小黑麦氮利用效率基因型差异评价及其生理特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为缓解人口压力,获得作物的高产与稳产,过量施用氮肥在我国普遍存在。氮肥的过量施用不仅浪费资源,而且导致我国氮肥利用效率降低和环境污染等问题。已有的研究表明,同一作物不同品种间的氮肥利用效率存在差异。因此,从作物自身遗传潜力出发,获取作物氮高效基因型成为减少氮肥投入、提高作物氮素营养效率的有效途径。本文结合国内外研究现状,采用盆栽试验,通过评价不同氮效率小黑麦基因型氮素利用的差异,并在此基础上选择氮高效利用小黑麦基因型PI429186和低效基因型CIxt74为试材,研究不同氮效率小黑麦基因型在不同生育期不同供氮条件下干物质生产、氮素积累、转移特征和生理特性。主要研究结果如下:
     (1)通过土壤盆栽试验,对31个小黑麦品种氮利用效率基因型差异及相关性状指标进行研究,结果表明:小黑麦的氮素利用效率在低氮和正常供氮条件下都有较大的基因型差异,并在抽穗期时变异系数达到最大(低氮条件下CV为19.07%,正常供氮为19.50%)。根据小黑麦在两供氮条件下不同生育期的氮素利用效率可将小黑麦分为3个类型:氮高效利用基因型,氮低效利用基因型和中间类型,并由此确定氮高效利用基因型为:CIxt82、PI429186和PI429228,氮低效利用基因型为:CIxt74、CIxt75、CIxt76、PI428955、PI587238和PI587241。小黑麦株高与地上部生物量在两供氮条件下各生育期表现出氮高效利用基因型高于氮低效利用基因型的趋势。相关性分析表明,小黑麦株高和地上部生物量与氮素利用效率呈现较强的正相关性。因此,这两个植株性状可作为小黑麦氮高效利用基因型评价的辅助指标。
     (2)通过土壤盆栽试验,以氮高效利用小黑麦基因型PI429186和氮低效利用小黑麦基因型CIxt74为材料,设置4个氮素水平0 mg/kg(NO)、16.67 mg/kg(N1)、33.33mg/kg(N2)和66.67 mg/kg(N3),对氮高效利用小黑麦基因型各生育期干物质生产、氮素积累和分配特性进行研究。结果表明:随供氮量的增加,各生育期小黑麦的生物量增加。在同一生育期同一供氮条件下,氮高效利用小黑麦基因型PI429186的生物量显著高于氮低效利用小黑麦基因型CIxt74。小黑麦根、茎、叶的氮素积累量及氮素阶段性积累量随供氮量的增加而增大。氮高效利用小黑麦基因型PI429186根、茎、叶的氮素积累量和氮素阶段性积累量均高于在同一生育期同一供氮条件下的氮低效利用小黑麦基因型CIxt74。小黑麦的氮素多分布于茎、叶中。抽穗期时,叶的氮素含量逐渐向茎部运移,根部氮素含量保持相对稳定。两类小黑麦基因型在各生长器官中氮素分配差异不显著。
     (3)通过土壤盆栽试验,以氮高效利用小黑麦基因型PI429186和氮低效利用小黑麦基因型CIxt74为试材,设置4个氮素水平0 mg/kg(NO)、16.67 mg/kg(N1)、33.33 mg/kg(N2)和66.67 mg/kg(N3),对小黑麦氮高效利用基因型各生育期的根系和叶片生理特性进行研究,结果表明:在同一生育期同一供氮条件下,小黑麦氮高效利用基因型PI429186的根系a-NA氧化量、TTC还原量和根系活跃吸收面积,均大于或显著高于氮低效利用小黑麦基因型CIxt74,表现为根系活力大于氮低效利用基因型。小黑麦氮高效利用基因型PI429186的叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性随生育期,表现出在同一供氮条件下强于氮低效利用基因型CIxt74的趋势,而膜脂过氧化产物丙二醛(MDA)含量显著低于氮低效利用基因型。这表明小黑麦氮高效利用基因型具有较强的根系活力,获取土壤氮素的能力强;而叶片保护酶在各生育期通过协同作用,共同起到阻止高浓度氧积累和膜指过氧化,提高其光合能力,达到增产目的。
In order to release the stress of population, getting the higher harvest and keeping it, the excessive of nitrogen fertilizer input to farmland is the best way in China. As the excessive input of nitrogen fertilizer to field, it not only leads to increased the yield cost、decreased the nitrogen use efficiency but also urged the environment pollution. Some report showed that there were universal different of the same crop about nitrogen use efficiency in different genotypes. So we can get the high nitrogen use efficiency genotype from itself to reduce the supplies of nitrogen fertilizer, deduce the nitrogen use efficiency of the crops, and research the characteristics of high nitrogen use efficiency genotypes for getting german. Therefore, evaluation of nitrogen use efficiency of triticale in genotype was studied in this research. Then, the experiment of soil culture with different N levels were carried out to research the difference in dry matter production, N accumulation, distribution, and physiological characteristics at different growth by using two triticale genotypes of high nitrogen use efficiency PI429186 and low nitrogen use efficiency CIxt74 as materials. The main results were as bellowing:
     (1) The nitrogen use efficiency and the correlative indexes of 31 triticale cultivars were investigated at the tillering, jointing and heading stages under low and normal N supplies based on pot experiment. The results show that the nitrogen use efficiencies were different for the triticale genotypes under the two N levels. The variation coefficient of triticale at the heading stage was bigger than that at other stages, which was 19.07% under the low N level and 19.50% under the normal N level. The triticale cultivars can be divided into three genotypes, high nitrogen use efficiency genotype, low nitrogen use efficiency genotype and the middle genotype. The high nitrogen use efficiency genotypes of triticale were CIxt82, PI429186 and PI429228, and the low nitrogen use efficiency genotypes were CIxt74, CIxt75, CIxt76, PI428955, PI587238 and PI587241. The plant height and shoot biomass of the high nitrogen use efficiency genotypes were higher than those of the low nitrogen use efficiency genotypes. The plant height and shoot biomass were significantly correlated with the nitrogen use efficiency, which can be used as the indirect indexes to evaluate nitrogen use efficiency of triticale.
     (2) To investigeat the characteristics of triticale dry matter production, N accumulation and translocation at different growth stages (tillering, jointing and heading stage), a potted experiment was carried out under four N levels comprising 0 mg/kg(N0)、16.67 mg/kg(N1)、33.33 mg/kg(N2) and 66.67 mg/kg(N3) by using two triticale genotypes of high nitrogen use efficiency PI429186 and low nitrogen use efficiency CIxt74 as materials. The results showed that at each growth stage N application increaded dry matter production. At the same N supplies under different growth stages, the high nitrogen use efficiency genotype PI429186's dry matter production was significant higher than low nitrogen use efficiency genotype CIxt74 N application increased the N accumulation and N accumulation progress of triticale genotypes in root, stem and leaf, while decreased the content of N in each organ. At the same N supplies under different growth stages, the high nitrogen use efficiency genotype PI429186's N accumulation and N accumulation progress in root, stem and leaf were higher than that of low nitrogen use efficiency genotype CIxt74. The N accumulation was higher in stem and leaf than that of root. At heading stage the N accumulation in leaf was transferred into stem, but the amount of N accumulation of root was keeping comparatively tranquilization. There was no significant different in two nitrogen use efficiency genotypes in the distribution of N accumulation.
     (3) To discussion the effects of nitrogen on root physiology, protective enzyme activities and lipid peroxidation in triticale leaves at different growth stages (seeding, tillering, jointing and heading stage), a potted experiment was carried out under four N levels comprising 0 mg/kg(N0)、16.67 mg/kg(N1)、33.33 mg/kg(N2) and 66.67 mg/kg(N3) by using two triticale genotypes of high nitrogen use efficiency PI429186 and low nitrogen use efficiency Clxt74 as materials. The results showed that:At the same N supply under different growth stages, the indexes of root physiology including root oxidation ability of a-NA, root reducing ability of TTC, active absorbing surface area of root in high nitrogen use efficiency genotype PI429186 were higher or significant higher than those in low nitrogen use efficiency genotype Clxt74 During the period of seeding, the activities of superxoide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves of high nitrogen use efficiency were higher than those of low nitrogen use efficiency genotype at the same N supplies. Contrarily, the content of malondialdehyde (MDA) was lower in high nitrogen use efficiency genotype than that in low nitrogen use efficiency genotype significantly. It could be concluded that, the root physiology was vigorous in high nitrogen use effiviency genotype, it ensures the efficient absorption and utilization of N from soli, and the protective enzyme of high nitrogen use efficiency genotype can cooperated with each other to eliminate reactive oxygen species, inhibit the membrane lipid peroxidation to increase the photosynthesis and get higher yield.
引文
[1]闫湘,金继运,何萍,等.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450-459.
    [2]程建峰,戴廷波,曹卫星,等,不同氮收获指数水稻基因型的氮代谢特征[J].作物学报,2007,33(3):497-502.
    [3]Mikhail A. Semenov, Peter D. Jamieson, Pierre Martre. Deconvoluting nitrogen use efficiency in wheat: A simulation study[J]. European. Journal of Agronomy,2007,26:283-294.
    [4]Peng S B, Huang J L, Zhong X H, Yang J C,et al. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Agric Sci China,2002,1(7):776-785.
    [5]闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440-446.
    [6]Jing Q, Bouman B A M, Hengsdijk H,et al. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China[J]. Eur JAgron,2007,26:166-177.
    [7]朱兆良,文启孝.中国土壤氮素[M].江苏:江苏科技出版社,1992:228-231.
    [8]春亮.玉米氮高效品种选育及根系形态对低氮反应的遗传分析[D].北京:中国农业大学,2004.
    [9]宋海星,刘强,荣湘民,等.不同品种油菜氮效率差异及其成因分析[J].水土保持学报,2007,21(5):159-162,179.
    [10]程建峰,戴廷波,曹卫星,等.稻种资源苗期氮素营养效率的分类、鉴定与评价[J].作物学报,2005,31(12):1640-1647.
    [11]Samonte S O P B, Wilson L T, Medley J C, et al. Nitrogen utilization efficiency:Relationship with grain yield, grain protein, and yield related traits in rice [J]. Agron J,2006,98:168-176.
    [12]陈范骏,春亮,鲍娟,等.不同氮效率玉米杂交种的营养生长及光合特征[J].玉米科学,2006,14(6):127-130.
    [13]李诚,艾尼瓦尔,孔广超,等.小黑麦光合物质积累及其饲用品质性状研究进展[J].种子,2006,25(6):47-50.
    [14]卫民,张少敏,王宏,等.小黑麦的生产特性及开发利用前景[J].当代畜牧,2002(2):33-35.
    [15]朱玉国,董召荣,陈程,等.追氮量对小黑麦再生草生长和草产量的影响[J].安徽农业大学学报,2006,33(4):547-550.
    [16]王瑞清,曹连莆,闫志顺,等.6个小黑麦品种产量构成性状的基因效应和配合力分析[J].麦类作物学报,2007,27(3):428-432.
    [17]李春艳,李诚,孔广超,等.春性饲用小黑麦高产优质特性的综合评价[J].麦类作物学报,2007,27(1):146-148.
    [18]孔广超,曹连莆,艾尼瓦尔,等.高产优质小黑麦新品种-新小黑麦3号[J].麦类作物学报,2005,25(2):149.
    [19]王金玲,董心久,田成军,等.水分胁迫对小黑麦生理生化特性和可溶性蛋白质的影响[J].麦类作物学报,2006,26(5):137-139.
    [20]李焰焰,聂传朋,董召荣.模拟酸雨对小黑麦种子萌发及幼苗生理特性的影响[J].生态学杂志,2005,24(4):395-397.
    [21]舒焕麟,任正隆,杨足君,等.小黑麦半矮秆突变品系CA577的诱导及其遗传分析[J].中国农业科学2003,36(8):879-882.
    [22]王瑞清,闫志顺,李诚,等.小黑麦种子外观品质性状的遗传研究[J].麦类作物学报2007,27(1):41-44.
    [23]徐祥玉,张敏敏,翟丙年,等.夏玉米氮效率基因型差异研究[J].植物营养与肥料学报,2006,12(4):495-499.
    [24]卢艳丽,陆卫平,王继丰,等.不同基因型糯玉米氮素吸收利用效率的研究Ⅰ氮素吸收利用的基因型差异[J].植物营养与肥料学报,2006,12(3):321-326.
    [25]陆大雷,刘小兵,赵久然,等.甜玉米氮素吸收利用的基因型差异[J].植物营养与肥料学报,2008,14(2):258-263.
    [26]张亚丽,樊剑波,段英华,等.不同基因型水稻氮利用效率的差异及评价[J].土壤学报,2008,45(2):267-273.
    [27]裴雪霞,王姣爱,党建友,等.耐低氮小麦基因型筛选指标的研究[J].植物营养与肥料学报,2007,13(1):93-98.
    [28]刘强,宋海星,荣湘民,等.不同品种油菜氮效率差异及其生理基础研究[J].植物营养与肥料学报,2008,14(1):113-119.
    [29]易镇邪,王璞,陈平平,等.氮肥类型对夏玉米氮素吸收和利用的影响[J].植物营养与肥料学报,2008,14(3):472-478.
    [30]鲁艳红,纪雄辉,郑圣先,等.施用控释氮肥对减少稻田氮素径流损失和提高水稻氮素利用率的影响[J].植物营养与肥料学报,2008,14(3):490-495.
    [31]翟军海,高亚军,周建斌.控释/缓释肥料研究概述[J].干早地区农业研究,2002,20(1):45-48.
    [32]樊小林,刘芳.钙镁磷肥复式包膜尿素对冬小麦产量和氮肥效率的影响[J].磷肥与复肥,2004,19(4):66-69.
    [33]马丽,张民,陈剑秋,等.包膜控释氮肥对玉米增产效应的研究[J].磷肥与复肥,2006,21(4):12-14.
    [34]易镇邪,王璞,陶洪斌,等.氮肥基/追比对华北平原夏玉米生长发育与水、氮利用的影响Ⅱ夏玉米氮素累积、转运与土壤无机氮动态[J].中国生态农业学报,2008,16(1):86-90.
    [35]贺帆,黄见良,崔克辉,等.实时实地氮肥管理对不同杂交水稻氮肥利用率的影响[J].中国农业科学,2008.41(2):470-479.
    [36]陈祥,同延安,亢欢虎,等.氮肥后移对冬小麦产量、氮肥利用率及氮素吸收的影响[J].植物营养与肥料学报,2008,14(3):450-455.
    [37]孙志梅,刘艳军,梁文举,等.新型脲酶抑制剂LNS与双氰胺配合施用对菜田土壤尿素氮转化及蔬菜生长的影响[J].土壤通报,2005,36(5):803-805.
    [38]邢卫,陈利军,陈振华,等.NBPT与DMPP不同剂量组合对尿素氮转化的影响[J].土壤通报,2008,39(4):896-899.
    [39]俞巧钢,陈英旭,张秋玲,等DMPP对菜地土壤氮素淋失的影响研究[J].水土保持学报,2006,20(4):40-43.
    [40]史云峰,武志杰,陈利军,等.3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响[J].应用生态学报,2007,18(5)1033-1037.
    [41]孙志梅,武志杰,陈利军,等.土壤硝化作用的抑制剂调控及其机理[J].应用生态学报,2008,19(6)1389-1395.
    [42]岳亚鹏,李勇,薛琳,等.不同供氮形态对早作水稻生长和养分吸收的影响[J].中国水稻科学,2008,22(4):405-410.
    [43]吴照辉,贺立源,张丽梅,等.作物磷高效种质资源筛选研究进展[J].山地农业生物学报,2008,27(1):61-68.
    [44]Haefele S.M, Jabbar S.M.A, Siopongco J.D.L.C, et al., Nitrogen use efficiency in selected rice(Oryza sativa L.) genotypes under different water regimes and nitrogen levels[J]. Field Crops Research,2008,107: 137-146.
    [45]Gerloff G L. Intact-plant screening for tolerance of nutrient deficiency stress [J]. Plant and Soil,1987, 99:3-16.
    [46]刁锐琦,钱晓刚.利用水培筛选玉米氮高效种质资源的研究[J].种子,2008,27(4):28-30.
    [47]张俊英,许永利,赵同科,等.氮胁迫下高效玉米基因型的筛选研究[J].安徽农业科学,2007,35(22):6713-6715.
    [48]江立庚,戴廷波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价[J].植物生态学报, 2003,27(4):466-471.
    [49]李艳,董中东,郝西,等.小麦不同品种的氮素利用效率差异研究[J].中国农业科学,2007,40(3):472-477.
    [50]马祥庆,刘爱琴,黄宝龙,等.氮素高效基因型杉木无性系的选择研究[J].林业科学,2002,38(6):53-57.
    [51]李雪妮,盛建东,侯静,等.不同棉花品种苗期氮效率筛选的初步研究[J].新疆农业大学学报,2007,30(3):44-48.
    [52]王新超,杨亚军,陈亮,等.茶树氮素利用效率相关生理生化指标初探[J].作物学报,2005,31(7):926-931.
    [53]朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238.
    [54]米国华,陈范骏,春亮,等.玉米氮高效品种的生物学特征[J].植物营养与肥料学报,2007,13(1):155-159.
    [55]春亮,陈范骏,张福锁,等.不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成[J].植物营养与肥料学报,2005,11(5):615-619.
    [56]魏海燕,张洪程,张胜飞,等.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报,2008,34(3):429-436.
    [57]韩胜芳,李淑文,吴立强,等.不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J].应用生态学报,2007.18(4):807-812.
    [58]刘德明,刘强,荣湘民,等.油菜根系特性与氮效率系数的关系研究[J].湖北农业科学,2008,2:64-66,70.
    [59]柴彦君,黄丽,袁家富,等.小麦氮素高效利用的研究进展[J].湖北农业科学,2009,48(8):2007-2012.
    [60]程建峰,戴廷波,荆奇,等.不同水稻基因型的根系形态生理特性与高效氮素吸收[J].土壤学报,2007,44(2):266-272.
    [61]张定一,张永清,杨武德,等.不同基因型小麦对低氮胁迫的生物学响应[J].作物学报,2006,32(9):1349-1354.
    [62]李淑文,文宏达,薛宝民,等.小麦高效吸收利用氮素的生理生化特性研究进展[J].麦类作物学报,2003,23(4):131-135.
    [63]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    [64]韩胜芳,李淑文,文宏达,等.不同氮效率小麦品种的光合旗叶的碳同化特性[J].植物营养与肥料学报,2006,12(6):797-804.
    [65]魏海燕,张洪程,马群,等.不同氮肥吸收利用效率水稻基因型叶片衰老特性[J].作物学报,2010,36(4): 645-654.
    [66]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490.
    [67]刘瑞显,郭文琦,陈兵林,等.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J].作物学报,2008,34(9):1598-1607.
    [68]陈范骏,米国华,张福锁.氮高效玉米新品种中农99的选育[J].作物杂志,2009,6:103-104.
    [69]刘立军,杨立年,孙小淋,等.水稻实地氮肥管理的氮肥利用效率及其生理原因[J].作物学报,2009,35(9):1672-1680.
    [70]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    [71]王汝慈,程式华,曹立勇.水稻耐低磷胁迫研究进展[J].中国农学通报,2009,25(06):77-83.
    [72]李焰焰,聂传朋,董召荣.优质饲草小黑麦的品种特性及研究现状[J].安徽农业科学,2005,33(6):1093-1094,1106.
    [73]贾慎修.中国饲用植物志·第1卷[M].北京:农业出版社,1987:309-313.
    [74]鲁如坤,主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,13,106-195.
    [75]王瑞清,闫志顺,李诚,等.小黑麦饲草品质性状的配合力分析[J].新疆农业科学,2007,44(6):881-884.
    [76]许庆方.小黑麦的特性及应用研究进展[J].草原与草坪,2008,(4):80-86.
    [77]陈柔屹,程江,郑常祥,等.饲用小黑麦适应性分析[J].种子,2010,29(6):81-83.
    [78]孙敏,郭援.小黑麦生物学特性,营养价值及利用前景[J].山西农业大学学报,2003,20(4):200-203.
    [79]李晶,祖伟,吉彪,等.氮用量对小黑麦东农96026群体生长及饲用品质的影响[J].中国农学通报,2009,25(7):141-144.
    [80]李陶.密度和氮素营养对小黑麦产量及品质的影响[D].哈尔滨:东北农业大学,2008.
    [81]李晶,吉彪,陈龙涛,等.密度与氮素水平对小黑麦群体动态、产量及构成因素的影响[J].东北农业大学学报,2010,41(6):7-10.
    [82]岳海,孙敏,吴忠华.不同肥料处理对小黑麦幼苗生长状况及生理功能的影响[J].山西师范大学学报,2004,18(3):81-85.
    [83]王进军,柯福来,白鸥,等.不同供氮方式对玉米干物质积累及产量的影响[J].沈阳农业大学学报,2008,39(4):392-395.
    [84]晏娟,沈其荣,尹斌.供氮量对氮高效水稻种质4007的氮素吸收、转运和利用的影响[J].土壤学报, 2010,47(1):107-114
    [85]王艳,米国华,陈范骏,等.玉米氮素吸收的基因型差异及其与根系形态的相关性[J].生态学报,2003,23(2):297-302.
    [86]连艳鲜,李潮海.高产玉米杂交种根系形态生理特性研究[J].玉米科学,2008,16(4):196-198.
    [87]马廷臣,余蓉蓉,陈荣军,等.PEG-6000模拟干旱对水稻苗期根系形态和部分生理指标影响的研究[J].中国农学通报,2010,8:149-156.
    [88]刘代平,宋海星,刘强,等.油菜根系形态和生理特性与其氮效率的关系[J].土壤,2008,40(5):765-769.
    [89]刘连涛,李存东,孙红春,等.氮素营养水平对棉花不同部位叶片衰老的生理效应[J].植物营养与肥料学报,2007,13(5):910-914.
    [90]张晓艳,刘锋,王风云,等.墨西哥玉米留茬中糖组分含量对氮素的响应[J].草业学报,2009,18(1):184-187.
    [91]何丹,李向林,万里强,等.施用尿素对当年退化天然草地物种地上部生物量和重要值的影响[J].草业学报,2009,18(3):154-158.
    [92]谢国平,呼天明,王俭珍,等.施N量和收获时间对西藏野生垂穗披碱草种子产量影响研究[J].草业学报,2010,19(2):89-96.
    [93]李志坚,祝廷成,秦明.不同施肥水平与组合对饲用黑麦经济效益的影响及施肥决策[J].草业学报,2009,18(3):148-153.
    [94]李文西,鲁剑巍,杨娟.苏丹草-黑麦草轮作制中施肥对饲草产量及养分吸收的影响[J].草业学报,2009,18(3):165-170.
    [95]黄勤楼,钟珍梅,陈恩,等.施氮水平与方式对黑麦草生物学特性和硝酸盐含量的影响[J].草业学报,2010,19(1):103-112.
    [96]Zhu J H, Li X L, Christie P,et al. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems[J]. Agriculture, Ecosystems and Environment,2005,111:70-80.
    [97]Semenov M A, Jamieson P D, Martre P. Deconvoluting nitrogen use efficiency in wheat:A simulation study[J]. European Journal of Agronomy,2007,26:283-294.
    [98]Sineboa W, Gretzmacher R, Edelbauer A. Genotypic variation for nitrogen use efficiency in Ethiopian barley [J].Field Crops Research,2004,85:43-60.
    [99]李焰焰,董召荣,聂传朋,等.盐胁迫下水杨酸及其衍生物对小黑麦幼苗生理特性的影响[J].生物学杂志,2005,22(3):11-12,32.
    [100]朱俊刚,王曙光,李晓燕,等.PEG胁迫对六倍体小黑麦幼苗SOD,POD活性及MDA含量的影响[J].中国农学通报,2009,25(18):202-204.
    [101]张宪政,陈凤玉,王荣富.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994.
    [102]中科院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,2004:305-315.
    [103]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003,123-124.
    [104]施特尔马赫著,钱嘉渊,译.酶的测定方法[M].北京:中国轻工业出版社,1992,197-198.
    [105]黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报,2001,7(3):293-297.
    [106]樊剑波,沈其荣,谭炯壮,等.不同氮效率水稻品种根系生理生态指标的差异[J].生态学报,2009,29(6):3052-3058.
    [107]蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应[J].生态学报,2003,23(6):1109-1116.
    [108]张英鹏,林咸永,章永松.供氮水平对菠菜品质和抗氧化酶活性的影响[J].应用生态学报,2005,16(3):519-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700