光学超晶格多波长全固态激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research on Multiple-Wavelength All-Solid-State Lasers Based on Optical Superlattice
  • 作者:赵丽娜
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2011
  • 导师:祝世宁
  • 学科代码:070205
  • 学位授予单位:南京大学
  • 论文提交日期:2011-05-16
摘要
近年来,基于非线性频率变换的全固态激光技术发展迅速。准位相匹配(QPM)技术是非线性光学频率变换领域中的一个重要部分,因其转换效率高、设计灵活等特点受到了广泛的关注。本论文在研究光学超晶格材料极化技术的基础上,以不同结构的超晶格材料作为非线性频率变换器件,结合全固态激光技术,成功研制出小型化的黄光和红、绿、蓝三基色激光器。此外,我们还研究了钽酸锂晶体和周期极化钽酸锂超晶格中的飞秒超连续光谱。本论文主要包括以下几个方面的内容:
     1、介绍了制备介电体超晶格的室温极化技术,并在此基础上设计了微机采集控制辅助极化系统。结果表明,这一辅助极化技术的采用可制备优于传统极化技术的高质量光学超晶格。
     2、搭建了一台激光二极管(LD)侧泵、三镜腔的1064nm和1319nm双共振的调Q.Nd:YAG激光器,并用双波长激光器作为泵浦源,以周期极化钽酸锂超晶格为变频晶体,通过和频获得了506mW的589nm黄光输出。
     3、利用设计准晶的广义双格子(General Dual Grid Method,GDGM)方法,设计并制备了二维准周期钽酸锂超晶格。这一二维准晶结构可以同时实现三个非线性过程:一个共线的光参量产生过程(OPG)级联两个非共线的倍频过程(SHG)。实验中使用532nm绿光作为泵浦光,通过温度调谐,在单通方式下获得了两套不同波长的红蓝光,加上剩余的泵浦绿光,实现了自动分光的红绿蓝三基色激光输出。
     4、基于光参量振荡级联和频这一非线性光学过程,使用级联周期和公度比双周期两种结构的光学超晶格作为变频晶体,两套方案均获得了功率为2W的红绿蓝三基色激光输出。第一套方案:以532nm绿光为泵浦光源,使用1mm厚、40mm长的级联周期结构近化学计量比钽酸锂超晶格为变频晶体,并采取红外光(闲置光)参量共振的方法获得了2W红绿蓝三基色激光,从泵浦光到三基色光的转换效率为36%,亮度为61Olm。第二套方案:以532nm绿光为泵浦光源,公度比双周期结构的钽酸锂光学超晶格为变频晶体,利用红外光参量振荡的方法获得2W红绿蓝激光,相对于泵浦光的转换效率为48%,亮度为7701m。
     5、研究了钽酸锂晶体和周期极化钽酸锂超晶格中的Cerenkov辐射形式的飞秒超连续光产生。当一束800nm的飞秒脉冲激光入射到钽酸锂晶体上时,由于高强度激光与非线性晶体相互作用出现自陷的光丝(filament),产生了飞秒超连续光,光谱的展宽范围为490-970nm,同时观测到超连续光是以锥形角的形式进行辐射,我们采用Cerenkov辐射理论解释了这种现象。使用周期极化钽酸锂超晶格作为非线性晶体同时获得了泵浦光的倍频和飞秒超连续光,使光谱得到了进一步展宽。展宽范围为380-950nm,其中380-440nm为泵浦光的倍频,500-970nm为超连续光。
In the past several decades, solid-state lasers and nonlinear optical frequency conversion techniques have been widely used and achieved great progresses. Quasi-phase-matched (QPM) is an important part in the field of nonlinear optical frequency conversion, and it attracts more attention due to the advantages of compact structure, high efficiency, and flexible design. In this thesis, based on the optical superlattice fabrication technique, all-solid-state laser technique, and different types of superlattices as nonlinear frequency converter, a compact yellow laser and red, green, blue laser are developed and femtosecond supercontinuum generation in lithium tantalate (LT) and periodically poled lithium tantalite (PPLT) is studied. The main contents are as follows:
     1. The poling technique at room temperature fabricating superlattice is introduced. Based on this technique, microcomputer collecting and controlling system to assistant poling is designed. The result demonstrates the quality of the superlattice fabricated by using this assistant poling technique is superior to that by traditional technique.
     2. A laser-diode side-pumped, three-mirror cavity,1064nm and 1319nm dual-wavelength Q-switched Nd:YAG laser is set up and used as the pump source. A periodically poled lithium tantalate (PPLT) is employed as the frequency converter. we obtain 506mW yellow laser by sum-frequency generation (SFG).
     3. A two-dimensional (2D) quasi-periodically poled lithium tantalate superlattice is designed and fabricated by using the general dual grid method. The 2D quasi-crystal can simultaneously realize three nonlinear processes:a collinear optical parametric generation (OPG) cascading two non-collinear frequency doubling. In the experiment,532nm green laser is used as the pump source, and two sets of red-blue light is obtained in a single pass set up by tuning the crystal temperature. Together with the residual pump green light, automatically prismatic red-green-blue (RGB) light is realized.
     4. Based on optical parametric oscillation (OPO) cascading sum-frequency generation,2W RGB is obtained by employing two plans of cascaded periodically poled stoichiometric lithium tatanlate (PPSLT) and commensurate dual-periodically poled lithium tatanlate (CDPPLT) as frequency converter. The first plan is:pumped by 532nm green laser, using lmm thick,40mm long cascaded PPSLT, based on idler light OPO,2W RGB is obtained. The conversion efficiency from pump to 2W RGB is 36%, and luminous flux is 610lm. The second plan is pumped by 532nm green laser, using CDPPLT, based on idler light OPO,2W RGB is obtained, the conversion efficiency from pump to 2W RGB is 48%, and the luminous flux is 770lm.
     5. The femtosecond supercontinuum generation of Cerenkov radiation type in LT and PPLT is studied. When a femtosecond pulse laser with 800nm is incident on the LT crystal. The interaction of the powerful pulse laser and nonlinear crystal gives rise to self-trapped filament and femtosecond supercontinuum. The spectrum is broadened to a wide range from 490 to 970nm, and we also observe the conical emission of the supercontinuum. The theory of Cerenkov radiation is used to explain the conical emission. When PPLT is used as the nonlinear crystal, the spectrum can be further broadened from 380 to 970nm. The range of 380 to 440nm is generated from frequency doubling of pump light and 500 to 970nm results from supercontinuum generation.
引文
[1]A. L. Schawlow, and C. H. Townes, Phys. Rev.112,1940 (1958)
    [2]T. H. Mainman, Nature 187,493 (1960)
    [3]W. G. Spitzer, and D. A. Kleinman, Phys. Rev.121,001324 (1961)
    [4]J. Armstreng, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev.127,1918 (1962)
    [5]D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, Appl. Phys. Lett.37,607 (1980)
    [6]E. J. Lim, M. M. Fejer, and R. L. Byer, Electronics letters 25,174 (1989)
    [7]E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, Electronics letters 25, 731 (1989)
    [8]J. Webjorn, F. Laurell, and G. Arivdsson, IEEE Photonics Technology Letters 1, 316(1989)
    [9]W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photonics Technology Letters 6,252(1994)
    [10]L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett.20,52 (1995)
    [11]L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, J. Opt. Soc. Am. B 12,2102(1995)
    [12]S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278,843 (1997)
    [13]H. Ishizuki, and T. Taira, Opt. Lett.30,2918 (2005)
    [14]D. Jundt, G. Magel, M. Fejer, and R. Byer, Appl. Phys. Lett.59,2657 (1991)
    [15]X. P. Hu, G. Zhao, C. Zhang, Z. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B: Lasers and Optics 87,91 (2007)
    [16]L. Goldberg, W. Burns, and R. McElhanon, Opt. Lett.20,1280 (1995)
    [17]N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, Appl. Phys. Lett.85,5134 (2004)
    [18]S. N. Zhu, Y. Y. Zhu, Z. J. Yang, H. F. Wang, Z. Y. Zhang, J. F. Zhang, J. F. Hong, C. Z. Ge, and N. B. Ming, Appl. Phys. Lett.67,320 (1995)
    [19]C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26,399(2001)
    [20]H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, Appl. Phys. Lett.79, 728 (2001)
    [21]Z. W. Liu, Y. Du, J. Liao, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. T. Wang, J. L. He, and N. B. Ming, J. Opt. Soc. Am. B 19,1676 (2002)
    [22]H. R. Bryan, P. K. Grllayher, and C. D. Brandle, J. Am. Ceram. Soc.68,493 (1985)
    [23]K. Polgar, A. Peter, and I. Foldvari, Optical Materials,19,7 (2002)
    [24]V. Gopalan, T.E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett.72, 1981 (1998)
    [25]P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, J. Appl. Phys.71, 875(1992)
    [26]M. Nakamura, S, Takekawa, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, Ferroelectrics 273,199 (2002)
    [27]N.E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, Appl. Phys. Lett.85,5134 (2004)
    [28]R. E. Fitzpatrick, Opt. Photonics News 6,23 (1995)
    [29]K. B. Davis, M.-O. Mewes, M. R. Andrews, D. S. Durfee, D. M. Kurn, W. Ketterle, W. Ketterle, and N. van Druten, Phys. Rev. Lett.75,3969 (1995)
    [30]C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, Science 277,1649 (1997)
    [31]M. B. Danailov, and P. Apai, J. Appl. Phys.75,8240 (1994)
    [32]R. W. Farley, and P. D. Dao, Appl. Opt.34,4269 (1995)
    [33]J. D. Vance, C. Y. She, and H. Moosmuller, Appl. Opt.37,4891 (1998)
    [34]J. C. Bienfang, C. A. Denman, B.W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, Opt. Lett.28,2219 (2003)
    [35]J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, Opt. Lett.34,1093 (2009)
    [36]A. J. Tracy, C. Lopez, A. Hankla, D. J. Bamford, D. J. Cook, and S. J. Sharpe, Appl. Opt.48,964 (2009)
    [37]Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, Opt. Lett.27,1809(2002)
    [38]Y. F. Chen, and S. W. Tsai, Opt. Lett.27,397 (2002)
    [39]P. Dekker, H. M. Pask, and J. A. Piper, Opt. Lett.32,1114 (2007)
    [40]Y. Feng, L. R. Taylor, and D. B. Calia, Opt. Express 17,19021 (2009)
    [41]E. J. Lerner, Laser Focus World 5,91 (2002)
    [1]D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, Appl. Phys. Lett.37,607 (1980)
    [2]E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, Electron. Lett.25,731 (1989)
    [3]J. Webjorn, F. Laurell, and G. Arvidsson, IEEE Photo. Technol. Lett,1,136 (1989)
    [4]J. Webjom, F. Laurell, and G. Arvidsson, Lightwave Technol.7,1597 (1989)
    [5]张志勇,朱永元,祝世宁,舒红,王海峰,洪静芬,康琳,闵乃本,人工晶体学报,24,1(1995)
    [6]陈云琳,阮永丰,姚琲,李宝凌,李文润,中国激光,A23,505(1996)
    [7]J. Webjorn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett.30,894(1994)
    [8]S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N.B. Ming, J. Appl. Phys.77,5481 (1995)
    [9]V. Y. Shur, E. L. Rumyontsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. C.Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett.76,143 (2000)
    [10]S.N. Zhu, Y.Y. Zhu, Z.J. Yang, H.F. Wang, Z.Y. Zhang, J.F. Zhang, J.F. Hong, C.Z. Ge, and N.B. Ming, Appl. Phys. Lett.67,320 (1995)
    [11]C. Zhang, H. Wei, Y.Y. Zhu, H.T. Wang, S.N. Zhu, and N.B. Ming, Opt. Lett.26, 399(2001)
    [12]H. Liu, Y.Y. Zhu, S.N. Zhu, C. Zhang, and N.B. Ming, Appl. Phys. Lett.79,728 (2001)
    [13]Z.W. Liu, Y. Du, J. Liao, S.N. Zhu, Y.Y. Zhu, Y.Q. Qin, H.T. Wang, J.L. He, and N.B. Ming, J. Opt. Soc. Am. B,19,1676 (2002)
    [14]Doctor dissertation of Shining Zhu. Department of Physics, Nanjing University. June 1996
    [15]Doctor dissertation of Yiqiang Qin. Department of Physics, Nanjing University. June 1998
    [16]Doctor dissertation of Gregory David Miller. Department of Electrical Engineering of Stanford University. July 1998.
    [17]Annual Report August 1995-1996, Center for Nonlinear Optical Materials, Stanford University
    [1]R. E. Fitzpatrick, Opt. Photonics News 6,23 (1995)
    [2]K. B. Davis, M.-O. Mewes, M. R. Andrews, D. S. Durfee, D. M. Kurn, W. Ketterle, W. Ketterle, and N. van Druten, Phys. Rev. Lett.75,3969 (1995)
    [3]C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, Science 277,1649 (1997)
    [4]M. B. Danailov, and P. Apai, J. Appl. Phys.75,8240 (1994)
    [5]R. W. Farley, and P. D. Dao, Appl. Opt.34,4269 (1995)
    [6]J. D. Vance, C. Y. She, and H. Moosmuller, Appl. Opt.37,4891 (1998)
    [7]J. C. Bienfang, C. A. Denman, B.W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, Opt. Lett.28,2219 (2003)
    [8]J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, Opt. Lett.34,1093(2009)
    [9]A. J. Tracy, C. Lopez, A. Hankla, D. J. Bamford, D. J. Cook,2 and S. J. Sharpe, Appl. Opt.48,964 (2009)
    [10]Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, Opt. Lett.27,1809(2002)
    [11]Y. F. Chen, and S. W. Tsai, Opt. Lett.27,397 (2002)
    [12]P. Dekker, H. M. Pask, and J. A. Piper, Opt. Lett.32,1114 (2007)
    [13]Y. Feng, L. R. Taylor, and D. B. Calia, Opt. Express 17,19021 (2009)
    [14]姚建铨,徐德刚,全固态激光及非线性光学频率变换技术[M]北京:科学出版社,P48(2007)
    [15]Y. F. Chen, Appl. Phys. B 70,475 (2000)
    [16]W. X. Lin, and H. Y. Shen, J. Appl. Phys.86,2979 (1999)
    [17]J. P. Meyn, and M. M. Fejer, Opt. Lett.22,1214 (1997)
    [18]S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu. H. F. Wang. J. F. Hong, C. Z. Ge, and N. B. Ming,J.Appl. Phys.77,5481 (1995)
    [1]D. Sheehtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett.53, 1951(1984)
    [2]R. Merlin, K. Bajema, and R. Clarke, Phys. Rev. Lett.55,1768 (1985)
    [3]A. Hu, C. Tian, X. J. Li, Y. H. Wang, and D. Feng, Phys. Lett.119A,313 (1986)
    [4]R. W. Peng, A. Hu, and S. S. Jiang, Appl. Phys. Lett.50,2512 (1991)
    [5]H. Terauchi, Y. Noda, K. Kamigaki, S. Matsunaka, M. Nakayama, H. Kato, N. Sano, and Y. Yamada, J. Phys. Soc. Jpn.57,2416 (1988)
    [6]Y.Y. Zhu, and N. B. Ming, Phys. Rev. B 42,3676 (1990)
    [7]J. Feng, Y. Y. Zhu, and N. B. Ming, Phys. Rev. B 41,5578 (1990)
    [8]S. N. Zhu, Y. Y. Zhu, Y Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, Phys. Rev. Lett.78,2752(1997)
    [9]Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, Phys. Rev. E 60, R5056 (1999)
    [10]P. C. Pooser, and O. Pfister, Opt. Lett.30,2635 (2005)
    [11]O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, Phys. Rev. A 70,020302 (2004)
    [12]V. Berger, Phys. Rev. Lett.81,4136 (1998)
    [13]N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett.84,4345 (2000)
    [14]P. G. Ni, B. Q. Ma, X. H. Wang, B. Y Cheng, and D. Z. Zhang, Appl. Phys. Lett. 82,4230 (2003)
    [15]L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, Appl. Phys. Lett.83,3447 (2003)
    [16]N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 24,2394 (2007).
    [17]P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y Y. Zhu, and N. B. Ming, Phys. Rev. Lett.93,133904 (2004)
    [18]R. Penrose, in The Physics of Quasicrystals, P. J. Steinhardt and S. Ostund, eds (World Scientific, Singapore,1987), Appendix I.
    [19]B. Q. Ma, T. Wang, Y, Sheng, P,G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, Appl. Phys. Lett.87,251103 (2005)
    [20]R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, Opt. Lett.30,424 (2005)
    [21]N. de Bruijn, and Nedert. Akad. Wetensch, Proc. Ser.A 43,53(1981)
    [22]F. Gahler, and J. Rhyner, J. Phys. A,19,267 (1986)
    [23]D. A. Rabson, T.-L. Ho, and N. D. Mermin, Acta Crystallogr.44,678 (1988)
    [24]R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett.95,133901 (2005)
    [25]A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24,1916 (2007)
    [26]A. Bahabad, A. Ganany-Padowicz, and A. Arie, Opt. Lett.33 1386 (2008)
    [1]刘榴娣,常本康,党长民,显示技术[M]北京:理工大学出版社(1993)
    [2]A. Korpel, R. Adler, P. Desmares, and W. Watson, Appl. Opt.5,1667 (1966)
    [3]E. J. Lerner, Laser Focus World,5,91 (2002)
    [4]J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett.82,3159(2003)
    [5]H. X. Li, P. Xu, Y. X. Fan, P. Lu, Z. D. Gao, S. Liu, S. N. Zhu, and J. L. He, J. Appl. Phys.37,21 (2004)
    [6]T.W. Ren, J. L. He, C. Zhang, S. N. Zhu, Y. Y. Zhu, and Y. Hang, J. Phys.16, 3289 (2004)
    [7]X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, Opt. Lett.33,408 (2008)
    [8]Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, Appl. Phys. Lett.89,181101
    (2006)
    [9]P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, Opt. Express 17,9509 (2009)
    [10]周太明,周详,蔡伟新,光源原理与设计[M]上海:复旦大学出版社(2006)
    [11]K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, Appl. Phys. Lett.73,3073(1998)
    [12]M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, Ferroelectrics 273,199 (2002)
    [13]N. E. Yu, S. Kurimura, Y. Namura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, Appl. Phys. Lett.84,1662 (2004)
    [14]Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197,889 (1999)
    [15]M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, Opt. Lett.24,1157 (1999)
    [16]X. J. Lv, L. N. Zhao, J. Lu, G. Zhao, H. Liu, Y. Q. Qin, and S. N. Zhu, Opt. Express 17,18241 (2009)
    [17]N. E. Yu, S. Kurimura, Y. Nomura. M. Nakamura. K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, Appl. Phys. Lett.85,5134 (2004)
    [18]A. Bruner, D. Eger, and S. Ruschin, J. Appl. Phys.96,7445 (2004)
    [19]S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, Opt. Express 16,11294 (2008)
    [1]R. R. Alfano, and S.L. Shapiro, Phys. Rev. Lett.24,584 (1970)
    [2]R. R. Alfano, The Super continuum Laser Source (Springer, Berlin,1989)
    [3]P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, Phys. Rev. Lett.57,2268 (1986)
    [4]H. Nishioka, W. Odajima, K. Ueda, and H. Takuma, Opt. Lett.20,2505 (1995)
    [5]E. T. J. Nibbering, M. Franco, B. S. Prade, G. Grillon, C. LeBlanc, and A. Mysyrowicz, Opt. Commun.119,479 (1995)
    [6]L. Woste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronneberger, H. Schillinger, and R. Sauerbrey, Laser Optoelektronik 29,51 (1997)
    [7]R. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Woste, and C. Ziener, Appl. Phys. B 71,573 (2000)
    [8]J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. Andre, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Woste, Opt. Lett.25,1397 (2000)
    [9]W. J. Jones, and B. P. Stoicheff, Phys. Rev. Lett.13,657 (1964)
    [10]N. Bloembergen, and P. Lallemend, Phys. Rev. Lett.16,81 (1966)
    [11]F. Shimizu, Phys. Rev. Lett.19,1097 (1967)
    [12]W. Lee Smith, P. Liu, and N. Bloembergen, Phys. Rev. A 15,2396 (1977)
    [13]V. Francois, F. A. Ilkov, and S. L. Chin, J. Phys. B 25,2709 (1992)
    [14]F. A. Ilkov, L. Sh. Ilkova, and S. L. Chin, Opt. Lett.18,681 (1993)
    [15]N. K. M. Naga Srinivas, S. Sree Harsha, and D. Narayana Rao, Opt. Express 13, 3224 (2005)
    [16]J. Zhang, Q. X. Zhang, D. X. Zhang, B. H. Feng, and J. Y. Zhang, Appl. Opt.49, 6645 (2010)
    [17]K. R. Wilson, and V. V. Yakovlev, J. Opt. Soc. Am. B 14.444 (1997)
    [18]H. Schillinger, and R. Sauerbrey, Appl. Phys. B 68,753 (1999)
    [19]A. Talebpour, M. Abdel-Fattah. and S. L. Chin, Opt. Commun.183,479 (2000)
    [20]A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, Laser Phys.11, 68 (2001)
    [21]R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, Opt. Lett.8, 1(1983)
    [22]G. Y. Yang and Y. R. Shen, Opt. Lett.9,510 (1984)
    [23]N. Bloembergen, Opt. Commun.8,285 (1973)
    [24]A. Penzkofer, A. Laubereau, and W. Kaiser, Phys. Rev. Lett.31,863 (1973)
    [25]A. Penzkofer, A. Beidoun, and H.-J. Lehmeier, Opt. Quantum Electron.25,317 (1993)
    [26]M. Wittman and A. Penzkofer, Opt. Commun.126,308 (1996)
    [27]P. W. Milonni, J. H. Eberly, Lasers Wiley, New York, p.43, see also pp.709 (1988)
    [28]C. Rulliere (Ed.), Femtosecond Laser Pulses, Springer, Berlin, p.47. (1998)
    [29]A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett.20,73 (1995)
    [30]E. T. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A.Franco, F. Salin, A. Mysyrowicz, Opt. Lett.21,62 (1996)
    [31]O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, S. L. Chin, Opt. Lett. 22,1332(1997)
    [32]A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, V. P. Kandidov, Opt. Lett.22,304 (1997)
    [33]A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S.Clement, Phys. Rev. Lett.82,1430(1999)
    [34]V. I. Bespalov, and V.I. Talanov, JETP Lett.3,307 (1966)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700