车辆悬架系统中新减振元件设计和减振控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前车辆悬架系统振动研究主要集中在两方面:(1)新的弹性元件和阻尼元件的提出;(2)新的振动控制算法的提出。本着这一指导原则,本论文在这两方面都提出了一些创新性的工作:(1)首先根据实际车辆的底盘布置形式,提出了一种崭新的阻尼元件即扭转阻尼减振器,并且对其进行了深入的研究;(2)以可控悬架为控制对象,提出了一些创新性的悬架振动控制算法。其研究内容如下:
     1.扭转阻尼减振器的研究
     在实际车辆的底盘设计中,设计者往往希望将底盘设计的越紧凑越好,根据这一指导原则,通过分析现有悬架结构中减振器与弹簧以及导向机构的安装方式,创新性的提出了一种便于实现与扭杆弹簧进行紧凑安装的扭转阻尼减振器,并且在第七代菱形车上得到了应用。本论文将围绕扭转阻尼减振器进行多方面的研究,以便将其推广到以扭杆弹簧作为弹性元件的现行车辆中去。
     首先讨论了阻尼元件、弹性元件与菱形车中悬架系统的匹配设计。根据四分之一悬架模型建立了悬架性能指标与车辆参数的函数关系。分析了车辆系统参数对悬架性能指标的影响,确定以阻尼系数作为优化变量的四分之一悬架系统多目标优化问题。利用小种群多目标遗传算法对这个多目标问题进行优化求解。在频域内分析了阻尼系数对悬架性能指标的影响,得到了阻尼系数与悬架系统匹配设计的一般规律,即车身共振区需要重阻尼、人体振动敏感区需要轻阻尼、非簧载质量共振区需要重阻尼。由于车身共振区与非簧载质量共振区的阻尼力分别对应开阀阻尼力和最大开阀阻尼力,因此减振器的外特性可以用三级阻尼力的形式进行控制。利用三级阻尼力控制的方法实现了以线性悬架系统优化设计的阻尼系数构成减振器的非线性外特性曲线。根据悬架性能指标的相应要求,选择十组具有代表性的非支配解进行不同频率下的悬架性能指标概率分析,确定了平均开阀阻尼系数和平均最大开阀阻尼系数。通过选择双向阻尼比计算了伸张行程和压缩行程中的开阀阻尼系数和最大开阀阻尼系数。利用减振器在悬架中的一般布置结构得到了开阀速度和最大开阀速度,从而得到了与该悬架匹配的减振器非线性外特性曲线。利用伸张行程的开阀阻尼力计算菱形车中悬架系统所需等效筒式减振器的活塞和活塞杆的尺寸。当阻尼元件确定以后,弹性元件利用汽车设计中提出的扭杆弹簧设计方法就可以很方便地得到。
     根据流体力学和液压理论建立了扭转阻尼减振器阻尼力矩的基本计算公式,计算得到了常通节流小孔的直径、伸张阀和压缩阀的基本参数,并且建立了扭转阻尼减振器物理参数力学模型,通过对其进行的仿真,得到其外特性速度曲线,该曲线与三级阻尼力控制计算得到的等效阻尼力曲线非常相似。紧接着分析了缝隙对扭转阻尼减振器的影响。
     为了进一步论证上面提出的扭转阻尼减振器外特性计算理论的正确性,设计制造了一扭转阻尼减振器进行台架试验研究。通过将试验研究的结果与理论模型的对比证明上述的理论计算是合理的。为了方便后面的振动分析,根据试验得到的结果建立了扭转阻尼减振器的数学模型。并且利用遗传算法对模型中的参数进行反求。
     最后对基于扭转阻尼减振器的扭杆弹簧双横臂悬架的非线性平顺性进行仿真分析。利用空间运动学和动力学建立扭杆弹簧双横臂悬架的运动学和动力学方程,证明了双横臂悬架的空间运动对扭转阻尼减振器在车轮垂向上提供的等效阻尼力没有影响。根据虚位移原理计算得到了扭杆弹簧双横臂悬架的非线性悬架刚度与车轮跳动的函数关系。最后根据车辆平顺性脉冲激励和随机激励的国标要求对其进行了非线性的平顺性仿真,仿真结果表明基于扭转阻尼减振器的扭杆弹簧双横臂悬架的平顺性是合理的。
     2.可控悬架控制算法的研究
     本文所指的可控悬架有两种形式:(1)磁流变阻尼器半主动悬架;(2)主动悬架。分别以上面两种悬架为控制对象提出了一些具有创新的振动控制算法。
     (1)磁流变阻尼器半主动悬架最优控制研究
     磁流变阻尼器是一种基于智能材料的、新型的半主动阻尼器。所产生的阻尼力可调范围比传统阻尼器大,反应迅速,易于控制,因此能够更好的应用于车辆系统的减振,实现从被动悬架向半主动悬架的飞跃。本文利用最优控制对基于磁流变阻尼器的四分之一车辆系统的半主动控制进行研究。采用改进型Bouc-Wen模型作为磁流变阻尼器的力学模型。利用小种群遗传算法(μGA)对随机最优控制器的权值进行寻优。仿真结果表明,利用最优控制的磁流变阻尼器半主动悬架性能指标明显优于被动悬架。
     (2)基于多目标遗传算法的主动悬架H_2/H_∞多目标控制研究
     本文利用多目标遗传算法结合线性矩阵不等式对四分之一主动悬架的混合H_2/H_∞控制的保守性进行研究。将车身垂向加速度定义为H_2性能指标。悬架动行程和轮胎动位移定义为H_∞性能指标。利用多目标遗传算法(μMOGA)搜索控制增益,通过解矩阵不等式得到H_2和H_∞范数。将计算得到的H_2和H_∞范数结果和Matlab多目标控制工具箱进行比较,发现基于μMOGA的LMI优化方法的保守性明显小于Matlab多目标控制工具箱的计算结果。根据μMOGA/LMI对四分之一主动悬架进行设计,其仿真结果和被动悬架进行比较发现主动悬架的性能指标明显优于被动悬架的性能指标。
Nowadays, investigations on vibration of vehicle suspension system mainly concentrate in two aspects: (1) new spring elements and damp elements; (2) new vibration control algorithms. According to the idea, the dissertation proposes some original works in the two aspects: (1) according to analyzing actual vehicle chassis layout, a new damp element (torsion damp shock absorber) is presented and investigated; (2) controllable suspension is regarded as control object to investigate some suspension vibration control algorithms. Its investigations are followed as:
     1. Investigation on torsion damp shock absorber
     In the process of designing practicable vehicle chassis, designers usually hope that the vehicle chassis is very compactly designed. According to the principle, analysing the installment method of the shock absorber with the spring and the guide mechanism in current suspension structure, a torsion damp shock absorber is originally proposed to practise compact installment with torsion bar spring and successfully applied into the seventh diamond vehicle. Therefore, the dissertation will investigate the torsion damp shock absorber in some fields in order to make it popular in present vehicle with torsion spring.
     It is firstly discussed that a damp element and a spring element matchs with the diamond vehicle middle suspension. The function of suspension performance index and vehicle parameters was established according to the 1/4 suspension model. Analyzing the effect of the vehicle parameters to the suspension index, it was detemined that damp coefficient was regarded as an optimization variable in the 1/4 suspension system multi-objective optimization. The multi-objective optimization problem was sovled by micro multi-objective genetic algrothim. The effect of the damp coefficient to the suspension index was discussed in frequency range and the rule of the damp coefficient matching with the suspension system was obtained. The rule is that the resonance range of the vehicle body and unspring weight need heavy damp and the body sensitive range need soft damp. Because the damp force in resonance range of the vehicle body corresponds to the opening valve damp force and the damp force in resonance range of the unspring weight corresponds to the max opening valve damp force, the velocity characteristic curve of the shock absorber can be controlled with three stage damp force. The method is implemented that using optimization design damp coefficient in linear suspension system constructs nonlinear velocity characteristic curve. According to suspension index requirements, choosing ten groups typical non-dominated solution and calculating their probability was to obtain average opening valve damp coefficient and average max opening damp coefficient. Choosing bidirection damp ratio, the opening valve damp coefficient and the max opening valve damp coefficient in promotion and compress process of the shock absorber were calculated. After the opening valve velocity and the max opening valve velocity was obtained according to the shock absorber in suspension structure arrangement, the nonlinear velocity curve of the shock absorber matching with the suspension structure can be obtained. The piston and piston stick diameters of the equivalent tube shock absorber matching the diamond vehicle middle suspension system can be calculated with the opening valve damp force in the promotion process. After the damp element is determined, the spring element is easy to be obtained by torsion bar spring design method in the vehicle design theory.
     According to fluid mechanics and hydraulic theory, the basic equation to calculate the damp moment of the torsion damp shock absorber was established. The diameter of the normal open orifice and the basic parameter of the promotion valve and compress valve were calculated. Its physics parameter mechanics model was built up. The velocity characteristic curve obtained by simulating in a computer was similar with the equivalent damp force curve controlled by three stage damp force. The gap effect to the torsion damp shock absorber was analysed.
     Afterwords, in order to demonstrate that the theoretical calculation to the above-mentioned torsion damp shock absorber was correct, a torsion damp shock absorber was designed and manufactured in order to be investigated in experimental rig. Through comparing the experimental results with theoretical model, it was indicated that the above theory calculation was reasonable. To be convenient vibration analysis in the next chapter, the mathematical model of it was proposed by experimental results. The parameters of the model was inversely solved by genetic algorithm.
     Finally, the nonlinear ride equality of the torsion bar spring double wishbone suspension based on torsion damp shock absorber was simulated in the disstertation. The kinematics and dynamics equations of the torsion spring double wishbone suspension was concluded according to space kinematics and dynamics. It was proved that space movement of the double wishbone suspension can not affect the equivalent damp force produced by torsion damp shock absorber above the tire vertical direction. The function of the nonlinear suspension stiffness with tire skipping distance was obtained by virtual displacement theory. At last, the nonlinear ride equality was simulated according to the national standard requirements to vehicle ride equality stimulated by pulse stimulation and random sitmulation. The simulation results presented that the ride equality of the torsion bar spring double wishbone suspension based on torsion damp shock absorber was reasonable.
     2. investigation on controllable suspension control algrithms
     There are two forms of the controllable suspension in the dissertation: (1) magnetorheological damper semi-active suspension; (2) active suspension. Above-mentioned two suspensions were respectively regarged as controllable object to investigate their vibarion control algorithms.
     (1) magnetorheological damper semi-active suspension optimal control investigation
     Magnetorheogical damper is a semi-active damper based on intelligent materials. The damp force adjustable scope produced by it is more than traditional damper. Because the MR damper can quickly react and be easily controlled, it can be applied into vehicle suspension damp systems. In the paper, the quarter vehicle system based on magnetorheological damper is investigated by the optimal control. The improved Bouc-Wen model is used to describe the mechanical model of MR damper. The weight values in the optimal control are found by the micro-genetic algorithm. Numerical results demonstrate that the optimal control strategy for the performance improvement of the semi-active suspension based on MR damper is very effective.
     (2) the investigation on the mixed H_2/H_∞multi-objective control on the active suspension based on multi-objective mirco genetic algorithms
     The paper presents to use micro multi-objective genetic algorithm (μMOGA) to deal with the conservation problem about the active suspension multi-objective control while solving the mixed H_2/H_∞multi-objective robust control with linear matrix inequality (LMI) method. A quarter-vehicle model with active suspension system is considered. The acceleration of the vertical vehicle body is defined in the H_2 performance specification. The max suspension workspace and the tyre deflection are defined in the H_∞performance specification. After the control gain has randomly been sought byμMOGA, the H_2 and H_∞norm of the close-loop system are calculated by LMI toolbox. The comparison between H_2 and H_∞norm calculated byμMOGA/LMI and the multi-objective control toolbox in Matlab shows clearly in simulation the advantages of theμMOGA/LMI method. The conservation problem is obviously reduced by uMOGA/LMI method. In the framework ofμMOGA/LMI optimization, the mixed H_2/H_∞multi-objective robust control active suspensions are designed on a quarter-vehicle model. The comparison of the simulation results between passive and active suspension shows that ride comfort performance is clearly improved while assuring suspension deflection within bounds and convincing a firm contact of wheels to road.
引文
[1]ZF Sachs AG.Revolutionary damper concept in new Formula 1 Ferrari.www.schwab-kolb.com.2006-06-14
    [2]林家让.汽车构造.北京:电子工业出版社.2005,100-109
    [3]小林明.汽车工程手册.北京:机械工业出版社.1984,300-350
    [4]Herr F,Mallin T,Lane J.A shock absorber model using CFD analysis and easy5.SAE,1999-01-1332,1030-1041
    [5]Dyum S W,Stiens R,Baron G V.Physical modeling of the hysteretic behaviour of automotive shock absorbers.SAE,970101,63-75
    [6]Alonso M,Comas A.Modelling a twin tube cavitating shock absorber.Journal of automobile engineering.2006,220(8):320-340
    [7]Karadayi R Masada G Y.A nonlinear shock absorber model.ASME:applied mechanism division.1986,80(12):86-100
    [8]Besinger F H,Cebon D,Cole D J.Damper models for heavy vehicle ride dynamics.Vehicle system dynamics.1994,24(1):35-64
    [9]Duym S.An alternative force state map for shock absorbers.Journal of automobile engineering.1997,211(3):175-179
    [10]Liu Y Q,Zhang J W,Cheng X M.Experimental and dynamic study of the piston rod lateral friction for the twin-tube hydraulic shock absorber.Shock and vibration.2003,10(3):169-177
    [11]Kowalski D,Rao M D,Blough J.Dynamic testing of shock absorbers under non-sinusoidal conditions.Journal of automobile engineering.2002,216(5):373-384
    [12]陈耀钧.轿车液压减振器阻力特性模拟计算及分析.汽车技术.1995,(10):7-17
    [13]陈吉安,陈晓峰,杜善义.液压减振器工作特性分析.哈尔滨工业大学学报.1999,31(3):114-117
    [14]刘延庆,张建武,张利.车用双筒液压减振器动态响应的试验与仿真.上海交通大学学报.2002,36(8):1095-109
    [15]檀润华,陈鹰,路甬祥.基于复杂非线性数学模型的汽车减振器参数设计.机械设计.1999,(2):16-18
    [16]赵六奇,易庆红.车辆悬架与减振器阻尼的匹配研究.车辆与动力技术. 1994.53(1):30-37
    [17]谭超,俞德孚,罗金良.悬架双筒液压充气减振器的基本结构和工作原理.车辆与动力技术.1997,67(3):51-64
    [18]杨北川.车用双筒充气液压减振器的研制和试验研究:[硕士学位论文].南京:南京理工大学,2003,20-30
    [19]谭超,刘宝记,俞德孚.悬架双筒充气液压减振器外特性报告.车辆与动力技术.1997,66(2):47-54
    [20]李士松,贾萍稳,朱庆军.双筒充气液压减振器的研究.北方交通大学学报.1996,20(1):114-118
    [21]俞德孚.我国汽车工业的发展形势与悬架减振器的国产化课题.车辆与动力技术.1997,53(1):1-7
    [22]Michael S T,John S.An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper.SAE paper 2002-01-3337
    [23]Akutain,X C,Vinolas J,Savall J.A parametric damper model validated on a track.International Journal of Heavy Vehicle Systems.2006,13(3):145-162
    [24]Kirk S R.Development and experimental verification of a parametric model of an automotive damper:[thesis].Texas:Texas A&M University,2006:22-26
    [25]Talbott.An experimentally validated physical model of a high performance automotive damper:[thesis].Indiana:Purdue University,2002:30-50
    [26]Hermann R,Werner T.Low temperature resistant shock absorber seals possibilities in design and material.SAE paper 860492
    [27]吕振华,李世民.筒式减振器动态特性模拟分析技术的发展.清华大学学报(自然科学版).2002,42(11):1532-1536
    [28]吕振华,伍卓安,李世民.减振器节流阀非线性特性的有限元模拟分析.机械强度.2003,25(6):614-620
    [29]冯雪梅,刘佐民.减振器内部油压行为分布特征有限元分析.武汉理工大学学报:信息与管理工程版.2002,24(5):121-124
    [30]任卫群,赵峰,张杰.汽车减振器阻尼特性的仿真分析.系统仿真学报:增刊.2006,18(2):957-960
    [31]李中复.汽车减振器压缩行程数字仿真.辽宁工程技术大学学报.2002,21(5):643-645
    [32]檀润华,陈鹰,路甬祥.汽车减振器新型数学模型的研究.汽车工程.1998,20(2):113-117
    [33]王一兵,徐明龙,邱阳.汽车液压阻尼器的四段线性化模型.应用力学学报.2003,20(2):60-63
    [34]黄恒.汽车减振器的数学建模及其外特性与温度变化关系的理论与试验研究:[学位论文].武汉:武汉理工大学,2005,40-50
    [35]Ramos J C,Rivas A,Biera J.Development of a thermal model for automotive twin-tube shock absorbers.Applied Thermal Engineering,2005,25(11):1836-1857
    [36]Alexander L,Swenja L.A Thermomechanically Coupled Model for Automotive Shock Absorbers:Theory,Experiments and Vehicle Simulations on Test Tracks.Vehicle System Dynamics.2002,37(4):24-261
    [37]张立军,余卓平,欧阳鹏.汽车液压减振器机械阻尼特性试验研究.噪声与振动控制.2005,6(3):33-36
    [38]张国贤,吴白羽,何青玮.温度变化对汽车减振器性能的影响.振动、测试与诊断.2003,2(31):37-40
    [39]吕振华,李世民,刘目珍.筒式液阻减振器工作特性的实验研究.汽车工程.2005,27(3):203-208
    [40]耶尔森.赖姆帕尔.汽车底盘基础.北京:科学普及出版社,1992:1-10
    [41]宋年秀,王东杰,刘超.图解汽车底盘构造与拆装.北京:中国电力出版社,2007,20-30
    [42]张军.轿车主动空气悬架的三种方案仿真分析.北京理工大学学报.2007.27(9):779-782
    [43]马国清,王树新,檀润华.汽车油气悬挂系统数学模型与计算机仿真研究.中国机械工程.2003.14(11):978-981
    [44]Aslaminasab N,Golnaraghi M F.Vibration control schemes of semi-active hydro-pneumatic dampers for military vehicle suspension.In:Proc of 2006ASME Int Mechanical Engineering Congress and Exposition.Chicago,2006,90-100
    [45]Elbeheiry Elsayed M.Suboptimal bilinear control methods applied to suppressing car vibrations.Journal of Vibration and Control.2001,7(2):279-306
    [46]Ghosh M K,Dinavahi R.Vibration analysis of a vehicle system supported on a damper-controlled variable-spring-stiffness suspension.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering.2005,219(5):607-619
    [47]Sammier D,Sename O,Dugard L.Skyhook and H_∞ control of semi-active suspensions:Some practical aspects.Vehicle System Dynamics.2003.39(4):279-308
    [48]Sohn H C,Hong K S,Hedrick J K.Semi-active control of the Macpherson suspension system:hardware-in-the-loop simulations.In:Proc of IEEE Conference on Control Applications.Anchorage,2000:982-987
    [49]Nakano M,Yanekawa T.Active damper using electrorheological suspension and its application to vibration isolation control.Noise and Vibration Worldwide,1997,28(8):30-51
    [50]Sung K G,Han Y M,Lim K H.Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper.Smart Marterial and Structures.2007.16(3):798-808
    [51]Zhao X,Zhang Y F.Electrorheological damper and its application for semi-active suspension system.Journal of Beijing Institute of Technology.2007.16(1):9-12
    [52]赵成,胡增荣,陈大跃.半主动悬架的滑模变结构控制.中国公路学报.2007.20(3):109-114
    [53]孙涛,陈大跃.电流变智能半模糊控制.汽车工程.2004.26(5):605-608
    [54]杨礼康,潘双夏,王维锐.磁流变减振器滞环特性试验及建模方法.机械工程学报.2006,42(11):137-143
    [55]Ahmadian Mehdi,Gravatt John.A comparative analysis of passive twin tube and skyhook MRF dampers for motorcycle front suspensions.The International Society for Optical Engineering,2004,5386(548):238-249
    [56]Liao W H,Wang D H.Semi-active vibration control of train suspension systems via magnetorheological dampers.Journal of Intelligent Material Systems and Structures.2003,14(3):161-172
    [57]Zhan chun wei,Ou jin ping,Zhang jin qiu.Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers.Structural Control and Health Monitoring.2006,13(5):885-896
    [58]Lei C Y,Liao W H.Vibration control of a suspension system via a magnetorheological fluid damper.Journal of Vibration and Control.2002,8(4):527-547
    [59]Du H P,Yim S K,Lam J.Semi-active H_∞ control of vehicle suspension with magneto-rheological dampers.Journal of Sound and Vibration.2005.283(3-5):981-996
    [60]Song S B,Ahmadian M,Southward S.Analysis and strategy for superharmonics with semiactive suspension control systems.Transactions of the ASME:Journal of Dynamic Systems,Measurement and Control.2007.129(6):795-803
    [61]Shen Y,Golnaraghi M F,Heppler G R.Load-leveling suspension system with a magnetorheological damper. Vehicle System Dynamics. 2007. 45(4): 297-312
    [62] Guo D L, Hu N Y, Yi J Q. Neural network control for a semi-active vehicle suspension with a magnetorheological damper. Journal of Vibration and Control. 2004. 10(3): 461-471
    [63] Yao G Z, Yap F F, Chen G. MR damper and its application for semi-active control of vehicle suspension system. Mechatronics. 2002. 12(7): 963-973
    [64] A Hac. Suspension optimization of a 2-DOF vehicle model using a stochastic optimal control technique. J.of Sound and Vibration, 1985 100(3): 343-375
    [65] Thompson A G An active suspension with optimal linear state feedbackVehicle System Dynamics, 1976, 5: 187-203
    [66] M E Mohamed, S A Zuhair. Linear quadratic gaussian control of a quarter car suspension. Vehicle system dynamics. 1999,(32):479-497
    [67] H S Roh, Y Park. Stochastic optimal preview control of an active vehicle suspension. Journal of sound and vibration. 1999,220(2):313-330
    [68] T J Gordon, C Marsh M G Milsted. A comparison of adaptive LQG and nonlinear controllers for vehicle suspension systems. Vehicle system dynamics. 1991, (20): 321-340
    [69] J Marzbanrad, G Ahmadi, H Zohoor. Stochastic control preview control of a vehicle suspension. Journal of sound and vibration. 2004,275(5):972-990
    [70] Hong chen, Kong-Hui Guo. Constrained H∞ control of active suspensions: an LMI approach. Control systems technology IEEE Transactions. 2005,13(3): 412- 421
    [71] Gao, Huijun; Lam, James; Wang, Changhong. Multi-objective control of vehicle active suspension systems via load-dependent controllers Journal of Sound and Vibration, vol. 290, (3-5), pp. 654-675, 2006
    [72] Bram de Jager.Robust H_2 optimal control of an active suspension. in Proc.IEEE International Conference on Control Applications, 1997,761-766
    [73] TUAN H D, ONO E, APKARIAN P. Nonlinear H_∞ Control for an Integrated Suspension System via Parameterized Linear Matrix Inequality Characterizations [J]. IEEE Transaction on Control System Technology, 2001, 9 (1): 175-185
    [74] Wang J, Wilson D A. H_∞ robust-performance control of decoupled active suspension systems based on LMI method. Proceedings of the American Control Conference, Arlington, VA, June, 2001: 2658-2663
    [75] Chen H, Guo K H. An LMI approach to multi-objective RMS gains control for active suspensions.In Proceedings of the American control conference Arlington.IEEE,2001,2646-2654
    [76]S J Huang,H C Chao.Fuzzy logic controller for a vehicle active suspension system.Proceedings Institution Mechanical Engineer,Part D.2000,214(1):1-12
    [77]Yeh E C,Tsao Y J.A fuzzy preview control scheme of active suspension for rough road Int J of Vehicle Design,1996,15(1/2):112-118
    [78]Shiuh-Jer Huang and H.-C.Chao,2000 Fuzzy Logic Controller for a Vehicle Active Suspension System Proceedings of the Institution of Mechanical Engineers,Part Ⅰ:Journal of Automobile Engineering,Vol.214,pp.1-12
    [79]Sahin Yildirim,Ibrahim Uzmay.Neural network application to vehicle's vibration analysis.Mechanism and Machine Theory.2003,38:27-41
    [80]Yildirim S.Vibration Control of Suspension Systems Using a Proposed Neural Network.Journal of Sound and Vibration,2004,277(4):1059-1069
    [81]胡毓达。实用多目标最优化.上海:上海科学技术出版社,1990,20-30
    [82]Dave Crolla,喻凡.车辆动力学及其控制.北京:人民交通出版社,2004,200-210
    [83]余志生.汽车理论(第3版).北京:机械工业出版社,2004,150-160
    [84]刘惟信.汽车设计.北京:机械工业出版社,2004,431-517
    [85]M Gobbi,G Mastinu.Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles.Journal of Sound and Vibration,2001,245(3):457-481
    [86]Fonseca C.M.and Fleming P.J.1998.Multiobjctive optimization and multiple constraint handling with evolutionary algorithms—Part Ⅱ:Application example.IEEE Trans.Syst.,Man,Cybern.A,vol.28:38-47
    [87]Zitzler E.,Deb K.,and Thiele L.2000.Comparison of multiobjective evolutionary algorithms:Empirical results.Evol.Comput.,vol.8,no.2:173-195
    [88]G.C.Luh,C.H.Chueh,Multi-objective optimal design of truss structure with immune algorithm,Computers & Structures,2004,82(11):829-844
    [89]Srinivas N,Deb K.(1994).Multiobjective optimization using nondominated sorting in genetic algorithms.Evolutionary Computation,2(3),221-248
    [90]Deb K.Multi-objective optimization using evolutionary algorithms.England:John Wiley & Sons,Ltd.2001,30-50
    [91]玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社,2004,40-50
    [92]刘桂萍,韩旭,姜潮.基于微型多目标遗传算法的薄板冲压成形压边力优化. 中国机械工程.2007.18(21):2614-2617
    [93]郭孔辉.操纵系统动力学.吉林:吉林科学技术出版社,1992
    [94]俞德孚,叶全勇.车辆悬架减振器外特性反求工程的基本问题.车辆与动力技术.1994.53(1):8-21
    [95]俞德孚,陈庆东,方大雨.悬架减振器外特性平安比的设计研究.车辆与动力技术.2002.87(3):11-17
    [96]John Dixon.The Shock Absorber Handbook.USA:SAE 1999,180-200
    [97]张洪欣.汽车设计.北京:机械工业出版社,1981,238-334
    [98]约森.赖姆帕尔.汽车底盘基础.吉林:吉林科学技术出版社,1991,151-171
    [99]章宏甲,黄谊,王积伟.液压与气压传动.北京:机械工业出版社,2004,50-70
    [100]汽车筒式减振器台架试验方法.中华人民共和国汽车行业标准:QC/T545-1999
    [101]Liu G.R.,Han X.Computational inverse techniques in nondestructive evaluation [M].Florida:CRC Press,2003,100-150
    [102]周明,孙树栋编著。遗传算法原理及应用。北京:国防工业出版社,1999,30-50
    [103]陈辛波,王伟,万钢.双横臂扭杆弹簧悬架系统刚度和阻尼特性分析的新方法.机械工程学报.2006.42(9):103-106
    [104]李文君,蒋永林,高树新.双横臂独立悬架空间运动分析.汽车工程.2006.28(6):558-561
    [105]陈辛波,赵锐.双横臂扭杆悬架力学特性的非线性分析与设计.同济大学学报(自然科学版).2006.34(5):655-659
    [106]曾迥立.双横臂独立悬架线刚度的非图解法计算.汽车工程.2006.28(8):747-782
    [107]李中华,张洪欣,陈鹤翠.双横臂扭杆独立悬架设计.同济大学学报.1997.25(4):487-491
    [108]胡宁,郑冬黎.双横臂独立悬架运动学分析.汽车工程.1998.20(6):362-366
    [109]戴旭文,古中丽,刘剑.汽车双横臂独立悬架的运动学分析和计算.车辆与动力技术.2002.86(2):29-33
    [110]王其东,陈无畏,何文辉.基于多体动力学的双横臂独立悬架线刚度的计算.农业机械学报.2004.35(3):132-135
    [111]李新耀,张印,周良生.双横臂扭杆悬架的特性分析及设计计算.汽车工程.2002.25(1):15-19
    [112]左文义,项宝禄.双横臂扭杆独立悬架系统运动分析方法.汽车技术.1994. (4):1-27
    [113]李静,初亮,鲁和安.双横臂独立悬架导向机构的运动特性.2002.33(2):84-86
    [114]金叙龙,郭万富.独立悬架运动特性分析.汽车技术.2001.(4):11-14
    [115]汽车平顺性脉冲输入试验方法.中华人民共和国国家标准:GB5902-86
    [116]郑军.新概念车舒适性与操纵稳定性研究.:[湖南大学博士学位论文].长沙:车身国家重点实验室,2001:20-27
    [117]张亚欧,马吉盛,吴大林.基于Fourier逆变化法的路面不平度模拟.河北工业大学学报.2005.34(5):66-69
    [118]吕宝占,高辉松,张萤.基于Matlab的前悬架车辆振动特性.河南科技大学学报.2007.28(5):13-17
    [119]喻凡,林逸.汽车系统动力学.北京:机械工业出版社.2005,20-30
    [120]B.F.Spencer,S.J.Dyke,M.K.Sain etc.Phenomenological model for magnetorheological dampers.Journal of Engineering Mechanics,1997,3:230-238.
    [121]Dyke,S.J.,Spencer B.F.,Sain,M.K.etc.Modeling and control of magnetorheological dampers for seismic response reduction.Smart material and structure.1996,5,565-575
    [122]Bram de Jager.Robust H_2 optimal control of an active suspension[J].in Proc.IEEE International Conference on Control Applications,1997,761-766
    [123]Carsten W.Scherer.Multiobjective H_2/H_∞ Control[J].IEEE Trans.Automat.Control,1995,40(6):1054-1062
    [124]H Chen,Ma Miao Miao,Sun Pen Yuan.Multi-objective Control Design for Active Suspensions:An LMI Approach.Acta Automatica Sinica 2006 32(4):550-559
    [125]Chein-Chung Sun,Hung-Yuan Chung and Wen-Jer Chang.H_2/H_∞ Robust Static Output Feedback Control Design via Mixed Genetic Algorithm and Linear Matrix Inequalities.ASME Journal of Dynamic Systems,Measurement and Control,2005 127:715-722
    [126]A Molina-Cristobal,I A Griffin,P J Fleming,D H Owens.Linear Matrix Inequalities and Evolutionary Optimisation in Multiobjective Control.International Journal of Systems Science.Vol.37,No 8 pp513-522,2006
    [127]Hong chen,Kong-Hui Guo.Constrained H∞ control of active suspensions:an LMI approach.Control systems technology IEEE Transactions[J].2005,13(3):412-421
    [128]俞立.鲁棒控制:线性矩阵不等式[M].清华大学出版社北京.2002,60-70
    [129]Mitsuo Gen,Runwei Cheng.Genetic algorithms and engineering optimization [M].Tisinghua university Press.Beijing 2004,30-50
    [130]刘桂萍,韩旭,姜潮.基于微型多目标遗传算法的薄板冲压成型变压力优化[J].中国机械工程,2007,21(18):2614-2617

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700