图像分割与评价及图像三维表面重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分割和图像三维表面重建是图像处理中的两个重要研究领域,现有的图像分割算法在求最佳阈值时存在局限性;图像分割存在重叠、粘连等,对分割质量的评价也非常困难;利用多目标优化求解方法对图像三维表面重建研究也往往找不到最优解。针对这些问题,本文在模糊集理论的基础上,提出用并行搜索求最优解来对图像进行分割,用颗粒参数测量方法对分割图像的质量进行评价,用循环极大极小求解方法来进行图像三维表面重建,具体包括以下内容:
     ①在图像分割中,研究基于阈值的图像分割算法和基于边缘检测的图像分割算法,分析这两类算法的基本思想,针对不同的图像进行了仿真实验,对实验结果进行了分析和比较。本文采用等22.5°角的16个方向的Laplace算子的检测估算模板,设定适当的权向量,提高边缘检测的精度,检测出来的边缘不但更清晰,而且也检测出8个方向的Laplace算子所没有检测出的一些边缘,同时合理地设置参数,避免一些伪边缘的提取。
     ②基于聚类的图像分割算法中,对HCM和FCM算法进行比较,运用FCM聚类算法对图像进行分割实验。由于FCM算法需要初始化,并且目标函数存在许多局部极小点,如果初始化落在目标函数的局部极小点附近,就会造成算法收敛到局部极小点。为了解决此问题,本文提出GOS算法,利用GOS算法的并行搜索能力,对FCM算法加以改进,形成具有并行能力的GOS算法。同时,分析在不同初始条件下,对许多样本的聚类分析时,GOS算法比传统的FCM聚类算法更加有效,对算法性能进行理论分析,并通过仿真实验进行验证。
     ③图像分割质量的评价是最难解决的问题之一,本文提出用图像颗粒参数测量方法来计算颗粒形状和粒度分布等,以此评价图像分割的精确度,并和已有的七种分割评价方法进行比较,通过仿真实验进行定性和定量的分析,证明此方法能更好地评价图像分割算法的优劣。
     ④在图像三维重建中,提出模糊多目标优化图像三维重建的数学模型,将优化图像三维重建中普通目标函数以隶属函数的形式表示,构成新型数学模型来表述问题,采用极大极小求解方法。在大大简化求解过程的同时,有效地保证自动搜寻出原问题的有效解。
     ⑤在医学图像处理中,从受损颅骨图像的背景物质检测、边缘检测,到重建出受损的颅骨图像,对比不同算法,并通过仿真实验,验证算法的可行性;给兔子的血管注射造影剂,重建图像,观察兔子的各种组织,通过仿真实验验证算法的可行性及结果的合理性。
     ⑥在上述理论研究的基础上,本文开发一个图像分割、图像三维表面重建和颗粒参数测量原型系统,能对图像进行处理和分析,特别是将本文提出GOS算法、重建算法和图像颗粒参数测量方法加入该系统,并对该系统的应用前景进行展望。
     最后,对研究内容进行总结,并指出后续的研究方向,为进一步的研究开拓思路。
Image segmentation and image three-dimensional(3-D) surface reconstruction are two important research fields in image processing. There are limitations about existing image segmentation when applying for the best threshold value. There are problems of overlap, adhesion in image segmentation, and also there are some difficulties in evaluation of the segmentation quality. It is often unable to find the optimal solution when using multi-objective optimization method to solve 3-D surface reconstruction of the images. To solve these problems, based on fuzzy set theory, this thesis discuss the optimal solution to image segmentation by parallel searching methods, evaluating the quality of images segmentation method by means of particle parameters, reconstructing the 3-D surface using the circle maximum-minimum solution for image. The whole thesis includes follow parts:
     In image segmentation, the segmentation algorithms based on threshold and edge detection were discussed in detail. The ideas of the two algorithms were analyzed. The results of the simulation by different images were analyzed, studied, compared. It can improve the accuracy of edge detection by use the estimate pattern of 22.5°angle in 16 direction and set a reasonable parameters, avoid pseudo-edge by improve the operator of Laplace. The improved operator of Laplace not only detected on edge clearer, but also detected more edges which have not been detected before, avoiding the extraction of some pseudo-edge.
     Based on the clustering image segmentation, algorithms of hard c-means clustering(HCM) and fuzzy c-means clustering(FCM) were compared by means of the FCM clustering algorithm for image segmentation experiments carried out. However, the initialization was needed in FCM algorithm and there were lots of local minimum in the objective function, if the initialization abstained the local minimum vicinity point, it would cause a convergence to local minimum. In order to solve this problem, global optimization search(GOS) algorithm is proposed in this thesis, using the parallel search algorithm GOS ability of the FCM algorithm to improve the capacity of the formation with a parallel algorithm for the GOS. At the same time, the fact that GOS algorithm are more effective than the traditional FCM clustering algorithm is analyzed , the algorithm performance has been analyzed theoretically, and has been verified through simulation experiment.
     The evaluation of the quality of image segmentation is one of the most difficult problems to be solved. It is proposed in this thesis that it is possible to calculate the parameters of particle shape and particle size distribution and so on by means of particle image measuring method. So that we can evaluate the accuracy of image segmentation, and compare the seven types of segmentation evaluation methods. It has been proved that this method can better evaluate the advantages and disadvantages of image segmentation algorithms through simulation of the qualitative and quantitative analysis.
     In images 3-D reconstruction, the multi-objective optimization of fuzzy images mathematical model of 3-D reconstruction to optimize the image has been proposed, and the ordinary objective function of 3-D reconstruction is represented in the form of membership functions, and has been described by new type of mathematical model, and so the circle maximum-minimum solution were proposed. The proposed algorithm can not only predigests the seeking process, but also finds the available solution of original problem automatically.
     The sequence image of damaged skull and rabbit’s thigh were reconstructed in the image 3-D reconstruction. The background material detection, edge detection and reconstruction a damaged skull were studied in this thesis. The simulation experiments verified the feasibility of the algorithm by comparing different algorithms. In order to observe a variety of rabbit’s thigh, the contrast media was injected into the rabbit's blood vessel. The feasibility of reconstruction algorithm and the reasonableness of results were discussed through the simulation.
     A system of experimental platform has been developed based on the above research, which is based on image segmentation and image 3-D reconstruction. This system can provide image processing and analysis, especially the GOS algorithm, image reconstruction algorithms and measurement methods of particle’s parameters and so on, at the same time the application of the system of experimental platform is forecasted in this thesis.
     The thesis ends with the conclusions of the achieved and future research, which extend our thoughts in the future.
引文
[1] Wilbur C. K. Wong and Albert C. S. Chung. Bayesian Image Segmentation Using Local Iso-Intensity Structural Orientation[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1512-1523.
    [2] Alberto Bartesaghi, Guillermo Sapiro, and Sriram Subramaniam. An Energy-Based Three- Dimensional Segmentation Approach for the Quantitative Interpretation of Electron Tomograms[J]. IEEE Transactions on Image Processing, 2005, 14(9): 1314-1323.
    [3] Jun Feng, Horace H. S. Ip, Lap Yi Lai, et al. Robust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions[J]. Image and Vision Computing, 2008, 26(6): 761-775.
    [4] Andrei Sharf, Dan A. Alcantara, Thomas Lewiner, et al. Space-time surface reconstruction using incompressible flow[J]. ACM Transactions on Graphics, 2008, 27(5):1-10.
    [5] Amit K. Roy-Chowdhury and Rama Chellappa. Statistical Bias in 3-D Reconstruction From a Monocular Video[J]. IEEE Transactions on Image Processing, 2005, 14(8): 1057-1062.
    [6] Marco Marcon, Luca Piccarreta, Augusto Sarti, et al. Fast PDE approach to surface reconstruction from large cloud of points[J]. Computer Vision and Image Understanding, 2008, 112(3): 274-285
    [7] Michal Varnuska, Ivana Kolingerova. Boundary filtering approach in surface reconstruction[J]. International Journal of Computational Science and Engineering, 2007, 3(1): 14-22.
    [8] Andrei C. Jalba, Jos B. T. M. Roerdink. Efficient Surface Reconstruction using Generalized Coulomb Potentials[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1512-1519.
    [9]章毓晋.图像工程(第2版)[M].北京:清华大学出版社, 2007.
    [10] K. S. Fu and J. K. Mui. A survey of image segmentation[J]. Pattern Recognition, 1981, 13: 3-16.
    [11] R. M. Haralick and L. G. Shapiro. Image segmentation techniques[J]. Computer Vision, Graphics, and Image Processing, 1985, 29: 100-132.
    [12] N. R. Pal, and S. K. Pal. A review on image segmentation techniques[J]. Pattern Recognition, 1993, 26: 1227-1249.
    [13]严学强,叶秀清,刘济林.基于量化图像直方图的最大熵阈值处理算法[J].模式识别与人工智能, 1998, 11(3): 352-358.
    [14]薛景浩,章毓晋.基于最大类间后验交叉熵的阈值化分割算法[J].中国图像图形学报, 1999, 10(6): 111-114.
    [15]俞勇,施鹏飞,赵立初.基于最小能量的图像分割方法[J].红外与激光工程, 1999, 28(4): 20-27.
    [16]任明武,杨静宇,孙涵.一种基于边缘模式的直方图构造新方法[J].计算机研究与发展, 2001, 38(8): 972-976.
    [17]程杰.一种基于直方图的分割方法[J].华中理工大学学报. 1999, 27(1): 20-23.
    [18]付忠良.基于图像差距度量的阈值选取方法[J].计算机研究与发展, 2001, 38(5): 563- 567.
    [19]乐宁,梁学军,翁世修.图像过渡区算法及其改进[J].红外与毫米波学报, 2001, 20(3): 211-214.
    [20] S. K. Pal, R. A. King. Image enhancement using smoothing with fuzzy set[J]. IEEE Transactions on System, Man and Cybernectics, 1981, 11(7): 494-501.
    [21] L. A. Zadeh. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353.
    [22] L. A. Zadeh. Fuzzy Set and System[J]. Proc. Symp. on system theory. Polytech. Inst. Brooklyn, New York, 1965.29-39.
    [23] P. N. Marinos. Fuzzy Logic[J]. Information and Control, 1966, 7(1): 315-324.
    [24] B. G. Guguen. Logic Problems on Fuzzy Notion[J]. Information and Control, 1969, 3(2): 25-39.
    [25] Dubois D, Prade H. Fuzzy sets in approximate reasoning,Part 2:Logical approaches[J]. Fuzzy Sets and Systems, 1991, 40(1):203-244.
    [26] M. M. Trivedi and J. C. Bezdek. Low-level segmentation of aerial images with fuzzy clustering[J]. IEEE Transactions on System, Man and Cybernectics, 1986, 16(2): 589-598.
    [27]丁震,胡钟山等.一种基于模糊聚类的图像分割方法[J].计算机研究与发展, 1997, 34(7): 536-541.
    [28]刘泓,韩锦成,莫玉龙.运用模糊连接理论分割连通区域[J].上海大学学报, 1997, 3: 80-83.
    [29]王培珍,陈震南.基于二维阈值化与FCM相混合的图像快速分割方法[J].中国图形图像学报, 1998, 3(19): 735-738.
    [30]薛景浩,章毓晋,林行刚.一种新的图像模糊散度阈值分割算法[J].清华大学学报, 1999, 39(1): 47-50.
    [31]黄建军,靳华,赵荣椿.基于模糊自适应共振理论的图像分割[J].西北工业大学学报, 2000, 18 (3): 345-348.
    [32]王磊,戚飞虎.图像分割的自适应FKCN方法[J].电子学报, 2000, 28(2):4-6.
    [33]孔祥维,谢存,徐蔚然.基于多特征和模糊推理的边缘检测[J].电子学报, 2000, 28(6): 36-39.
    [34]刘私,韩锦成,莫玉龙.运用模糊连接理论分割连通区域[J].上海大学学报, 1997, 3: 80-83.
    [35]刘健庄.二维直方图的图像模糊聚类分割方法[J].电子学报, 1992, 20(9): 40-46.
    [36] Zhang YJ. A survey on evaluation methods for image segmentation[J]. Recognition, 1996, 29(8): 1335-1346.
    [37]赵初,王纯.模糊边缘检测方法[J].模式识别与人工智能, 1999, 12(1): 79-84.
    [38]王培珍,杜培明.一种用于多阈值图像自动分割的混合遗传算法[J].中国图像图形学报, 2000, 5(1): 40-47.
    [39] Chen Zi-kuan, Tao Yang, Chen Xin, et al. Wavelet Based Adaptive Thresholding Method for Image Segmentation[J]. Optical Engineering, 2001, 40(5): 868-874.
    [40]杨波,徐光.基于分形特征的自然景物图像分割方法[J].中国图像图形学报, 1999, 4(1): 7-11.
    [41]陈向东,常文森.基于小波变换的图像分数维计算方法[J].计算机应用研究. 1998, 2(1): 45-47.
    [42]陈武凡,鲁贤庆,陈建军等.彩色图像边缘检测的新算法—广义模糊算子法[J].中国科学(A辑), 1995, 25(2): 219-224.
    [43]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社, 2007.
    [44] Zhang YJ, Gerbrands JJ. Evaluation and comparison of different segmentation algorithms[J]. Pattern Recognition Letters, 1997, 18(10): 963-974.
    [45] Chalana V, Kim Y. A methodology for evaluation of boundary detection algorithms on medical images[J]. IEEE Transactions on Medical Imaging, 1997, 16(5): 642-652.
    [46] Zhang YJ. Influence of image segmentation over feature measurement[J]. Pattern Recognition Letters, 1995, 16: 210-206.
    [47] Ng WS, Lee CK. Comment on using the uniformity measure for performance measure in image segmentation[J]. IEEE Transactions on Pattern Analysis and machine Intelligence, 1996, 18(9): 933-934.
    [48] Stefan Schulte, Samuel Morillas, Valentín Gregori, et al. A New Fuzzy Color Correlated Impulse Noise Reduction Method[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2565-2575.
    [49] Lee C. Fuzzy logic in control system: fuzzy logic controller, Part I[J]. IEEE Transactions on System, Man and Cybernectics, 1990, 20(2): 404-4181.
    [50] Nazif A. M, Levine M. D. Low level image segmentation: an expert system[J]. IEEETransactions Pattern Analysis and Machine Intelligence, 1984, 6: 555-577.
    [51] P. K. Sahoo, S. Soltani, A. K. C. Wong, et al. A survey of thresholding techniques[J]. Comput. Vis. Graphics Image Process, 1988, 41 (2) : 233-260.
    [52] Fu K S, Mui J K. A survey in image segmentation[J]. Pattern Recognition, 1981, 13(1):3-6.
    [53]谢季坚,刘承平.模糊数学方法及其应用(第三版)[M].武汉:华中科技大学, 2007.
    [54] Otsu N. A threshold selection method from gray-level histogram[J]. IEEE Transactions on System, Man and Cybernectics, 1979, 9(1): 62-66.
    [55] J. N. Kapur, P. K. Sahoo, A. K. C. Wong. A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram[J]. Graphical Models and Image Processing, 1985, 29: 273-285.
    [56] J. Kittler, J. Illingworth. Minimum Error Thresholding[J]. Pattern Recognition. 1986, 19(1): 41-47.
    [57] S Wang, J M Siskind. Image segmentation with ratio cut[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (6): 675-690.
    [58] Y Boykov, V Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
    [59] C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithm[M]. Plenum, New York, 1981.
    [60] R. Hoffmann, A. Jain. Segmentation and Classification of Range Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 608-620.
    [61] P Flynn, A. Jain Bonsal. 3D Object Recognition Using Constrained Search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(10): 1066-1075.
    [62] Silverman, JF, Cooper, DB. Bayesian Clustering for Unsupervised Estimation of Surface and Texture Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 482-495.
    [63] JM Jolion, P. Meer, S. Bataouche. Robust Clustering with Applications in Computer Vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 791-802.
    [64] HH Nguyen, P. Cohen. Gibbs Random Fields, Fuzzy Clustering, and the Unsupervised Segmentation of Textured Images[J]. CVGIP: Graphical Models and Image Processing, 1993, 55(1): 1-19.
    [65] Vinod, VV, Chaudhury, S., Mukherjee, J., Ghose, S., A Connectionist Approach for Clustering with Applications in Image-Analysis[J]. IEEE Transactions on System ManCybernet, 1994, 24(3): 365-383.
    [66] Srinivasan Selvan and Srinivasan Ramakrishnan. SVD-Based Modeling for Image Texture Classification Using Wavelet Transformation[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2688-2696.
    [67] Nikos Paragios, Rachid Deriche. Geodesic Active Contours for Supervised Texture Segmentation[C]. In:IEEE Computer Society Conference on CVPR, 1999, 2422-2427.
    [68] Jie Zou, Qiang Ji and George Nagy. A Comparative Study of Local Matching Approach for Face Recognition[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2617-2628.
    [69] Kervrann C, Heizt F. A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics[J]. IEEE Transactions on Image Processing, 1995, 4(6): 856-862.
    [70]刘健庄.基于二维直方图的图像模糊聚类分割方法[J].电子学报, 1992, 20(9): 40-46.
    [71] Levrat E., Bombardier V, Lamotte M., et al. Multi-level image segmentation using fuzzy clustering and local membership variations detection[C]. IEEE International Conference on Fuzzy Systems, 1992, 221-228.
    [72] Porter R., Canagarajah N. A Robustic Clustering Scheme for Image Segmentation Using Wavelets[J]. IEEE Transactions on Image Processing, 1996, 5(4): 662-665.
    [73] Tolias YA., Panas S. M. Image Segmentation by A Fuzzy Clustering Algorithm Using Adaptive Spatially Constrained Membership Function[J]. IEEE Transactions on System, Man and Cybernectics, 1998, 28(3): 359-395.
    [74]李文化.模糊聚类新算法与模糊聚类神经网络[D].西安电子科技大学博士论文, 1995.
    [75]裴继红.基于模糊信息处理的图像分割方法研究[D].西安电子科技大学博士论文, 1998.
    [76] Y. V. Venkatesh, S. Kumar Raja, and A. Jaya Kumar. On the Application of a Modified Self-Organizing Neural Network to Estimate Stereo Disparity. IEEE Transactions on Image Processing, 2007, 16(11): 2822-2829.
    [77] L. A. Zadeh. Similarity relations and fuzzy orderings[J]. Information Sciences 1971, 3(2): 177-200.
    [78] J. Bezdek, N. Grimball, J. Carson, et al. Structural failure determination with fuzzy sets[J]. Civ. Eng. Syst., 1986, 3: 82-92.
    [79]范九伦,吴成茂,马远良.基于类间关联度的聚类有效性函数[J].模式识别与人工智能, 2001, 14 (30): 302-305.
    [80] J. Bezdek and J. Harris. Fuzzy partitions and relations: an axiomatic basis for clustering[J]. Fuzzy Sets and System, 1978, 1: 111-127.
    [81] S. Z. Selim, K. Alsultan. A simulated annealing algorithm for the clustering problem[J]. Pattern Recognition, 1991, 24(10): 1003-1008.
    [82] M. S. Kamel, S. Z. Selim. New algorithms for solving the fuzzy clustering problem[J]. Pattern Recognition, 1994, 27(3): 421-428.
    [83] R. E. Bellman, L. A. Zadeh. Decision making in a fuzzy environment. Management Science[J]. 1970, 17(4): 141-164.
    [84] H. Tanaka, K. Asai. Fuzzy mathematical programming[J]. Transactions on Society of instrument and control Engineering, 1973, 9(5): 607-613.
    [85] H. J. Zimmermann. Fuzzy programming and linear programming with several objective functions[J]. Fuzzy Sets and Systems, 1978, 1(1): 44-45.
    [86] M. Zeleny. A case study in multiple objective design: de novo programming[M]. Multiple Criteria Analysis, Operational Methods. 1981: 37-52.
    [87] H. J. Zimmermann, P. Zysno. Latenet connectives in human decision making[J]. Fuzzy Sets and Systems, 1980, 4: 37-51.
    [88] C. E. Shannon. A mathematical theory of communication[J]. Bell System Technical Journal.27, 1948, 379- 423(Part I), 623-656(Part II).
    [89] Jingfeng Han, Benjamin Berkels, Marc Droske, et al. Mumford–Shah Model for One-to-One Edge Matching[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2720-2732.
    [90] C. Sorzano, P. Thevenaz, and M. Unser. Elastic registration of biological images using vector-spline regularization[J]. Transactions on Biomedical Engineering, 2005, 52(4): 652- 663.
    [91] Stefanos Zafeiriou, Anastasios Tefas, and Ioannis Pitas. Minimum Class Variance Support Vector Machines[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2551-2564.
    [92] J. Han, B. Berkels, M. Rumpf, et al. A variational framework for joint image registration, denoising and edge detection[J]. In Proc. Bildverarbeitung für die Medizin, Berlin, Germany, 2006: 246-250.
    [93] M. Droske and M. Rumpf. A variational approach to non-rigid morphological registration[J]. SIAM Appl. Math., 2004, 64(2): 668-687.
    [94] Marques J. S., Jorge P. M.. Visual Inspection of a Combustion Process in a Thermoelectric Plant[J]. Signal Processing. 2000, 80: 1577-1589.
    [95] Tian L. F, Slaughter D. C.. Environmentally Adaptive Segmentation Algorithm for Outdoor Image Segmentation[J]. Computers and Electronics in Agriculture, 1998, 21: 153-168.
    [96] Zavaljevslci A., Dhawan A.P, Gaskil M., et al., Multi-level Adaptive Segmentation of Multi-parameter MR Brain Images[J]. Computerized Medical Imaging and Graphics. 2000,24: 87-98.
    [97] Seong-Wook Joo and Rama Chellappa. A Multiple-Hypothesis Approach for Multiobject Visual Tracking[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2849-2854.
    [98] Koji Tsuda and Gunnar R?tsch. Image Reconstruction by Linear Programming[J]. IEEE Transactions on Image Processing, 2005, 14(6): 737-744.
    [99] A. Graf and F. Wichmann. Gender classification of human faces[J]. In Proc. Biologically Motivated Computer Vision, LNCS, Vol. 2525, 2002: 491-501.
    [100] Joachim Giesen, Eva Schuberth, Klaus Simon, et al. Image- Dependent Gamut Mapping as Optimization Problem[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2401-2410.
    [101] J. Giesen, E. Schuberth, K. Simon, et al. A framework for image- dependent gamut mapping[J]. In Proc. Color Imaging XI: Processing, Hardcopy and Applications, San Jose, CA, 2006: 605805-1-11.
    [102] Joachim Giesen, Eva Schuberth, Klaus Simon, et al. Image-Dependent Gamut Mapping as Optimization Problem[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2401- 2410.
    [103] R. Kimmel, D. Shaked, M. Elad, et al. Space-dependent color gamut mapping: A variational approach[J]. IEEE Transactions on Image Processing, 2005, 14(6): 796-803.
    [104] C. Sun and S. Pallottino. Circular shortest path in images[J]. Pattern Recognit, 2003, 36(3): 711-721.
    [105] B. Appleton and C. Sun. Circular shortest paths by branch and bound[J]. Pattern Recognit, 2003, 36(11): 2513-2520.
    [106] D. Farin, M. Pfeffer, P. H. N. De With, et al. Corrisor scissors: A semi-automatic segmentation tool employing minimum-cost circular paths[J]. In Proc. Int. Conf. Image Processing, 2004: 1177-1180.
    [107] A. Branzan-Albu, J. M. Schwartz, D. Laurendeau, et al. Integrating geometric and biomechanical models of a liver tumour for cryosurgery simulation[J]. In Proc. IS4TM: Int. Symp. Surgery Simulation and Soft Tissue Modeling, Juan-Les-Pins, France, Jun. 12-13, 2003: 121-131.
    [108] Changming Sun. Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques[J]. International Journal of Computer Vision, 2002 , 47(1/2/3): 99-117.
    [109] R. Ardon and L. D. Cohen. Fast constrained surface extraction by minimal paths[J]. In Proc. 2nd IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision, Nice, France, 2003: 233-240.
    [110] Lefinan J, Zhang P, Hirai T, et al. Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the Chemotaxis Receptor[J]. J. Bacteriol, 2004, 186(15): 5052-5061.
    [111] F. Forster, O. Medalia, N. Zauberman, et al. Retrovirus envelope protein complex structure in situ studied by cryoelectron tomography[J]. Proceedings of the National Academy of Sciences, 2005, 102(13): 4729-4734.
    [112] Z. Yu and C. Bajaj. Picking circular and rectangular particles based on geometric feature detection in electron micrographs[J]. J. Struct. Biol, 2004, 145(1/2): 168-180.
    [113] C. Fermuller, D. Shulman, and Y. Aloimonos. The statistics of optical flow[J]. Comput. Vis. Image Understand, 2001, 82: 1-32.
    [114] A. Roy Chowdhury and R. Chellappa. Face reconstruction from monocular video using uncertainty analysis and a generic model[J]. Comput. Vis. Image Understand., 2003: 188-213.
    [115] H. A. Karim, M. Bister, and M. U. Siddiqi. Multiresolution motion estimation for low-rate video frame interpolation[J]. J. Appl. Signal Process, 2004, 11: 1708-1720.
    [116] F. Khellah, P. Fieguth, M. J. Murray, and M. Allen. Statistical Processing of Large Image Sequences[J]. IEEE Transactions on Image Processing, 2005, 14(1): 80-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700