Flade K, Roessler S, Stoelzel M, Worch H. Mineralizationbehaviour of collagen type I immobilized on different substrates[J]. Biomaterials.2004,25:2371-2380P
    [164] Huang S, Zhou K, Zhu W, Huang B, Li Z. Effects of in situ biomineralization onmicrostructural and mechanical properties of hydroxyapatite/polyethylene composites[J].Journal of Applied Polymer Science.2006,101:1842–1847P
    [165]管东华,田鲲,牛林,黄春鹏,陈治清.气-电纺PHB引导组织再生膜的仿生矿化研究[J].稀有金属材料与工程.2007,36:138-140P
    [166] Yang F, Wolke JGC, Jansen JA. Biomimetic calcium phosphate coating onelectrospun poly(ε-caprolactone) scaffolds for bone tissue engineering[J]. ChemicalEngineering Journal.2008,137:154–161P
    [167] LeGeros RZ. Formation and transformation of calcium phosphates: relevance tovascular calcification[J]. Zeitschrift für Kardiologie.2001,90: III116–III124P
    [168] Zheng CY, Li SJ, Tao XJ, Hao YL, Yang R, Zhang L. Calcium phosphate coating ofTi–Nb–Zr–Sn titanium alloy[J]. Materials Science and Engineering: C.2007,27:824–831P
    [169] Sun XD, Zhou YL, Ren JY, Cui FK, Li HD. Effect of pH on the fibroin regulatedmineralization of calcium phosphate[J]. Current Applied Physics.2007,7S1: e75–e79P
    [170] Alvareza R, Evansa LA, Milhamb PJ, Wilson MA. Effects of humic material on theprecipitation of calcium phosphate[J]. Geoderma.2004,118:245-260P
    [171] Sekara C, Kanchanaa P, Nithyaselvi R, Girija EK. Effect of fluorides (KF and NaF)on the growth of dicalcium phosphate dehydrate (DCPD) crystal[J]. Materials Chemistryand Physics.2009,115:21–27P
    [172] He L, Feng Z. Preparation and characterization of dicalcium phosphate[J]. MaterialsLetters.2007,61:3923–3926P
    [173] Hou CH, Chen CW, Hou SM, Li YT, Lin FH. The fabrication and characterization ofdicalcium phosphate dihydrate-modified magnetic nanoparticles and their performance inhyperthermia processes in vitro[J]. Biomaterials.2009,30:4700–4707P
    [174] Rapacz-Kmitaa A, Paluszkiewicza C, losarczyk A, Paszkiewicz Z. FTIR and XRDinvestigations on the thermal stability of hydroxyapatite during hot pressing andpressureless sintering processes[J]. Journal of Molecular Structure.2005,744–747:653–656P
    [175] Horváthová R, Müller L, Helebrant A, Greil P, Müller FA. In vitro transformation ofOCP into carbonated HA under physiological conditions[J]. Materials Science andEngineering: C.2008,28:1414–1419P
    [176] Xu Z, Neoh KG, Kinshen A. A biomimetic strategy to form calcium phosphatecrystals on type I collagen substrate[J]. Materials Science and Engineering: C.2010,30:822-826P
    [177] Zhao J, Zhao Y, Guan Q, Tang G, Zhao Y, Yuan X, Yao K. Crosslinking ofelectrospun fibrous gelatin scaffolds for apatite mineralization[J]. Journal of AppliedPolymer Science.2011,119:786–793P
    [178] Chen J, Chu B, Hsiao BS. Mineralization of hydroxyapatite in electrospunnanofibrous poly(l-lactic acid) scaffolds[J]. Journal of Biomedical Materials ResearchPart A.2006,79A:307-317P
    [179] Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. The fabrication ofnano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds andtheir effects in osteoblastic behavior for bone tissue engineering[J]. Bone.2009,45:4–16P
    [180] Liao S, Murugan R, Chan CK, Ramakrishna S. Processing nanoengineered scaffoldsthrough electrospinning and mineralization suitable for biomimetic bone tissueengineering[J]. Journal of the Mechanical Behavior of Biomedical Materials.2008,1:252-260P
    [181] Góes JC, Figueiró SD, Oliveira AM, Macedo AAM, Silva CC, Ricardo NMPS,Sombra ASB. Apatite coating on anionic and native collagen films by an alternatesoaking process[J]. Acta Biomaterialia.2007,3:773–778P
    [182] Taguchi T, Muraoka Y, Matsuyama H, Kishida A, Akashi M. Apatite coating onhydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process[J].Biomaterials.2001,22:53-58P
    [183] Bajpai AK, Singh R. Study of biomineralization of poly(vinyl alcohol)-basedscaffolds using an alternate soaking approach[J]. Polymer International.2007,56:557-568P
    [184]徐晓宙.生物材料学[M]北京:科学出版社,2006:159P
    [185] Zhu H, Ji J, Lin R, Gao C, Feng L, Shen J. Surface engineering of poly(l-lactic acid)by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis[J].Biomaterials.2002,23:3141-3148P
    [186] Cui YL, Qi AD, Liu WG, Wang XW, Wang H, Ma DM, Yao KD. Biomimetic surfacemodification of poly(l-lactic acid) with chitosan and its effects on articular chondrocytesin vitro[J]. Biomaterials.2003,24:3859-3868P
    [187] Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE. Evaluation ofsodium alginate for bone marrow cell tissue engineering[J]. Biomaterials.2003,24:3475-3481P
    [188] Liew CV, Chan LW, Ching AL, Heng PWS. Evaluation of sodium alginate as drugrelease modifier in matrix tablets[J]. International Journal of Pharmaceutics.2006,309:25-37P
    [189] Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, KatsarosFK. Metal–carboxylate interactions in metal–alginate complexes studied with FTIRspectroscopy[J]. Carbohydrate Research.2010,345:469-473P
    [190] Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogelswith tunable biodegradation rates and mechanical properties[J]. Biomaterials.2009,30:2724-2734P
    [191]朱惠光.聚乳酸组织工程材料的细胞相容性表面设计研究[D].2003,85-86P
    [192] Carlucci G, Mazzeo P, Palumbo G. Simultaneous determination of rufloxacin,fenbufen and felbinac in human plasma using high-performance liquidchromatography[J]. Journal of Chromatography B: Biomedical Sciences and Applications.1996,682:315-319P
    [193] Zip CM. Innovative use of topical metronidazole[J]. Dermatologic Clinics.2010,28:525-534P
    [194] Jia Y, Gong J, Gu XH, Kim H, Dong J, Shen X. Fabrication and characterization ofpoly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method[J].Carbohydrate Polymers.2007,67:403-409P
    [195] Wassvik CM, Holmen AG., Bergstrom CAS, Zamora I, Artursson P. Contribution ofsolid-state properties to the aqueous solubility of drugs[J]. European Journal ofPharmaceutical Sciences.2006,29:294-305P
    [196] Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Electrospun celluloseacetate fiber mats containing curcumin and release characteristic of the herbalsubstance[J]. Polymer.2007,48:7546-7557P
    [197] Mi F, Shyu S, Lin Y, Wu Y, Peng C, Tsai Y. Chitin/PLGA blend microspheres as abiodegradable drug delivery system: a new delivery system for protein[J]. Biometerials.2003,24:5023-5036P
    [198] Yang D, Li Y, Nie J. Preparation of gelatin/PVA nanofibers and their potentialapplication in controlled release of drugs[J]. Carbohydrate Polymers.2007,69:538-543P
    [199] Faisant N, Akiki J, Siepmann F, Benoit JP, Siepmann J. Effects of the type of releasemedium on drug release from PLGA-based microparticles: Experiment and theory[J].International Journal of Pharmaceutics.2006,314:189-197P
    [200] Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation bymultilayered drug-loaded nanofiber meshes[J]. Journal of Controlled Release.2010,143:258-264P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700